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The purpose of this note is to prove two perturbation theorems
for contraction semigroups in a Hilbert space. A linear operator T
in a Hilbert space H is said to be accretive if Re (Tu, u)>_O for all
u e D(T) (D(T) denotes the domain of T). If T satisfies the conditions
that (T+ $)- e (H) ((H) is the set of all bounded operators from H
to H) and II(T+)-[I_<_- for >0, T is said to be m-accretive. Let
T and A be operators in H such that
( 1 IIAull<__allull+bliTull, ue D(T) D(A),
where a, b are nonnegative constants. Then we say that A is relatively
bounded with respect to T or simply T-bounded. The condition (1) is
equivalent to
2 ) I]Aull--a’l[ull+bn[[Tu[[, ue D(T) D(A),

and (2) is more convenient to our purposes. Now let T be m-accretive
and A be accretive. Then it is known that T+A is also m-accretive
if A is T-bounded, with b<l (Cf. E. Nelson [4] and K. Gustafson [1]
for Banach space case. See also T. Kato [2], p. 499 and I. Miyadera
[3]). Our first result is concerned with the case that b’--1 in a Hilbert
space (but which does not cover the case that a:/=0, b-1). The second
result is concerned with a kind of large perturbation. Since --T
generates a contraction semigroup if and only if T is m-accretive,
these results are considered as a part of the perturbation theory for
contraction semigroups. And our results might have some applications
in the theory of partial differential equations as shown by the example
below.

For the later use we recall here some properties of m-accretive
operators in H. First we note that an m-accretive operator is accre-
tive and densely defined (cf. [2], p. 279).

Lemma. Let T be densely defined and accretive. In order that
T have the m-accretive closure, it is necessary that the range R(T+
of T+ be dense in H for every 0, and it is sufficient that this be
true for some

Proof. The necessity is clear by the definition of the m-accretive
operator, so that we prove the sufficiency part. Since T is densely
defined and accretive, T is closable (see [2], p. 268, Theorem 3.4).
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Since Re(Tu, u)>_0 for all u e D(T), we have II(T+)ull>=llull or
any >0. Therefore 7’ / is invertible and the inverse (T +
satisfies the inequality II(T+)-II<_- or $0. But since the de-
ficiency index of the closure of T is constant (see [2], p. 268, Theorem
3.2), R(T/) is dense in H for any 0. Therefore the closure of T
is m-accretive.

For other terminologies and notations appearing below see
T. Kato [2].

1o The first result is given by
Theorem 1. Let T and A be operators in H and T be m-accretiv.e.

If A is an accretive operator with D(A)D(T) and A(T+ o)-1 is a
contraction for some o0, then the closure S of T+ A is. also
m-accretive.

Proof. Since T+A is densely defined and accretive, by the
Lemma above, it suffices to show that R(T/A+$0) is dense in H.
But since T+A +0= [1 + A(T+ 0)-](T+ 0), it suffices to show that
R(1--B) is dense in H, where B---A(T+.o)-e _(H) and IIBII __<1.

To see this, it suffices to show that an element v of H orthogonal
to this range must be zero. Now such a v satisfies B*v-v. But
since B e_(H) and IIBI]__<I., B*v-v is equivalent to Bv--v (see [2],
p. 290), that is, A(T+o)-v+v-O. Setting u=(T+$o)-lv e D(T), we
have (T+A+o)u-O. Since T+A is accretive and 00, this gives
u-0 and hence v-0.

Corollary 1. Let T be m-accretive and A be aceretive. If A is
T-bounded and (2) holds with b’=l, that is,
( 3 ) IIAullz<anllullZ+llTu[I, a’>_O, u e D(T)D(A).,
then the closure S of T+A is also m-accretive.

Remark. Corollary 1 is a slight generalization of the perturba-
tion theorem for (essentially) selfadjoint operators by T. Kato (see [2],
p. 289).

