1	Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-					
2	staphylococcal biofilms					
3						
4	Diana Gutiérrez ^a , Dieter Vandenheuvel ^b , Beatriz Martínez ^a , Ana Rodríguez ^a , Rob					
5	Lavigne ^b , Pilar García ^a #					
6						
7	Instituto de Productos Lácteos de Asturias (IPLA-CSIC). Departamento de Tecnología					
8	y Biotecnología de productos Lácteos Villaviciosa, Asturias, Spain ^a ; Laboratory of					
9	Gene Technology, KU Leuven, Belgium ^b .					
10						
11	Running Head: New lytic phages against staphylococcal biofilms					
12						
13	#Address correspondence to Dr. Pilar García, pgarcia@ipla.csic.es					

15 Abstract

16 Phage therapy is a promising alternative to fight against staphylococcal infections. 17 Two lytic phages, vB_SauM_phiIPLA-RODI and vB_SepM_phiIPLA-C1C, belonging 18 to the Myoviridae family and exhibiting a wide host range were characterized. The 19 complete genome sequences comprised 142,348 bp and 140,961 bp, and contained 213 20 and 203 open reading frames, respectively. Gene organization was typical of 21 Spounavirinae members, with long direct terminal repeats (LTRs), genes grouped in 22 modules not clearly separated from each other, and several group I introns. In addition, 23 four genes encoding tRNAs were identified in phiIPLA-RODI. Comparative DNA 24 sequences analysis showed its high similarity with two phages GH15 and 676Z, 25 belonging to the Twort-like virus genus, (nucleotide identity >84%); for phiIPLA-C1C a 26 high similarity with phage phiIBB-SEP1 was observed (identity of 80%). Challenge 27 assays of phages phiIPLA-RODI and phiIPLA-C1C against staphylococcal planktonic 28 cells confirmed their lytic ability to remove 5 log-units in 8 h. Exposure of biofilms to 29 phages phiIPLA-RODI and phiIPLA-C1C reduced adhered bacteria to about 2 log-units 30 in both mono-species and dual-species biofilms, but phiIPLA-RODI turned out to be as 31 effective as the mixture of both phages. Moreover, the frequency of bacteriophage 32 insensitive mutants (BIMs) of S. aureus and S. epidermidis to phiIPLA-RODI and phiIPLA-C1C was low, $4.05 \times 10^{-7} \pm 2.34 \times 10^{-9}$ and $1.1 \times 10^{-7} \pm 2.08 \times 10^{-9}$, respectively. 33 34 Overall, a general reduced fitness in absence of phages was observed for BIMs, which 35 restored the phage sensitive phenotype in a few generations. These results confirm that 36 lytic bacteriophages can be efficient biofilm disrupting agents, supporting their potential 37 as antimicrobials against staphylococcal infections.

39 INTRODUCTION

40 Two staphylococcal species, Staphylococcus aureus and Staphylococcus 41 *epidermidis*, are the main cause of nosocomial infections due to their ability to adhere, 42 colonize and develop biofilms in medical devices and human organs (1). Staphylococcal 43 biofilms are complex structures where bacterial cells are surrounded by an extracellular 44 material (polysaccharides, teichoic acids, proteins and eDNA) which confers protection 45 against antibacterial drugs and host immune system. In addition, bacteria growing as a 46 biofilm facilitate the development of antibiotic-resistant organisms (2). S. epidermidis is 47 one of the most abundant species in human skin microbiota from where it easily reaches 48 catheters, heart valves and contact lenses. Despite of being regarded as an innocuous 49 bacterium, it is now accepted as an opportunistic pathogen and one of the most common 50 causes of bacteremia in immunocompromised patients (3), preterm infants (4) and 51 biofilm-related infections (5). In addition, resistance to methicillin due to the presence 52 of the *mecA* gene is widely spread in hospital isolates (6). Similarly, virulence in S. 53 *aureus* is mainly due to its ability to adhere, proliferate and attach on biotic and abiotic 54 surfaces (7). In hospital settings S. aureus infections affecting internal organs and 55 implanted medical devices have become difficult to eradicate. Moreover, methicillin-56 resistant strains (MRSA) are often prevalent in hospitals and have been recently spread 57 in no-related environments affecting people without exposure to health care 58 environment (8). MRSA strains have also been isolated from food of animal origin (9) 59 and livestock (10).

60 Phage therapy exploits the ability of phages to infect and kill bacteria in the 61 treatment of infectious diseases. This represents a potential alternative to antibiotics to 62 fight against multi-resistant pathogenic bacteria or superbugs (11). Indeed, human trials

63 with phages against a number of infections confirmed their safety and showed that 64 phage therapy can provide good results in untreatable chronic infections (12, 13). 65 Specifically, recent results showed the efficacy of phages in animal models such as S. 66 aureus septicemia in mice (14) and silkworm (15). Safety and efficacy of phage 67 products to remove this bacterium in a sinusitis sheep model has also been proven (16). 68 Other applications of phages against S. aureus encompass the improvement in wound 69 healing developed on diabetic patients (17, 18) and the treatment of chronic wounds 70 (19). Previous results also showed the ability of phages to remove biofilms formed by 71 staphylococcal species (20-22).

72 In this study, we report a complete morphological and genetic characterization of 73 two new phages infecting staphylococcal species, named vB_SauM_phiIPLA-RODI 74 and vB SepM phiIPLA-C1C (in short, phiIPLA-RODI and phiIPLA-C1C), following 75 the nomenclature proposed by Kropinski, et al. (23). The lytic abilities of these phages 76 including host range and biofilm removal were analyzed. Furthermore, the frequency of 77 bacteriophage insensitive mutants (BIMs) was calculated for both phages against 78 planktonic cells and a preliminary characterization of these resistant bacteria is also 79 presented.

80 MATERIAL AND METHODS

Bacterial strains, bacteriophages and growth conditions. Forty four different staphylococcal species and one *Macrococcus caseolyticus* strain were used in this study (Table 1). All the bacteria were isolated in Baid-Parker Agar (BP) and were routinely cultured in TSB broth (Tryptic Soy Broth, Scharlau, Barcelona, Spain) at 37°C with shaking or on TSB plates containing 2% (w/v) bacteriological agar (TSA).

86 To select *S. aureus* IPLA16 colonies resistant to rifampicin (*S. aureus* IPLA16-rif^R),

87 100 μl of overnight cultures were plated onto TSA plates supplemented with 100 μg/ml

of rifampin. Plates were incubated for 16 h at 37°C. Single colonies were picked up and
grown in fresh TSB at 37°C with shaking for further studies.

Bacteriophages phiIPLA-RODI and phiIPLA-C1C were propagated on *S. aureus*IPLA1 and *S. epidermidis* F12, respectively, as previously described (24).

