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Abstract

Human activity recognition has potential to impact a

wide range of applications from surveillance to human com-

puter interfaces to content based video retrieval. Recently,

the rapid development of inexpensive depth sensors (e.g.

Microsoft Kinect) provides adequate accuracy for real-time

full-body human tracking for activity recognition applica-

tions. In this paper, we create a complex human activity

dataset depicting two person interactions, including syn-

chronized video, depth and motion capture data. More-

over, we use our dataset to evaluate various features typi-

cally used for indexing and retrieval of motion capture data,

in the context of real-time detection of interaction activi-

ties via Support Vector Machines (SVMs). Experimentally,

we find that the geometric relational features based on dis-

tance between all pairs of joints outperforms other feature

choices. For whole sequence classification, we also explore

techniques related to Multiple Instance Learning (MIL) in

which the sequence is represented by a bag of body-pose

features. We find that the MIL based classifier outperforms

SVMs when the sequences extend temporally around the in-

teraction of interest.

1. Introduction

Human activity recognition is an important field for ap-

plications such as surveillance, human-computer interface,

content-based video retrieval, etc. [1, 26]. Early attempts

at human action recognition used the tracks of a person’s

body parts as input features [7, 35]. However, most recent

research [14, 6, 23, 30] moves from the high-level represen-

tation of the human body (e.g. skeleton) to the collection of

low-level features (e.g. local features) since full-body track-

ing from videos is still a challenging problem. Recently, the

rapid development of depth sensors (e.g. Microsoft Kinect)

provides adequate accuracy of real-time full-body tracking

with low cost [31]. This enables us to once again explore

the feasibility of skeleton based features for activity recog-

nition.

Past research proposed algorithms to classify short

videos of simple periodic actions performed by a single per-

son (e.g. ‘walking’ and ‘waiving’) [23, 4]. In real-world

applications, actions and activities are seldom periodic and

are often performed by multiple persons (e.g. ‘pushing and

‘hand shaking) [28]. Recognition of complex non-periodic

activities, especially interactions between multiple persons,

will be necessary for a number of applications (e.g. auto-

matic detection of violent activities in smart surveillance

systems). In contrast to simple periodic actions, the study of

causal relationships between two people, where one person

moves, and the other reacts, could help extend our under-

standing of human motion.

In this work, we recognize interactions performed by two

people using RGBD (i.e. color plus depth) sensor. Recent

work [22, 16, 2] has suggested that human activity recogni-

tion accuracy can be improved when using both color im-

ages and depth maps. On the other hand, it is known that

a human joint sequence is an effective representation for

structured motion [8]. Hence we only utilize a sequence

of tracked human joints inferred from RGBD images as a

feature. It is interesting to evaluate body-pose features mo-

tivated from motion capture data [20, 12, 21] using tracked

skeletons from a single depth sensor. Since full-body track-

ing of humans from a single depth sensor contains incorrect

tracking and noise, this problem is somewhat different from

scenarios with clean motion capture data.

In this paper, we create a new dataset for two-person in-

teractions using an inexpensive RGBD sensor (Microsoft

Kinect). We collect eight interactions: approaching, de-

parting, pushing, kicking, punching, exchanging objects,

hugging, and shaking hands from seven participants and 21

pairs of two-actor sets. In our dataset, color-depth video and

motion capture data have been synchronized and annotated

with action label for each frame.

Moreover, we evaluate several geometric relational

body-pose features including joint features, plane features
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and velocity features using our dataset for real-time inter-

action detection. Experimentally, we find joint features to

outperform others for this dataset, whereas velocity features

are sensitive to noise, commonly observed in tracked skele-

ton data.

Real time human activity detection has multiple uses

from human computer interaction systems, to surveillance,

to gaming. However, non-periodic actions no always have a

clearly defined beginning and ending frame. Since recorded

sequences are manually segmented and labeled in training

data, a segmented sequence might contain irrelevant ac-

tions or sub-actions. To overcome this problem, we use the

idea of Multiple Instance Learning (MIL) to tackle irrele-

vant actions in whole sequence classification. We find that

classifiers based on Multiple Instance Learning, have much

higher classification accuracy when the training sequences

contain irrelevant actions than Support Machine Machine

(SVM) classifiers.

This paper is organized as follows: Related work is re-

viewed in Section 2. Section 3 provides a detailed descrip-

tion of our interaction dataset. In Section 4, we define the

geometric relational body-pose features for real-time inter-

action detection. We describe how MILBoost scheme [34]

improves the performance on whole sequence classification

in Section 5. Section 6 shows the experimental results and

Section 7 concludes the paper.