Proof of Corollary 1. It suffices to show that A(T+)- is a

contraction for a’. Siace T is accretive, (3) can be written
Au I[<= a’Zll u + Tu + (-- a’911 u It

-<_II(T + )ull,
Hence A(T+)- e _(H) and IIA(T+)-II_<_I for >a’. (If a’:/=0, this
is true for :> a’.)

An accretive operator T in H is said to be sectorial with a vertex
0 and a semi-angle 7r/2- o) if eT is also accretive for o9 <= O_<_ 09,

0<w_r/2. Then the numerical range of T is a subset of a sector
larg 1 <=zr/2-w. If eT is m-accretive for all It?l__<w, T is said to be
m-sectorial with a vertex 0 and a semi-angle r/2-(0, and then --T is
the generator of a contraction holomorphic semigroup (cf. [2], p. 490).
The following corollary is concerned with such operators.
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Corollary 2. Let T be m-sectorial with a vertex 0 and a semi-
angle /2.--w, and let A be sectorial with a vertex 0 and a semi-angle
7r/2--w’. If the condition (3) is satisfied, then the closure S of
T/A is also m-sectorial with a vertex 0 and a semi-angle r/2-w",
(o" =min (w, w’), and e-s is holomorphic for [arg t[( w" and is a con-
traction.

2. Our second result is the following
Theorem 2. Let T and A be operators in H and T be m-accretive.

If A is an accretive operator satisfying the condition
( 4 ) Re (Tu, Au)O for all ue D(T)cD(A),
then T+A is m-accretive.

Proof. Since A is closable and D(A)D(T), there exists some
constant b >0 such that [[Au[b(u{[+Tu]) for all u e D(T) (see [2],
p. 191). Here, the case that b1 is of some interests in the pertur-
bation theory. It is known that T+ eA is m-accretive if be (1.

Now adding bkel[Au]] (k=l, 2, ...) to the both sides of
e Au[be u [[ + be Tu [[,

we have
e(1 + bke) Au[[ be u + be(ll Tu + ke Au )

be u[+ be (T+ keA)u.
This gives the basic inequality in our argument

k-O, 1, 2, ....
Since we have known that T+ eA is m-accretive, it follows from (5)
for k-1 that T+2eA is m-accretive. Continuing this process for
k-2, 3, ..., we can show that T+ keA is m-accretive for any positive
integer k. Since e is arbitrary positive number with be 1, it ollows
that T+A is m-accretive.

As a particular case of Theorem 2 we obtain the following
Corollary. Let T be selfad]oint and A be symmetric. If A satis-

fies the condition (4), then T+A is selfad]oint.
Proof. Since both iT and --iT are m-accretiVe, and both iA and

-iA are accretive, it follows from Theorem 2 that i(T + A) and
--i(T + A) are m-accretive. Therefore T +A is selfadjoint.

Remark. If the assumptions of Theorem 2 are satisfied, we have
Re((T+$)u, Au)O or all ue D(T). Therefore A(T+)- e (H) is
accretive for any >0.

The method in the proof of Theorem 2 is applicable to the
relatively bounded perturbation of some other kinds of operators
satisfying the condition (4) in a Hilbert space. In fact, by the as-
sumption (4), we can put off the restriction on a and b (see e.g. [2],
p. 190, p. 196 and p. 497).

Example. Let H=L(-, ), T:-d/dx and A:--f(x)d/dx
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where f(x)-O for x0, f(x)=-b0 for x0. Then we have

2Re(Au, u)=blu(O)l>_ O, D(A)D(T) and (Tu, Au)-b[,lu’(x)ldx>=O.
Hence it ollows from Theorem 2 that T/A is m-accretive for any

b0. Thus we see that the Cauchy problem du/dt +(T+A)u--O,
u(O)-uo e D(T), is well-posed. This result is also easily verified by
the method of characteristics in the theory of partial differential
equations.

Finally, the writer expresses his hearty thanks to Professor
R. Iino whose instruction has meant much to him, and to Professors
H. Sunouchi and I. Miyadera for many kind advices.
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