92 Bacteriophage isolation and propagation. Bacteriophages were isolated from a 93 sewage treatment plant in Colunga, Asturias (Spain). For isolation of staphylococcal 94 phages, 1 liter of sewage was centrifuged twice at 13,600 $\times g$ for 30 min and the 95 supernatant filtered using sequentially 0.45 µm and 0.22 µm cellulose acetate 96 membrane filters (VWR, Spain). Enrichment cultures were performed by mixing 20 ml 97 of TSB concentrated five times (TSB 5x), 80 ml of filtrated sewage and 100 µl of 98 overnight cultures from four mixtures of S. aureus strains (mixture 1: S. aureus IPLA3, 99 IPLA4, IPLA6, IPLA15, IPLA16, IPLA17, IPLA18; mixture 2: S. aureus IPLA5, 100 IPLA8, IPLA14; mixture 3: S. aureus IPLA1, IPLA2, IPLA9, IPLA10; mixture 4: S. 101 aureus IPLA7, IPLA13). After incubation for 16 h at 37°C, the samples were 102 centrifuged and filtered. A total of three enrichments were carried out to obtain a higher 103 phage titration. To assess the presence of phages, 5 µl of the supernatants from the 104 different combinations were spotted onto a bacterial lawn of each of the S. aureus and S. 105 epidermidis strains following the double layer technique (24). The presence of an 106 inhibition halo is representative of phage sensitivity. Each inhibition halo was further 107 purified to isolate different phages. Two phages were re-isolated, propagated and 108 purified by a CsCl continuous density gradient as described by (24). As host bacteria, S. 109 aureus IPLA1 and S. epidermidis F12 were used for the propagation and purification of 110 phages phiIPLA-RODI and phiIPLA-C1C, respectively.

Bacteriophage one-step growth curve, EOP, and stability to pH and temperature. One-step growth curves were made for phages phiIPLA-RODI and

113 phiIPLA-C1C, on the sensitive strains S. aureus IPLA16 and S. epidermidis LO5081, 114 respectively, as previously described (24). Bacteriophage host range was performed using phiIPLA-RODI (10⁹ PFU/ml) and phiIPLA-C1C (10⁹ PFU/ml) by drop test, and a 115 116 titration of the phages was further carried out in all sensitive strains to differentiate 117 between infection and lysis due to bacteriocins. Efficiency of plaque formation (EOP) 118 was determined by dividing the phage titer on the test strain by the phage titer on the 119 reference strain (S. aureus IPLA1 for phage phiIPLA-RODI and S. epidermidis F12 for 120 phage phiIPLA-C1C).

The pH stability of the phage particles was tested by incubation in the Britton-Robinson pH universal buffer (150 mM KCl, 10 mM KH₂PO₄, 10 mM sodium citrate, 10 mM H₃BO₃; adjusting the pH in a range from 3 to 11) for 3 h at room temperature. Similarly, the temperature stability was examined by incubating the phages in SM buffer at different temperatures (ranging from 40°C to 90°C), for 30 min. Phage suspensions in SM buffer at 4°C were used as controls.

Bacteria-phage challenge test against staphylococcal planktonic cultures. Ten ml of TSB broth was inoculated with an overnight culture until an optical density (OD_{600}) of 0.05 and incubated at 37°C with shaking until reaching an OD_{600nm} of 0.1 (10^7 CFU/ml). A 100-fold dilution of the culture was infected with a multiplicity of infection (MOI) of 100 (10^7 PFU/ml). Infected cultures were incubated for 8 h at 37°C, and samples were taken at 2 h intervals. Phage and cell counts were plated in triplicate.

Biofilm formation and biofilm-phage challenge test. Overnight cultures of *S. aureus* IPLA16-rif^R and *S. epidermidis* LO5081 were diluted to 10^6 CFU/ml into fresh TSB supplemented with 0.25% glucose. Aliquots of 200 µl of each single culture or mixture of both strains (100 µl of each strain) were poured into a 96 microwell plate (Thermo Scientific, Madrid, Spain). Biofilms were grown during 24 h at 37°C. Wells 138 were then washed twice with PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM 139 Na₂HPO₄ and 2 mM KH₂PO₄; pH 7.4). To test biofilm degradation by each phage, 100 μ l of SM and 100 μ l of phiIPLA-RODI or phiIPLA-C1C were added to each well (10⁹) 140 141 PFU/well). To test the combined effect of both phages, 200 µl of the mixture of both phages was added to the well $(10^9 \text{ PFU/well of each phage})$. SM buffer was added for 142 143 control purposes. The plates were incubated for 4 h at 37°C, the supernatants were 144 removed and serial dilutions plated on TSB. The cells that were still bound after phage 145 treatment were collected by scratching twice with a sterile swab, suspended in 9 ml of 146 SM buffer and vigorously vortexed for 1 min. Serial dilutions were plated for bacterial 147 counting. For mixed biofilms, S. epidermidis counts were calculated as the difference between total staphylococcal counts in TSA and the S. aureus IPLA16-rif^R counts in 148 149 TSA supplemented with 100 µg/ml of rifampicin.

Alternatively, the biomass adhered to the well was observed by staining with crystal violet (0.1% w/v) as described previously (25).

152 Isolation and characterization of Bacteriophage-Insensitive Mutants (BIMs). 153 Bacteriophage-Insensitive Mutants to phages phiIPLA-RODI and phiIPLA-C1C were 154 obtained from the strains S. aureus IPLA16 and S. epidermidis LO5081, respectively. Aliquots of 100 μ l of overnight cultures of each strain (10⁸ CFU) were incubated with 155 156 100 µl of phage (10^9 PFU) for 10 min at 37 °C. Then, the mixture was poured onto a 2% TSA plate and covered with 3 ml of 0.7% TSA. Plates were incubated for 16 h at 37 °C. 157 158 Surviving colonies were picked up and grown in fresh TSB medium for 16 h at 37°C. 159 Bacteriophage susceptibility was tested by the drop assay (24). BIM frequency was 160 calculated as the ratio between the number of surviving colonies and the initial number 161 of bacteria incubated in the presence of phage.

Surface hydrophobicity was determined according to the microbial-adhesion-tosolvents (MATS) assay using hexadecane (Sigma–Aldrich, Madrid, Spain) and stationary-phase cells washed with 0.15 M NaCl adjusted to a final OD_{600} of 0.8 (26). Each measurement was performed in triplicate, and the assay was carried out twice with independent cultures.

167 The susceptibility of S. aureus IPLA16, S. epidermidis LO5081 and their respective 168 BIMs to several NaCl concentrations was evaluated by the LD50 values, defined as the 169 concentration of NaCl that inhibits the growth of the strain by 50% compared with the 170 control culture of the same strain growing in standard TSB (0.5% NaCl). Overnight 171 cultures were diluted to OD₆₀₀ of 0.05 in TSB containing different NaCl concentrations 172 (0.5-20%). Aliquots of 0.2 ml were put into 96 microwell plates (NunclonDsurface, 173 Nunc, Roskilde, Denmark). Plates were incubated at 37°C and growth was monitored in 174 a Benchmark Plus Microplate Spectrophotometer (Bio-Rad Laboratories) until the 175 control samples reached an OD_{600} of 0.9±0.1. Growth rates were estimated from linear 176 regression after plotting $Ln(OD_{600})$ as a function of time during the exponential growth 177 phase as described previously (27). The adsorption kinetics and the adsorption rate 178 constant (k) of the phages were calculated as previously described (28).

Electron microscopy of phage particles. Electron microscope examination was
performed after negative staining of the phage particles with 2% uranyl acetate; electron
micrographs were taken using a JEOL 12.000 EXII transmission electron microscope
(JEDL USA Inc, Peabody, MA, USA).

DNA extraction and protein analysis. To prepare bacterial DNA-free samples for sequence analysis, the purified phages were treated as described previously (20). Analysis of virion proteins was carried out by SDS-PAGE analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF), aspreviously described (29).