2. Related Work

Interaction dataset: Very few person-to-person in-

teraction dataset are publicly available. There are certain

interaction dataset in video for surveillance environment

[29, 28], TV shows [25], and YouTube or Google videos

[13]. However, these datasets only contain videos since they

focus on robust approaches in natural and unconstrained

videos. There also exist motion capture datasets containing

human interactions such as The CMU Graphics Lab Mo-

tion Capture Database (http://mocap.cs.cmu.edu/) and Hu-

man Motion Database (HMD) [9]. However, both datasets

have only captured one couple (=two-actor set) so that they

are not well suited for evaluating human interaction recog-

nition performance. There are some datasets for pose es-

timation [33, 17], containing some human-human interac-

tion sequences with videos and synchronized motion cap-

ture data. However, since the purpose of these datasets is

pose estimation or shape reconstruction, they are not be di-

rectly used for activity recognition.

Kinect activity dataset: Recently, several activity

recognition datasets have been released. These datasets are

focused on simple activities or gestures [19, 16, 2], or daily

activities [22, 32] performed by a single actor such as drink-

ing water, cooking, entering the room, etc.

Acitivity recognition with Kinect: We briefly men-

tion approaches to the single or daily activity recognition

problem on Kinect dataset. Li et al. [16] use an expandable

graphical model, called an action graph, to explicitly model

the temporal dynamics of the actions, and a bag of 3D points

extracted from the depth map to model the postures. Ni et

al. [22] proposed multi-modality fusion schemes combin-

ing color and depth information for daily activity recogni-

tion. Both papers limit input to color and depth maps. Only

Masood et al. [19] and Sung et al. [32] use joint sequences

from depth sensors as a feature. In [19], only skeleton joints

are used as a feature for real-time single activity recogni-

tion and actions are detected by logistic regression. How-

ever, action categories are chosen from gestures for play-

ing video games, and can easily be discriminated from each

other using a single pose. In [32], both color and depth,

and skeleton joints are used as features and daily activities

are classified by a hierarchical maximum entropy Markov

model (MEMM). However, the action classes do not have

significant motion and skeleton features they use are highly

dependent on given action classes.

Multiple Instance Learning: Multiple Instance Learn-

ing (MIL) is a variant of supervised learning. In MIL, sam-

ples are organized into “bag”, instead of using positive or

negative singletons, and each bag may contain many in-

stances [18]. Recent works [11, 3, 10] show MIL pro-

vides better human action recognition and detection accu-

racy. MILBoost proposed by [34] use MIL in a boosting

framework, and it has been successfully applied for human

detection [5] and video classification [15].

3. A Two-person Interaction Dataset

We collect two person interactions using the Microsoft

Kinect sensor. We choose eight types of two-person interac-

tions, motivated by the activity classes from [29, 28, 24], in-

cluding: approaching, departing, pushing, kicking, punch-

ing, exchanging objects, hugging, and shaking hands. Note

that all of these action categories have interactions between

actors that differ from the categories performed by a sin-

gle actor independently. These action categories are chal-

lenging because they are not only non-periodic actions,

but also have very similar body movements. For instance,

‘exchanging object’ and ‘shaking hands’ contain common

body movements, where both actors extend and then with-

draw arms. Similarly, ‘pushing’ might be confused with

‘punching’.

All videos are recorded in the same laboratory envi-

ronment. Seven participants performed activities and the

dataset is composed 21 sets, where each set contains videos

of a pair of different persons performing all eight interac-

tions. Note that in most interactions, one person is acting

and the other person is reacting. Each set contains one or

two sequences per action category. The entire dataset has a

total of 300 interactions approximately.

Both color image and depth map are 640 × 480 pixels.

http://mocap.cs.cmu.edu/


(a) Approaching (b) Departing (c) Kicking (d) Punching

(e) Pushing (f) Hugging (g) ShakingHands (h) Exchanging

Figure 1: Visualization of our interaction dataset. Each row per interaction contains a color image, a depth map, and extracted

skeletons at the first, 25%, 50%, 75%, and the last frame of the entire sequence for each interaction: approaching, departing,

kicking, punching, pushing, hugging, shaking hands, and exchanging. A red skeleton indicates the person who is acting, and

a blue skeleton indicates the person who is reacting.