188 Bacteriophage genome analysis and characterization. The genome sequence of 189 phages phiIPLA-RODI and phiIPLA-C1C was determined by GenProbio SRL (Parma, 190 Italy) using the Ion Torrent Personal Genome Machine (PGM; Life Technologies, 191 USA). The MIRA program (version 3.4.0) was used for assembly of genome sequences, 192 resulting in coverage of 138-fold for phiIPLA-C1C and 432-fold for phiIPLA-RODI. 193 Additional sequencing using specific primers was done to elucidate regions with 194 ambiguities. Phage genomes were auto-annotated using RAST (30) and manually 195 curated. BLASTX and BLASTP were used to search for similar proteins (31). Structural 196 predictions and motif searches were performed with InterProScan (32). Putative 197 promoters and Shine-Dalgarno sites were predicted using the software MEME (33) 198 followed by visual inspection. ARNold (34) and TransTerm (35) were used to detect 199 potential rho-independent terminators. Putative tRNA were predicted using tRNAscan-200 SE (36) and ARAGORN (37). Genomic comparison at the nucleotide level was made 201 with EMBOSS Stretcher (38) and with MAUVE (39), using the genome sequences 202 available in public databases (July, 2014) from phages of the Myoviridae family 203 infecting *Staphylococcus*. Before the global alignments could be performed, the 204 genomes were manually colinearized, placing the arbitrary starting point at the end of 205 the *orf* preceding the large terminase subunit. The genome organization of the phages 206 and a comparative BLASTN figure was generated using CGView server (40). 207 Annotation was done on the basis of their homology with previously described phages. 208 The sequences of phiIPLA-RODI and phiIPLA-C1C have been deposited in the

209 GenBank under accession numbers KP027446 and KP027447, respectively.

Statistical analysis. Statistical analyses were performed to establish any significant difference between the control and the tested strains. The differences were expressed as the mean \pm standard deviation of three biological replicates in all the assays, and were determined by one-way analysis of variance (ANOVA) followed by the Bonferroni multi-comparison test. Statistical significance was considered at p<0.05.

215 **RESULTS**

216 Bacteriophages phiIPLA-RODI and phiIPLA-C1C, two new members of the 217 Myoviridae family infecting staphylococcal species. Two phages were isolated from 218 sewage after enrichment with four different mixtures of S. aureus strains. From the 219 mixtures 1 and 4 two phages were further isolated, propagated and purified using S. 220 aureus IPLA1 as host for phage phiIPLA-RODI and S. epidermidis F12 for phage 221 phiIPLA-C1C. The host range of the isolated bacteriophages was tested against a 222 collection of 47 bacterial strains (Table 1). Both phages showed a wide host range 223 infecting the 81% (phiIPLA-RODI) and 40% (phiIPLA-C1C) of Staphylococcus strains. 224 For S. aureus, all strains were infected by phiIPLA-RODI, whereas phiIPLA-C1C only 225 infected three strains. All S. epidermidis strains were infected by phiIPLA-C1C, 226 indicating that phage phiIPLA-C1C is more specific for S. epidermidis. In addition, ten 227 different species belonging to Staphylococcus genus were also sensitive to phiIPLA-228 RODI and six of them were sensitive to phiIPLA-C1C. Both phages were able to infect 229 the Macrococcus caseolyticus IPLA101 strain (Table 1).

Virions of both phages were observed under transmission electron microscopy, and showed isometric capsids and long contractile tails typical for the *Myoviridae* family (Fig. 1A). PhiIPLA-RODI has a capsid of 73±8 nm of diameter and a tail of 95±8 nm long. PhiIPLA-C1C has a capsid of 88±10 nm of diameter and a tail of 110±13 nm long. A double baseplate upon tail contraction, which is typical from SPO1-related phageswas clearly observed in both phages (41).

One-step growth curves under standardized conditions were determined for both phages (Fig. 1B). The eclipse and latent periods of phiIPLA-RODI on *S. aureus* IPLA16 and for phiIPLA-C1C in *S. epidermidis* LO5081 were 15 and 20 min, respectively. The burst sizes were estimated as 25 and 15 phage particles per infected cell for phiIPLA-RODI and phiIPLA-C1C, respectively (Fig. 1B).

Both phages appeared quite stable at temperatures below 60°C but a total inactivation over 70°C was observed (Fig. S1). Concerning pH stability, a notable reduction of 3.6 log-units in the phage titer was observed in phage phiIPLA-C1C at pH 11 while phiIPLA-RODI was found to be quite stable at this pH. No viable phages were recovered after incubation at pH 3 (Fig. S1).

Genomic organization of phages phiIPLA-RODI and phiIPLA-C1C is typical 246 247 of the Spounaviridae subfamily. The genome of phiIPLA-RODI and phiIPLA-C1C is 248 a double-stranded DNA linear molecule of 142,348 bp (encoding 213 putative ORFs) 249 and 140,961 bp (encoding 203 putative ORFs), respectively, with ORFs preceded by 250 potential Shine-Dalgarno sequences (Tables S1 and S2). Up to 40 and 27 putative 251 promoters (Table S3) were identified, respectively, most of them showed AT-rich 252 sequences upstream of the -35 region and would correspond to middle or early 253 promoters. In addition, 52 and 33 putative rho-independent terminators in phiIPLA-254 RODI and phiIPLA-C1C were predicted, respectively (Table S4). Two main 255 transcriptional units were identified in both phages (Fig. 2 and 3).

Based on BLAST analysis and conserved domains screening, putative functions have been assigned to 93 of the predicted ORFs (44%) from phiIPLA-RODI and 80 of the predicted ORFs (39%) from phiIPLA-C1C (Tables S1 and S2, respectively). ORFs

were annotated based on the similarity of phiIPLA-RODI and phiIPLA-C1C to phage K
(Accession number NC_005880) and *S. epidermidis* phage phiIBB-SEP1 (Accession
number KF021268.1), respectively.

262 Overall, genes of both phages are organized into four functional modules including 263 long terminal repeats, morphogenesis, cell lysis and replication/transcription. 264 Furthermore, the phiIPLA-RODI genome encodes a tRNA gene encoding tRNA_{Met} 265 (located between orf18 and orf19) and three tRNA genes encoding tRNA_{Asp}, tRNA_{Phe} 266 and tRNA_{Trp}, (between orf59 and orf60). The presence of a conserved sequence 267 (TGTCAAGTTAATTT) was detected near these tRNAs, at positions 8852-8865, 268 31999-32012 and 32179-32192, which may be binding sites for a transcriptional 269 regulatory factor (42). No tRNA genes were identified in the phiIPLA-C1C genome.

270 The ends of the genome of both phages are flanked by long terminal repeats (LTRs), 271 putatively involved in the recombination of phage genome inside the cell. These regions 272 encode small proteins implicated in host takeover, redirecting cell metabolism to phage 273 production (43). The exact boundaries between these LTRs and the rest of the genome 274 have not been determined but comparison of the terminal repeat proteins with other 275 phages suggests that they could span from TreA (orf192) until BofL (orf6) encoding 276 genes in phiIPLA-RODI. In this fragment, 28 putative terminal repeat proteins were 277 detected. Homologous to the previously described TreA, TreB, TreC, TreE, TreF, TreJ, 278 TreK, TreN, TreP, TreU and TreT were recognized in a region of 10,330 bp. In 279 addition, a putative group I homing HNH endonuclease (orf206), typical from this 280 region, was also identified. In phiIPLA-C1C, LTRs could be expanded from the 281 pentapeptide repeat protein (orf143) until BofL (orf165) with a total of 11,844 bp and 282 23 putative proteins. In this region, three putative terminal repeat proteins with 283 homology to TreK (orf150), TreO (orf152) and TreN (orf155) were identified.