The dataset apart from an image and a depth map also con-

tains 3-dimensional coordinates of 15 joints from each per-

son at each frame. The articulated skeletons for each person

are automatically extracted by OpenNI with NITE middle-

ware provided by PrimeSense [27]. The frame rate is 15

frames per second (FPS). The dataset is composed of man-

ually segmented videos for each interaction, but each video

roughly starts from a standing pose before acting and ends

with a standing pose after acting. Our dataset also contains

ground truth labels with each segmented video labeled as

one action category. Ground truth label also contains iden-

tification of “active” actor (e.g. the person who is punching),

and “inactive” actor (e.g. the person being punched). Figure

1 shows example snapshot images of our dataset.

Although the skeleton extraction from depth maps pro-

vides a rather accurate articulated human body, it contains

noisy and incorrect tracking. Especially, since the full-body

tracking by NITE middleware is less stable on fast and com-

plex motions, and occlusions [27], there often exist tracking

failures in our dataset. For example, the position of an arm

is stuck in Figure 1e and Figure 1a. The overall tracking

is sometimes bad when a large amount of body parts of

two persons overlap (e.g. Figure 1f). More examples can

be found in the supplementary material.

4. Evaluation of Body-Pose Features for Real-

time Interaction Detection

In this section, we utilize several body-pose features

used for indexing and retrieval of motion capture data, and

evaluate them using our dataset for real-time detection of

interaction activities. Here, real-time refers to recognition

from a very small window of 0.1-0.2 seconds (2-3 frames).

Interaction detection is done by Support Vector Machine

(SVM) classifiers. In what follows, we describe the features

under our evaluation.

4.1. Features

One of the biggest challenges of using skeleton joints

as a feature is that semantically similar motions may not

necessarily be numerically similar [21]. To overcome this,

[36] uses relational body-pose features introduced in [21]



(a) Joint distance (b) Joint motion (c) Plane

(d) Normal plane (e) Velocity (f) Normal velocity

Figure 2: Body-pose features. Black rectangle indicates a

reference joint or vector, red circle indicates a target joint,

and blue circle indicates a reference plane. Red line is com-

puted by the definition of features and only two or three

samples are shown here.

describing geometric relations between specific joints in a

single pose or a short sequence of poses. They use relational

pose features to recognize daily-life activities performed by

a single actor in the random forest framework. We design a

number of related features for two-person interaction recog-

nition and evaluate them on our dataset, with a small win-

dow size (2-3 frames).

Let pxi,t ∈ ℜ3 and vxi,t ∈ ℜ3 be the 3D location and

velocity of joint i of person x at time t. Let T be all frames

within the size of window, W . Each window is labeled as

the action being executed in the middle. A feature of each

window is a single vector as a concatenation of all computed

features F (·; t), where t ∈ T .

Joint distance: The joint distance feature F jd (see Fig-

ure 2a) is defined as the Euclidean distance between all pairs

of joints of two persons at time t. It captures the distance

between two joints in a single pose. It is defined as:

F jd(i, j; t) = ‖pxi,t − p
y
j,t‖, (1)

where i and j are any joints of two persons, t ∈ T , and this

is measured for one person (x = y) or between two persons

(x 6= y).

Joint motion: The joint motion feature F jm (see Figure

2b) is defined as the Euclidean distance between all pairs of

joints of two persons between at time t1 and at time t2. It

captures dynamic motions of two persons at time t1 and t2.

It is defined as:

F jm(i, j; t1, t2) = ‖pxi,t1 − p
y
j,t2

‖, (2)

where i and j are any joints of two persons, t1, t2 ∈ T ,

t1 6= t2, and this is measured for one person (x = y) or

between two persons (x 6= y).

Plane: The plane feature F pl (see Figure 2c) captures

the geometric relationship between a plane and a joint. For

example, one may express how far the right foot lie in front

of the plane spanned by the left knee, the left hip and the

torso for a fixed pose. It is defined as:

F pl(i, j, k, l; t) = dist(pxi,t, 〈p
y
j,t, p

y
k,t, p

y
l,t〉), (3)

where 〈pyj,t, p
y
k,t, p

y
l,t〉 indicates the plane spanned by p

y
j , p

y
k,

p
y
l , and dist(pxi , 〈·〉) is the closest distance from point pxj to

the plane 〈·〉. t ∈ T , and this is measured for one person

(x = y) or between two persons (x 6= y).

Normal plane: The normal plane feature Fnp (see

Figure 2d) captures something the plane feature cannot ex-

press. For example, using the plane that is normal to the

vector from the joint ’neck’ to the joint ’torso’, one can eas-

ily check how far a hand raised above neck height. It is

defined as:

Fnp(i, j, k, l; t) = dist(pxi,t, 〈p
y
j,t, p

y
k,t, p

y
l,t〉n), (4)

where 〈pyj,t, p
y
k,t, p

y
l,t〉n indicates the plane with normal vec-

tor p
y
j − p

y
k passing through p

y
l . As in the plane feature,

t ∈ T , and this is measured for one person (x = y) or be-

tween two persons (x 6= y).

Velocity: The velocity feature F ve (see Figure 2e) cap-

tures the velocity of one joint along the direction between

two other joints at time t. It is defined as:

F ve(i, j, k; t) =
vxi,t · (p

y
j,t − p

y
k,t)

‖pyj,t − p
y
k,t‖

, (5)

where t ∈ T , and this is measured for one person (x = y)

or between two persons (x 6= y).

Normal velocity: The normal velocity feature F ve (see

Figure 2f) captures the velocity of one joint in the direction

of the normal vector of the plane spanned by three other

joints at time t. It is defined as:

Fnv(i, j, k, l; t) = vxi,t · n̂〈p
y
j,t, p

y
k,t, p

y
l,t〉, (6)

where n̂〈·〉 is the unit normal vector of the plane 〈·〉, t ∈ T ,

and this is measured for one person (x = y) or between two

persons (x 6= y).

5. Interaction Recognition on Whole Action

Sequences via Multiple Instance Learning

In the previous section we considered classification of

short sequences (2-3 frames) directly centered around the

peak of the interaction of interest. In this section, we ex-

plore what happens for longer time frames. As we explain



in Section 3, each video in training data is manually seg-

mented from the start frame, when ‘active’ actor starts to

move from a standing pose, to the end frame, when both

‘active’ and ‘inactive’ actor go back to a standing pose. For

instance, a segmented video for the ‘hugging’ action starts

from when both actors start to approach each other. It ends

when they stand apart each other after hugging. Thus, the

hugging video contains earlier and later frames which can

be irrelevant of the ‘hugging’ action, and might be more

similar to approaching and departing. Standard classifiers

learned on sequences like these will have low accuracy.

We use Multiple Instance Learning(MIL) in a boosting

framework to handle irrelevant frames in the training data.

Multiple Instance Boosting (MILBoost) proposed by Viola

et al. [34] was successfully applied to face detection [34],

human detection [5] and video classification [15]. MIL-

Boost combines AnyBoost with MIL. In boosting frame-

work, each instance is classified by a linear combination of

weak classifiers. In MILBoost, each instance is not indi-

vidually labeled. Instead, training instances are organized

into bags of instances. A positive bag has at least one posi-

tive instance in the bag, while all instances in a negative bag

are negative instance. In selecting the weak learner, MIL-

Boost will pay more attention to instances that have higher

weight. Thus, the algorithm assigns a higher positive weight

on a subset of instances, and these instances dominate sub-

sequence learning.

We follow the MILBoost formulation of [34] with Noisy

OR model, and consider the body-pose feature at each

frame as an instance. Figure 3 shows how the algorithm

works to recognize ‘kicking’ action. MILBoost assigns

higher weights on ‘actual’ kicking action among other in-

stances in the bag so that it reduces the effect of irrelevant

actions in the bag.

6. Experiments

In this section, we first evaluate body-pose features for

real-time interaction detection. Second, we classify seg-

mented sequences into action labels using MILBoost and

compare the result with using SVMs.

6.1. Experiments for Real­time interaction detec­
tion

The features defined in Section 4.1 can be divided into

three groups: two joint features, two plane features, and

two velocity features. We evaluate which group of features

are the most appropriate for real-time two-person interac-

tion detection. 30 joints (i.e. 15 joints of each person) are

used for joint features. Thus the dimension of the joint dis-

tance feature is W × 435 for each frame. The joint motion

feature has a higher dimension (i.e. 30×
(

W

2

)

). Both plane

features and velocity features are much higher dimension

vectors. For this reason, we choose ten markers (i.e. ‘torso’,

Figure 3: The overview of the ‘kicking’ MILBoost classi-

fier. Blue rectangles indicate true positive instances and red

rectangles indicate true negative instances. If a positive bag

has at least one instance is positive (i.e. actual kicking ac-

tion), while a negative bag does not have any of kicking ac-

tion. The MILBoost classifier outputs an action label given

a test sequence.