284 The morphogenesis module was split in two regions in both genomes. In phiIPLA-285 RODI these regions (orf67-orf108 and orf135-orf139) were separated by the 286 replication/transcription module, whereas the **LTRs** region and the 287 replication/transcription module were located in between of the two morphogenetic 288 regions (orf1 to orf42 and orf169 to orf171) in phiIPLA-C1C. Genes encoding large 289 terminase subunit, portal protein, prohead protease, major capsid, major tail sheath and 290 tape measure protein (TMP) were identified. The large terminase subunit of phiIPLA-291 RODI (orf67) presented a group I intron protein interspaced in the gene; while in 292 phiIPLA-C1C (orf2) this intron was not present. The remainder of the proteins encoded 293 in these regions failed to show similarity to the terminase small subunits. The TMP 294 encoding gene is followed by two putative genes in phiIPLA-RODI: orf95 which 295 encodes a tail-associated protein with muralytic activity (as deduced from the presence 296 of a CHAP domain), and orf96, which contains a predicted endopeptidase domain. 297 Moreover, the product of orf97 showed homology with glycerol-phosphodiester 298 hydrolytic activities. In phiIPLA-C1C, the TMP encoding gene is followed by four 299 putative genes: orf28 that encodes a glucosaminidase, orf29 encoding a lytic 300 transglycosylase, orf30 that encodes an amidase with a CHAP domain, and orf31 which 301 encodes a peptidase. The other genes in these modules are likely to encode baseplate, 302 structural and assembly proteins. Protein analysis of viral particles allowed the 303 identification of the adsorption-associated tail protein (orf104), major tail sheath protein 304 (orf85), capsid protein (orf78) and major tail protein (orf136) in phage phiIPLA-RODI. 305 In phage phiIPLA-C1C, a tail protein (orf40), major tail sheath (orf18), major capsid 306 protein (orf11) and a hypothetical protein (orf85) were also identified (Fig. 4). 307 The lysis modules containing genes involved in bacterial lysis (holin and endolysin)

308 were located upstream of the morphogenetic module. In addition, putative

transglycosylase encoding genes (*orf53* in phiIPLA-RODI and *orf174* in phiIPLA-C1C)
which could be involved in cell wall hydrolysis were also identified. Moreover, in
phiIPLA-C1C a second holin gene (*orf78*) was located downstream of the
replication/transcription module.

313 In the replication and transcription module several genes related with DNA 314 replication (DNA helicase, DNA primase, resolvase, DNA polymerase and DNA repair 315 protein), synthesis of DNA precursors (ribonucleotide reductase) and gene regulation 316 (sigma factor and integration host factor) were identified. Additionally, two direct 317 repeats of 41 nucleotides were found in phiIPLA-RODI genome between orf60 and 318 orf61 (AAAAAGTACGTATTTAGAAAATAAGGAACTCTCCTATTATA). These 319 sequences share the 27 first nucleotides with that sequence of 28 nucleotides conserved 320 in the Myoviridae family of phages infecting Staphylococcus (except in phages 321 Romulus, Remus, SA11, phiIBB-SEP1 and Twort). These regions are supposed to be 322 potential binding sites for the replication initiator protein.

323 A group I intron associated to a VRS endonuclease was detected in the middle of the 324 terminase large subunit (orf68) in phiIPLA-RODI, while in phiIPLA-C1C two introns 325 and one intein were identified. The group I intron GIY-YIG homing endonucleases 326 were located interrupting the ribonucleotide reductase large subunit (orf61), and the 327 DNA polymerase (orf69). The intein DOD homing endonuclease is located after the 328 recombination protein (orf73). Additionally, in phiIPLA-C1C two intronless GIY-YIG 329 and HNH homing endonucleases were located in intergenic regions downstream from 330 orf171 and orf185, respectively.

331 **Comparative genomics.** To perform comparative genomics, genomes of 332 *Myoviridae* phages infecting *Staphylococcus* were colinearized to start at the terminase 333 large subunit. At the nucleotide level, phage phiIPLA-C1C shares a similarity of 80.2% with the only *S. epidermidis* specific myophage phiIBB-SEP1 (Table 2), whereas similarity with the rest of the *S. aureus* phages is lower than 55%, suggesting that phiIPLA-C1C might be specific for *S. epidermidis*. Phage phiIPLA-RODI is more closely related to the other phages in the database (identity over 80%), excluding phage phiIBB-SEP1 and the representative phage Twort to which the similarity is lower than 56% (Table 2).

340 A MAUVE comparison allowed us to determine that all of these phages possess the 341 same general module structure including the morphogenesis, replication/transcription, 342 long terminal repeats and lysis. The morphogenesis and the replication/ transcription 343 modules are conserved between the *Myoviridae* phages infecting *Staphylococcus* (Fig. 344 S2, Fig. 2 and Fig. 3). The internal organization in these regions is highly dependent on 345 the presence of homing endonucleases and transposases. Regarding the LTR region, phage phiIPLA-RODI shared homology with all the phages except Twort, phiIPLA-346 347 C1C and phiIBB-SEP1. The phages phiIPLA-C1C and phiIBB-SEP1 possess a specific 348 organization in this LTR region, not shared with the other phages. The most variable 349 regions at the nucleotide level are located upstream the LTR region, in which 350 differences regarding the length and gene arrangement are found (Fig. S2).

351 Killing of staphylococcal planktonic cultures by phiIPLA-RODI and phi 352 **IPLA-C1C.** Phages phiIPLA-RODI and phiIPLA-C1C had the same lytic activity on S. 353 aureus IPLA16, since no viable bacteria were detected after 8 h of incubation and a 354 considerable decrease of the bacterial population was already achieved after 6 h of 355 treatment (7.9 log-units compared to the control). Noteworthy, both phages halted growth during the first 4 h keeping bacterial counts at 10^5 CFU/ml (Fig. 5A). When S. 356 357 epidermidis LO5081 was infected by either phage, no viable counts were detected after 358 8 h of incubation (Fig. 5B). However, phiIPLA-C1C killed host cells more quickly than phiIPLA-RODI and after 4 h of incubation only 10 CFU/ml viable cells remained. As
 expected, the number of phages increased in all infected cultures to about 10⁹ PFU/ml
 (data not shown).

362 PhiIPLA-RODI proved to be more effective than phiIPLA-C1C for removal of 363 mono- and dual-species staphylococcal biofilms. To perform challenge assays against 364 mono and dual-species biofilms, a S. aureus IPLA16-derived strain, resistant to 365 rifampin (S. aureus IPLA16-rif^R), was isolated which kept the same phage sensitivity and biofilm formation compared to its parent (data not shown). S. aureus IPLA16-rif^R 366 367 and S. epidermidis LO5081 were grown in both mono and dual-species biofilms and 368 treated with the phages individually and as a mixture. Surface-adhered bacteria were 369 successfully reduced after phage treatment (Figure 6A). In the presence of phiIPLA-RODI a reduction of 2.43 log-units was achieved for S. aureus IPLA16-rif^R and 1.89 370 371 log-units for S. epidermidis LO5081. Phage phiIPLA-C1C showed a reduced lytic 372 ability against both staphylococcal biofilms with reductions of 1.84 and 1.16 log-units in viable counts of S. aureus IPLA16-rif^R and S. epidermidis LO5081, respectively. No 373 374 significant reduction beyond that recorded for individual phages was observed on 375 biofilms treated with a mixture of phages (Fig. 6A).

Planktonic cells of *S. aureus* IPLA16-rif^R were more sensitive to lysis by phage phiIPLA-RODI (reduction of 4.27 log-units) compared to phage phiIPLA-C1C (reduction of 0.76 log-units) (Fig. 6A). However, neither individual phage nor the phage mixture were able to kill planktonic *S. epidermidis* LO5081 (ANOVA, p>0.05) (Fig. 6A).