‘head’, ‘elbows’, ‘hands’, ‘knees’ and ‘feet’) for a target

joint (i.e. i in Equation 1 and 2), while selecting only six

important markers (i.e. ‘torso’, ‘head’, ‘hands’ and ‘feet’)

for reference planes or vectors (i.e. j, k, l in Equation 3, 4,

5, and 6). By doing so, we create a lower dimension fea-

ture without losing meaningful information. However, both

plane features and velocity features have very high dimen-

sion (i.e. 800 × W for plane and velocity, even higher for

normal velocity).

All body-pose features are computed within W=3 (0.2

seconds). To classify eight action categories, we train

SVMs in a one-vs-all fashion, and evaluation is done by

5-fold cross validation, i.e. 4 folds are used for training,

and 1 for testing. The dataset is composed by 21 sets of

two actors. We randomly split the dataset into 5 folds of

4-5 two-actor sets each. The partitioning of the datasets

into folds is performed so that each two-actor set is guar-

anteed to appear only in training or only in testing. Table

1 shows the real-time activity detection accuracy of eight

complex human-human interactions from our dataset. The

results are averaged over the 5 permutations and the param-

eter selection of SVMs is done by nested cross validation

with cost C ∈ {0.01, 0.1, 1, 10, 100}. We also evaluated

with a non-linear kernel for the SVM, but it yielded very

little, if any, improvement for most of features since our

body-pose features are high dimensional. The result shows

joint features result in higher detection accuracy than plane

features and velocity features. We conclude that the geomet-

ric relational body-pose feature based on euclidean distance

between joints captures the temporal and dynamic informa-



Features Average accuracy

Raw position 0.497 ± 0.0480

Joint distance 0.793 ± 0.0276

Joint motion 0.802 ± 0.0390

Plane 0.612 ± 0.0282

Normal plane 0.723 ± 0.0333

Velocity 0.442 ± 0.0393

Normal Velocity 0.349 ± 0.0193

Joint features (Figure 2a & 2b) 0.803 ± 0.0399

Plane features (Figure 2c & 2d) 0.738 ± 0.0192

Velocity features (Figure 2e & 2f) 0.484 ± 0.0387

Joint features + Plane features 0.790 ± 0.0349

Joint features + Velocity features 0.802 ± 0.0357

Velocity features + Plane features 0.744 ± 0.0201

All features 0.790 ± 0.0331

Table 1: Detection performance (± standard deviation) with

various combinations of body-pose features. Joint features

(i.e. joint distance and joint motion) are the strongest feature

than others.

tion of body movement for complex human activities in the

real-time action detection scenario. Also, it is more stable

with noisy full-body tracking than velocity features. Yao

et al. [36] pointed out velocity features have the best accu-

racy for single activity recognition using clean motion cap-

ture data with reduced skeleton (=13 joints). However, they

also claimed that velocity features are not robust to noise by

using synthesized noisy skeleton. As we have seen in Sec-

tion 3, our dataset contains a significant amount of incorrect

tracking and noise, which might explain the lower accuracy

of velocity features. Note that the raw position feature uses

the position of all 30 joints at a frame. The low accuracy

using the raw position feature means that the actions in the

dataset are difficult to classify.

Figure 4 shows confusion matrices for different body-

pose features. Over all eight action categories, joint features

have the best accuracy among three feature groups. ‘Hug-

ging’ is the most confused action in all cases; it is mostly

confused with ‘pushing’. Note that ‘hugging’ tends to have

more tracking and noise problems, since two skeletons over-

lap. As we have pointed out in Section 5, sequences in train-

ing data are manually segmented and a sequence may con-

tain irrelevant actions. For this reason, in many cases, the

beginning part of ‘hugging’ is classified as ‘approaching’

and the last part of ’hugging’ is classified as ‘departing’.

Moreover, when two persons get close with their stretched

arms, the motion is very similar as ‘pushing’ action. One

way to model this would be to divide the initial part of

the sequence into a sub-action type such as “stretch arm”,

which is out of the scope of the paper. We consider this the

problem of irrelevant actions in training data, meaning that

the part of ‘approaching’, ‘departing’, and ‘stretch arm’ in

the ‘hugging’ action is not actual ‘hugging’ interaction, in-

stead they are irrelevant sub-actions. We leave exploration

of sub-actions for future work. For similar reasons, there

also exists some confusion between ‘shaking hands’ and

‘exchanging’, and between ‘pushing’ and ‘punching’. In

real-time, their actions are very similar and it leads to a low

classification accuracy. Figure 5 shows examples of real-

time detection results.