In dual species biofilms, treatment with phage phiIPLA-RODI showed a reduction of 4.27 log-units in adhered cells for *S. aureus* IPLA16-rif^R and 2.66 log-units for *S.* *epidermidis* LO5081 strains (Fig. 6B). Treatment of biofilms with phiIPLA-C1C was
found to be more effective than that observed in individual biofilms, with a decrease in
the adhered cells of 3.23 log-units for *S. aureus* IPLA16-rif^R and 2.64 log-units for *S. epidermidis* LO5081. Similar to mono-species biofilm challenge, the mixture of phages
did not clearly improve results obtained by individual phages.

Regarding the planktonic cells, the efficacy of phiIPLA-RODI was higher than that shown by phiIPLA-C1C against both strains forming the dual-biofilm (Fig. 6B). A reduction of 5.69 log-units in *S. aureus* IPLA16-rif^R, and 0.64 log-units in *S. epidermidis* LO5081 was obtained. For phiIPLA-C1C only a weak reduction in viable counts was detected for *S. aureus* IPLA16-rif^R (Fig. 6B). Treatment with a mixture of phages gave similar results to those obtained using phiIPLA-RODI.

394 Crystal violet staining was used to confirm the reduction in the total biomass of 395 phage treated biofilms (Fig. 6C). Overall, removal of biomass by phage treatment in 396 mono and dual species biofilms was in accordance with the viable counts results (see 397 above). However, in terms of total biomass, the phage treatment turned out to be more 398 effective when a mixture of both phages was applied in both S. epidermidis LO5081 399 single biofilm and the dual species biofilm (Fig. 6C). Similarly, the treatment with 400 phiIPLA-RODI was more effective than with phiIPLA-C1C. However, in biofilms only 401 formed by S. aureus IPLA16-rif^R, all the treatments were found to be similar in 402 detaching ability.

403 Phage-resistance phenotype has an important fitness cost and is highly 404 unstable. BIMs of *S. aureus* IPLA16 after the treatment with phiIPLA-RODI (MOI 405 100) and of *S. epidermidis* LO5081 treated with phiIPLA-C1C (MOI 1000) emerge at 406 frequencies of $4.05 \times 10^{-7} \pm 2.34 \times 10^{-9}$ and $4.05 \times 10^{-7} \pm 2.34 \times 10^{-9}$, respectively. To test 407 whether resistance implies fitness costs, three phage-resistant colonies from *S. aureus*

408 IPLA16 (*S. aureus* IPLA16-R40, *S. aureus* IPLA16-R53 and *S. aureus* IPLA16-R71)
409 and two phage-resistant colonies from *S. epidermidis* LO5081 (*S. epidermidis* LO5081410 R49 and *S. epidermidis* LO5081-R32) were randomly selected to further
411 microbiological characterization (Table 3).

412 In phage-free liquid cultures all the BIMs formed aggregates, as observed under 413 optical microscopy (Fig. S3). Moreover, the growth rate of BIMs was clearly reduced 414 compared to wild-type strains (Table 3). Other parameters indicative of cellular fitness, 415 such as the ability of BIMs to grow in high NaCl concentrations and to form biofilms on 416 polystyrene surfaces, were determined. S. aureus IPLA16-derived BIMs were sensitive 417 to 8% NaCl (Table 3) whereas S. epidermidis LO5081-derived BIMs showed a similar 418 resistance to NaCl than control cultures. Phage resistant bacteria of both species had a 419 reduced capacity to form biofilms on polystyrene surfaces (to up 4-fold reduction in S. 420 aureus IPLA16 BIMs and 25-fold reduction in S. epidermidis LO5081-R33), except for 421 S. epidermidis LO5081-R49 which showed similar values to the wild-type strain (Table 422 3).

423 Regardless of the phage against which BIMs had been arisen, they were also 424 resistant to either phiIPLA-RODI or phiIPLA-CIC as well as to phages 425 vB SauS phiIPLA88 (44)and vB SepS phiIPLA5 (24), two Siphoviridae 426 staphylococcal phages (data not shown). Cross-resistance suggested that impaired phage 427 infection could be due to a lower or inexistent adsorption of phages. The kinetics of 428 phage binding indicated that adsorption of phiIPLA-RODI and phiIPLA-C1C proceeded 429 up to 87-90% in 15 min for wild type strains while the adsorption rates to BIMs were 430 reduced up to 38-62% in S. aureus and 23% in S. epidermidis BIMs (Table 3) indicating 431 that phage infection was prevented by low adsorption of phages to bacterial surface.

432 Changes in cell surface properties were further confirmed by the significantly less433 hydrophobic character of the BIMs than the wild type strains (Table 3).

434 To check whether the phage-resistance phenotype of BIMs is stable without the 435 selective pressure of phages, BIMs were subcultured for 57 generations and the 436 sensitivity to phages phiIPLA-RODI and phiIPLA-C1C tested. S. aureus IPLA16-R40, 437 IPLA16-R53 and IPLA16-R71 strains showed a highly unstable phenotype and 438 sensitive cultures (a defined transparent halo was observed) were obtained after 27 439 generations. More variability was observed for S. epidermidis LO5081 BIMs as S. 440 epidermidis LO5081-R49 reverted to the sensitive phenotype after 17 generations, while 441 S. epidermidis LO5081-R33 lost phage-resistance only after 57 generations (Table 3). 442 Recovery of phage sensitivity was linked to the reestablishment of sensitivity to either 443 phiIPLA-RODI or phiIPLA-C1C and the two Siphoviridae phages. Moreover, the 444 original growth rate was also restored (data not shown).

445 **DISCUSSION**

Within the bacteriophage therapy context, we have characterized two new lytic phages, phiIPLA-RODI and phiIPLA-C1C, which show the typical wide host range of polyvalent phages such phage K and phi812 (45, 46), in contrast to other monovalent myophages like Stau2, Romulus and Remus, (28, 47), which host range is limited to *S. aureus* strains, and phage phiIBB-SEP1 only infecting *S. epidermidis* strains (48).

With on the perspective of a feasible therapeutic application, we have determined that the stability of phages phiIPLA-RODI and phiIPLA-C1C to pH and temperature was very similar to those described for related phages as MSA6 (49) and Romulus and Remus (28) and therefore, suitable for a feasible design of different pharmaceutical formulations by lyophilization (50), spray drying (51) and aerosolization (52). Bioinformatic analysis of phiIPLA-RODI and phiIPLA-C1C genomes showed the

457 typical characteristics of the "Twort-like viruses" (Spounavirinae subfamily): strictly 458 virulent, with large genomes (127-140 kb) containing long direct terminal repeats 459 (LTRs), genes grouped in modules not clearly separated, a few genes encoding tRNAs, 460 and the presence of group I introns (42). The genome of phage phiIPLA-C1C differs 461 from these phages in the lack of genes encoding tRNAs, a peculiarity already observed 462 in S. epidermidis phage phiIBB-SEP1 (48). In addition, nucleotide genome sequence of 463 phiIPLA-RODI showed the lack of restriction sites for endonucleases Sau3AI, BamHI 464 and BglII, while they are present in the phiIPLA-C1C genome. This appears to be a 465 general strategy among S. aureus bacteriophages such as Twort, K, G1, Sb-1 and MSA6 466 to avoid restriction by the host bacteria (49, 53).

467 Both phages encode homing endonucleases, found within group I introns, intergenic 468 regions or inteins, which is in accordance with previous results reported for other 469 myophages such as T4 where 11% of the orfs correspond to homing endonucleases 470 (54). In T4-related phages, most of the homing endonucleases belong to the GIY-YIG 471 and HNH families, with multiple functions like recombination, binding to and repair of 472 DNA (54). Homing endonucleases encoded by phiIPLA-C1C were not identified in 473 other phages genomes, which is consistent with the idea that these proteins are a recent 474 evolutionary acquisition that could have an influence on gene arrangement, function 475 and, in addition, they could promote their own spread between phages (54).