6.2. Experiments on Whole Action Sequence Clas­
sification

In this section, we compare the classification perfor-

mance between the MILBoost classifier and SVM classi-

fier with segmented videos. Note that this experiment is not

real-time detection. We compute joint distance feature for

each frame and the size of window is the maximum frame

size of a sequence. For MILBoost classifier, the size of

the bag is the same as the window size for SVM classi-

fiers. In SVMs each frame is treated equally during learn-

ing, while in MILBoost frames are re-weighted so that key

frames for the interaction receive larger weights. For exam-

ple, a ‘punching’ classifier gives higher weights the feature

of the frame, where the arm of ‘active’ actor is stretched

and almost hit the head of ‘inactive’ actor. Since the lower

weights will be assigned to the frames having irrelevant ac-

tions, the classification performance increases.

To evaluate this, we first use the sequences with our

ground truth labels in the training set, called Set 1. To am-

plify the effect of irrelevant actions in the training set, we

create a different training set, called Set 2, with more irrele-

vant actions. Specifically, we segment the original recorded

sequence by starting from five frame earlier than the origi-

nal start frame and ending five frame later than the original

final frame. Set 2 contains more irrelevant actions since par-

ticipants randomly moved between action categories when

we collected data. We learn SVMs and MILBoost classi-

fiers in both Set 1 and Set 2 and test for whole sequence

classification. We use linear SVM with cost C ∈ {0.01,

0.1, 1, 10, 100} and run 100 iteration in MILBoost. The

classification performance is evaluated by 5-fold cross vali-

dation. Table 2 shows the accuracy of whole sequence clas-

sification. On Set 1, MILBoost has slightly better perfor-

mance than SVMs. However, we found accuracy dramati-

cally dropped with SVMs from Set 1 to Set 2, while MIL-

Boost retain high classification accuracy with training data

including more irrelevant actions. We conclude the MIL-

Boost classifier outperforms SVMs if there exist irrelevant

actions in the training set.

7. Conclusion and Future Work

We have created a new dataset for two-person interaction

using the Microsoft Kinect sensor including eight interac-

tions, color-depth video and motion capture data at each

frame. Using this dataset, we have evaluated body-pose



(a) Joint features (b) Plane features (c) Velocity features

Figure 4: Confusion matrix of different body-pose features for real-time interaction detection (W=3). Average classification

rates are 80.30%, 73.80%, 48.84% respectively.

Figure 5: Examples of real-time interaction detection. Each row shows the detected activity. A green box is true detection

and a red box is false detection. Each box is selected every 2-5 frames in a sequence. Ground truth label is shown in a square

bracket. Top: the first few frames are incorrectly classified as ‘shaking hands’, instead of ‘exchanging’. Bottom: the first few

frames are classified as either ‘exchanging’ or ‘pushing’, not as ‘hugging’. All these false detection are caused by irrelevant

actions in training data. More results can be found in the supplementary material

Classifier Set 1 Set 2 Performance decrease

Linear SVMs 0.876 0.687 -0.189

MILBoost 0.911 0.873 -0.038

Table 2: The performance on whole sequence classification.

With original label, MILBoost has better classification re-

sult than SVMs. With more irrelevant actions in the train-

ing data, the performance of SVMs is dramatically dropped,

while MILBoost retain high accuracy.

features motivated from 3D skeleton features for indexing

and retrieval of motion capture data. Geometric relational

features based on distance between all pairs of joints (i.e.

joint features) outperformed other features for real-time in-

teraction detection on noisy 3D skeleton data. Moreover,

we have shown that the MILBoost classifier outperforms

SVMs if there exist irrelevant actions in the training data.

In the future, we plan to extend our interaction dataset to

include additional interaction categories. One limitation of

our current dataset is that all videos are captured from a spe-

cific viewpoint. In the future, we plan to extend our dataset

with multiple viewpoints. Moreover, we will explore bet-

ter human interaction representations on our dataset. As in

[22, 32, 37], combined features with color and depth (e.g.

video + depth + skeleton) can also be evaluated. The seg-

mentation of sub-actions is also one interesting possible line

of work. In addition, we would like to investigate how body

parts of two actors relate to each other temporally during

complex body movements. We expect it should be possi-

ble to find causal relationships between two actors during

interactions, where one actor moves and the other reacts.
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