Once the phages were morphological and genetically characterized, we proceeded to study their lytic activity against staphylococcal bacteria in both planktonic cultures and pre-formed biofilms. Results of biofilm removing assays confirmed that phage infection in planktonic cell cultures is more efficient that in biofilms. Overall, *S. aureus* IPLA16 biofilms were well infected by both phages while, *S. epidermidis* LO5081 biofilms were found to be more resistant to phage predation. A likely explanation is the higher content

482 of extracellular matrix formed by S. epidermidis LO5081 compared to S. aureus 483 IPLA16 which may hinder the access of phages to bacteria. Some phages encode 484 polysaccharide depolymerase proteins which degrade the extracellular matrix of 485 biofilms facilitating the access of phages to target bacteria (20). However, no genes 486 encoding proteins with these catalytic domains were detected either in phiIPLA-RODI 487 or in phiIPLA-C1C genomes. After biofilm treatment, it was also quite surprising that 488 detached cells were not killed by phages, except those released from S. aureus IPLA16 489 biofilms treated with phiIPLA-RODI. These data suggest that cells released from inside 490 the biofilm would not be susceptible to phage infection due to their unique 491 physiological state (22). The biomass reduction of S. aureus IPLA16 biofilms by these 492 phages was similar (67% for phage phiIPLA-RODI and 69% for phage phiIPLA-C1C) 493 to those obtained with phages ISP and Romulus and Remus (28). The complete 494 eradication of biofilms by phages has not been described in the literature to date. 495 However, prevention of biofilm formation has been achieved for S. aureus Xen29 496 biofilms using a combination of phage K and modified derivatives (21). In addition, S. 497 aureus biofilms could be efficiently eradicated with a combination of phage SAP-26 498 and rifampicin (55).

499 Phage control of dual species biofilm was approached using S. aureus and S. 500 epidermidis as a proof of concept to evaluate whether the mixture of both phages could 501 be more effective than each individual phage. Our results provide evidence that phages 502 can reduce the cell numbers of both species but the application of a phage mixture 503 against each of the hosts was not always more effective than the use of only one phage. 504 Indeed, the addition of the single phage phiIPLA-RODI resulted in a reduction similar 505 to that achieved by the mixture of phages. The low efficacy of phiIPLA-C1C may be 506 due to the lower burst size of this phage comparing with phiIPLA-RODI. Overall, these

507 results are in agreement with those obtained by other authors (56, 57), who reported a 508 reduction of about 3-4 units-log in viable cells from mixed biofilms treated with phages 509 Mixed species biofilms are complex communities in which the physiological state of 510 cells and the availability of phage receptors will play an important role in the behavior 511 of phages (58). These features could be drastically altered by competition with other 512 bacterial species. In mixed cultures of E. coli and Salmonella, phages against E. coli 513 were more effective in removing this species than in monocultures of E. coli. It seems 514 that for some bacteria the competition with other bacterial species may enhance the 515 effectiveness of phages because phage bacterial resistance can decrease the competitive 516 ability of bacteria (59). Similar data were observed in our staphylococcal biofilms in 517 which treatment with phages turned to be more effective in dual biofilms than in mono-518 species biofilms.

519 Phage resistance is often a major concern in the therapeutic application of phages as 520 it could compromise the efficacy of the treatment (60). In this regard, the frequency of 521 bacteria acquiring resistance to phages phiIPLA-RODI and phiIPLA-C1C was 522 determined to be low, and most important, with the global fitness of staphylococcal 523 BIMs clearly affected. This reduced fitness of phage-resistant bacteria was also observed for different species such as Vibrio cholerae (61) and Pseudomonas 524 525 aeruginosa (62). We have not determined the molecular basis of the phage resistance 526 mechanisms in the BIMs. However, it is known that wall teichoic acid (WTA) serves as 527 a receptor for several staphylococcal siphoviruses and myoviruses (63). Therefore, lack 528 of WTA in S. aureus and S. epidermidis BIMs could explain the resistance of these 529 strains to phages belonging to Siphoviridae and Myoviridae families. In addition, 530 phiIPLA-RODI and phiIPLA-C1C BIMs were shown to be more sensitive to high 531 temperatures, showed a higher degree of cell aggregation, and a reduced capacity to

form biofilms, as previously observed in *S. aureus* WTA-deficient mutants (64).
However, we cannot disregard the presence of a capsular polysaccharide in
staphylococcal BIMs, which could modify the bacterial surface properties and prevent
phage adsorption to cell (65).

536 The data presented in this study support the potential of the lytic bacteriophages 537 phiIPLA-RODI and phiIPLA-C1C to be used in phage therapy. Their characterization 538 indicated a wide host range, an adequate stability to environmental conditions, lack of 539 virulence factors, capability to remove biofilms and low frequency of BIMs.

540 ACKNOWLEDGMENTS

This research study was supported by grants AGL2012-40194-C02-01 (Ministry
of Science and Innovation, Spain), GRUPIN14-139 (Program of Science, Technology
and Innovation 2013-2017, Principado de Asturias, Spain) and the bacteriophage
network *FAGOMA*. D. G. is a fellow of the Ministry of Science and Innovation, Spain.
PG, BM and AR are members of the FWO Vlaanderen funded "Phagebiotics" research
community (WO.016.14). We thank R. Calvo (IPLA-CSIC) for the technical assistance.
DV holds a PhD scholarship of the IWT Vlaanderen.

548

549 **REFERENCES**

Otto M. 2013. Staphylococcal infections: mechanisms of biofilm maturation and
 detachment as critical determinants of pathogenicity. Annu. Rev. Med. 64:175-188.

552 2. Savage VJ, Chopra I, O'Neill AJ. 2013. *Staphylococcus aureus* biofilms promote
553 horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57:1968554 1970.

3. Rogers KL, Fey PD, Rupp ME. 2009. Coagulase-negative staphylococcal
infections. Infect. Dis. Clin. North. Am. 23:73-98.

- 557 4. Hell E, Giske CG, Hultenby K, Danielsson KG, Marchini G. 2013. Attachment
- and biofilm forming capabilities of *Staphylococcus epidermidis* strains isolated from
 preterm infants. Curr. Microbiol. 67:712-717.
- 560 5. Otto M. 2009. *Staphylococcus epidermidis*--the 'accidental' pathogen. Nat. Rev.
 561 Microbiol. 7:555-567.
- 562 6. Hellmark B, Berglund C, Nilsdotter-Augustinsson A, Unemo M, Soderquist B.
- 563 2013. Staphylococcal cassette chromosome mec (SCCmec) and arginine catabolic
- 564 mobile element (ACME) in Staphylococcus epidermidis isolated from prosthetic joint
- 565 infections. Eur. J. Clin. Microbiol. Infect. Dis. **32:**691-697.
- 566 7. Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, Cheung GY,
- 567 Otto M. 2012. How Staphylococcus aureus biofilms develop their characteristic
- 568 structure. Proc. Natl. Acad. Sci. USA. **109:**1281-1286.
- 569 8. David MZ, Daum RS. 2010. Community-associated methicillin-resistant
 570 *Staphylococcus aureus*: epidemiology and clinical consequences of an emerging
 571 epidemic. Clin. Microbiol. Rev. 23:616-687.
- 572 9. Fessler AT, Kadlec K, Hassel M, Hauschild T, Eidam C, Ehricht R, Monecke S,
- 573 Schwarz S. 2011. Characterization of methicillin-resistant *Staphylococcus aureus*574 isolates from food and food products of poultry origin in Germany. Appl. Environ.
 575 Microbiol. 77:7151-7157.
- 576 10. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T,
- 577 Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc
- 578 I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C,
- 579 Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F,
- 580 Laurent F, Keim P, Skov R, Aarestrup FM. 2012. Staphylococcus aureus CC398:
- 581 host adaptation and emergence of methicillin resistance in livestock. MBio. **3**.

582 11. Kutateladze M, Adamia R. 2010. Bacteriophages as potential new therapeutics to
583 replace or supplement antibiotics. Trends Biotechnol. 28:591-595.

584 12. Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, Fortuna W, Letkiewicz

585 S, Szufnarowski K, Pawelczyk Z, Rogoz P, Klak M, Wojtasik E, Gorski A. 2012.

- 586 Clinical aspects of phage therapy. Adv. Virus Res. 83:73-121.
- 587 13. Leszczyński P, Weber-Dabrowska B, Kohutnicka M, Luczak M, Górecki A,

588 Górski A. 2006. Successful eradication of methicillin-resistant Staphylococcus aureus

589 (MRSA) intestinal carrier status in a healthcare worker--case report. Folia Microbiol.
590 (Praha). 51:236-238.

591 14. Takemura-Uchiyama I, Uchiyama J, Osanai M, Morimoto N, Asagiri T,

592 Ujihara T, Daibata M, Sugiura T, Matsuzaki S. 2014. Experimental phage therapy

against lethal lung-derived septicemia caused by *Staphylococcus aureus* in mice.
Microbes Infect. 16:512-517.

595 15. Takemura-Uchiyama I, Uchiyama J, Kato S, Inoue T, Ujihara T, Ohara N,

596 Daibata M, Matsuzaki S. 2013. Evaluating efficacy of bacteriophage therapy against
597 Staphylococcus aureus infections using a silkworm larval infection model. FEMS
598 Microbiol. Lett. 347:52-60.

599 16. Drilling A, Morales S, Jardeleza C, Vreugde S, Speck P, Wormald PJ. 2014.

600 Bacteriophage reduces biofilm of *Staphylococcus aureus* ex vivo isolates from chronic

601 rhinosinusitis patients. Am. J. Rhinol. Allergy. 28:3-11.

602 17. Mendes JJ, Leandro C, Corte-Real S, Barbosa R, Cavaco-Silva P, Melo-

603 Cristino J, Gorski A, Garcia M. 2013. Wound healing potential of topical
604 bacteriophage therapy on diabetic cutaneous wounds. Wound Repair Regen. 21:595605 603.

606 18. Chhibber S, Kaur T, Sandeep K. 2013. Co-therapy using lytic bacteriophage and
607 linezolid: effective treatment in eliminating methicillin resistant *Staphylococcus aureus*608 (MRSA) from diabetic foot infections. PLoS One. 8:e56022.

609 19. Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD,

Leung KP, Mustoe TA, Hong SJ. 2013. Bacteriophage therapy for *Staphylococcus aureus* biofilm-infected wounds: a new approach to chronic wound care. Plast.
Reconstr. Surg. 131:225-234.

613 20. Gutierrez D, Martinez B, Rodriguez A, Garcia P. 2012. Genomic
614 characterization of two *Staphylococcus epidermidis* bacteriophages with anti-biofilm
615 potential. BMC Genomics. 13:228.

616 21. Kelly D, McAuliffe O, Ross RP, Coffey A. 2012. Prevention of *Staphylococcus*617 *aureus* biofilm formation and reduction in established biofilm density using a
618 combination of phage K and modified derivatives. Lett. Appl. Microbiol. 54:286-291.

619 22. Cerca N, Oliveira R, Azeredo J. 2007. Susceptibility of *Staphylococcus*620 *epidermidis* planktonic cells and biofilms to the lytic action of *Staphylococcus*621 bacteriophage K. Lett. Appl. Microbiol. 45:313-317.

622 23. Kropinski AM, Prangishvili D, Lavigne R. 2009. Position paper: the creation of a
623 rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ.
624 Microbiol. 11:2775-2777.

625 24. Gutierrez D, Martinez B, Rodriguez A, Garcia P. 2010. Isolation and
626 characterization of bacteriophages infecting *Staphylococcus epidermidis*. Curr.
627 Microbiol. 61:601-608.

628 25. Gutierrez D, Ruas-Madiedo P, Martinez B, Rodriguez A, Garcia P. 2014.
629 Effective removal of Staphylococcal biofilms by the endolysin LysH5. PLoS One.
630 9:e107307.

631 26. Bellon-Fontaine MN, Rault J, Van Oss CJ. 1996. Microbial adhesion to solvents:
632 a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base
633 properties of microbial cells. Colloids and Surfaces B: Biointerfaces. 7:47-53.

634 27. Campelo AB, Gaspar P, Roces C, Rodriguez A, Kok J, Kuipers OP, Neves AR,

635 **Martinez B.** 2011. The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose

636 metabolism in *Lactococcus lactis*. Appl. Environ. Microbiol. **77:**7576-7585.

637 28. Vandersteegen K, Kropinski AM, Nash JH, Noben JP, Hermans K, Lavigne R.

638 2013. Romulus and Remus, two phage isolates representing a distinct clade within the

Twortlikevirus genus, display suitable properties for phage therapy applications. J.
Virol. 87:3237-3247.

641 29. Garcia P, Rodriguez I, Suarez JE. 2004. A -1 ribosomal frameshift in the
642 transcript that encodes the major head protein of bacteriophage A2 mediates
643 biosynthesis of a second essential component of the capsid. J. Bacteriol. 186:1714644 1719.

645 30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA,

646 Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014.

647 The SEED and the Rapid Annotation of microbial genomes using Subsystems
648 Technology (RAST). Nucleic Acids Res. 42:D206-214.

649 31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local

alignment search tool. J. Mol. Biol. **215:**403-410.

32. Zdobnov EM, Apweiler R. 2001. InterProScan--an integration platform for the
signature-recognition methods in InterPro. Bioinformatics. 17:847-848.

653 33. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li

654 WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching.

655 Nucleic Acids Res. **37:**W202-208.

- 656 34. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. 2011. ARNold: a
- web tool for the prediction of Rho-independent transcription terminators. RNA Biol.8:11-13.
- 659 35. Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL. 2000. Prediction
- of transcription terminators in bacterial genomes. J. Mol. Biol. **301:**27-33.
- 661 36. Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and
- snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res.33:W686-689.
- 664 37. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and
- tmRNA genes in nucleotide sequences. Nucleic Acids Res. **32:**11-16.
- 38. Myers EW, Miller W. 1988. Optimal alignments in linear space. Comput. Appl.
 Biosci. 4:11-17.
- 39. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome
 alignment with gene gain, loss and rearrangement. PLoS One. 5:e11147.
- 40. Grant JR, Stothard P. 2008. The CGView Server: a comparative genomics tool for
- 671 circular genomes. Nucleic Acids Res. **36:**W181-184.
- 41. Klumpp J, Lavigne R, Loessner MJ, Ackermann HW. 2010. The SPO1-related
- 673 bacteriophages. Arch. Virol. **155**:1547-1561.
- 674 42. Lobocka M, Hejnowicz MS, Dabrowski K, Gozdek A, Kosakowski J,
- 675 Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Parasion S,
- 676 Gawor J, Kosowska H, Glowacka A. 2012. Genomics of staphylococcal Twort-like
- 677 phages--potential therapeutics of the post-antibiotic era. Adv. Virus Res. 83:143-216.
- 43. Stewart CR, Yip TK, Myles B, Laughlin L. 2009. Roles of genes 38, 39, and 40 in
- 679 shutoff of host biosyntheses during infection of Bacillus subtilis by bacteriophage
- 680 SPO1. Virology. **392:**271-274.

44. Garcia P, Martinez B, Obeso JM, Lavigne R, Lurz R, Rodriguez A. 2009.
Functional genomic analysis of two *Staphylococcus aureus* phages isolated from the
dairy environment. Appl. Environ. Microbiol. **75**:7663-7673.

- 45. O'Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. 2005.
- Potential of the polyvalent anti-*Staphylococcus* bacteriophage K for control of
 antibiotic-resistant staphylococci from hospitals. Appl. Environ. Microbiol. **71**:18361842.
- 688 46. El Haddad L, Ben Abdallah N, Plante PL, Dumaresq J, Katsarava R, Labrie S,
- 689 Corbeil J, St-Gelais D, Moineau S. 2014. Improving the safety of *Staphylococcus*
- 690 *aureus* polyvalent phages by their production on a *Staphylococcus xylosus* strain. PLoS
 691 One. 9:e102600.
- 692 47. Hsieh SE, Lo HH, Chen ST, Lee MC, Tseng YH. 2011. Wide host range and
- strong lytic activity of *Staphylococcus aureus* lytic phage Stau2. Appl. Environ.
 Microbiol. 77:756-761.
- 695 48. Melo LD, Sillankorva S, Ackermann HW, Kropinski AM, Azeredo J, Cerca N.
- 696 2014. Isolation and characterization of a new *Staphylococcus epidermidis* broad697 spectrum bacteriophage. J. Gen. Virol. **95:**506-515.
- 698 49. Kwiatek M, Parasion S, Mizak L, Gryko R, Bartoszcze M, Kocik J. 2012.
- 699 Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic
- against *Staphylococcus aureus* strains. Arch. Virol. **157:**225-234.
- 701 50. Merabishvili M, Vervaet C, Pirnay JP, De Vos D, Verbeken G, Mast J,
- 702 Chanishvili N, Vaneechoutte M. 2013. Stability of *Staphylococcus aureus* phage ISP
- after freeze-drying (lyophilization). PLoS One. 8:e68797.

704 51. Vandenheuvel D, Singh A, Vandersteegen K, Klumpp J, Lavigne R, Van den

705 Mooter G. 2013. Feasibility of spray drying bacteriophages into respirable powders to

combat pulmonary bacterial infections. Eur. J. Pharm. Biopharm. **84:**578-582.

- 707 52. Turgeon N, Toulouse MJ, Martel B, Moineau S, Duchaine C. 2014. Comparison
- of five bacteriophages as models for viral aerosol studies. Appl. Environ. Microbiol.
 80:4242-4250.
- 710 53. Andriashvili IA, Kvachadze LI, Bashakidze RP, Adamiia R, Chanishvili TG.
- 711 1986. Molecular mechanism of phage DNA protection from the restriction
 712 endonucleases of *Staphylococcus aureus* cells. Mol. Gen. Mikrobiol. Virusol:43-45.

54. Edgell DR, Gibb EA, Belfort M. 2010. Mobile DNA elements in T4 and related
phages. Virol. J. 7:290.

- 715 55. Rahman M, Kim S, Kim SM, Seol SY, Kim J. 2011. Characterization of induced
- 716 Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with
- 717 rifampicin. Biofouling. **27:**1087-1093.
- 718 56. Carson L, Gorman SP, Gilmore BF. 2010. The use of lytic bacteriophages in the
- 719 prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS
- 720 Immunol. Med. Microbiol. **59:**447-455.
- 57. Sillankorva S, Neubauer P, Azeredo J. 2010. Phage control of dual species
 biofilms of *Pseudomonas fluorescens* and *Staphylococcus lentus*. Biofouling. 26:567-
- 723 575.
- 58. Sutherland IW, Hughes KA, Skillman LC, Tait K. 2004. The interaction of phage
 and biofilms. FEMS Microbiol. Lett. 232:1-6.
- 59. Harcombe WR, Bull JJ. 2005. Impact of phages on two-species bacterial
 communities. Appl. Environ. Microbiol. 71:5254-5259.

60. Ormala AM, Jalasvuori M. 2013. Phage therapy: Should bacterial resistance to
phages be a concern, even in the long run? Bacteriophage. 3:e24219.

730 61. Zahid MS, Udden SM, Faruque AS, Calderwood SB, Mekalanos JJ, Faruque

- 731 SM. 2008. Effect of phage on the infectivity of *Vibrio cholerae* and emergence of
 732 genetic variants. Infect. Immun. 76:5266-5273.
- 733 62. Hall AR, De Vos D, Friman VP, Pirnay JP, Buckling A. 2012. Effects of
- 734 sequential and simultaneous applications of bacteriophages on populations of
- *Pseudomonas aeruginosa* in vitro and in wax moth larvae. Appl. Environ. Microbiol. **736** 78:5646-5652.
- 737 63. Xia G, Corrigan RM, Winstel V, Goerke C, Grundling A, Peschel A. 2011. Wall
- teichoic Acid-dependent adsorption of staphylococcal siphovirus and myovirus. J.
- 739 Bacteriol. **193:**4006-4009.
- 740 64. Vergara-Irigaray M, Maira-Litran T, Merino N, Pier GB, Penades JR, Lasa I.
- 741 2008. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to
- the *Staphylococcus aureus* cell surface. Microbiol. **154:**865-877.
- 743 65. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms.
- 744 Nat. Rev. Microbiol. **8:**317-327.
- 745 66. Gutierrez D, Delgado S, Vazquez-Sanchez D, Martinez B, Cabo ML, Rodriguez
- 746 A, Herrera JJ, Garcia P. 2012. Incidence of Staphylococcus aureus and analysis of
- 747 associated bacterial communities on food industry surfaces. Appl. Environ. Microbiol.
 748 78:8547-8554.
- 749 67. Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa
- 750 I. 2003. SarA and not sigmaB is essential for biofilm development by *Staphylococcus*
- 751 *aureus*. Mol. Microbiol. **48**:1075-1087.

68. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR. 2001. Bap, a *Staphylococcus aureus* surface protein involved in biofilm formation. J. Bacteriol.
183:2888-2896.

755 69. Delgado S, Arroyo R, Jimenez E, Marin ML, del Campo R, Fernandez L,
756 Rodriguez JM. 2009. *Staphylococcus epidermidis* strains isolated from breast milk of
757 women suffering infectious mastitis: potential virulence traits and resistance to
758 antibiotics. BMC Microbiol. 9:82.

759 70. Martin V, Maldonado-Barragan A, Moles L, Rodriguez-Banos M, Campo RD,

760 Fernandez L, Rodriguez JM, Jimenez E. 2012. Sharing of bacterial strains between

761 breast milk and infant feces. J. Hum. Lact. **28:**36-44.

762

763 FIGURE LEGENDS

Figure 1. A) Transmission electron microphotographs of phages phiIPLA-RODI and phiIPLA-C1C; scale bars correspond to 100 nm. B) One-step growth curves of phage phiIPLA-RODI in *S. aureus* IPLA16 and phiIPLA-C1C in *S. epidermidis* LO5081. Values correspond to the number of PFU per infected cell in chloroformtreated cultures (**•**) and in untreated cultures (**•**). Each data point is the mean ± standard deviation of three independent experiments.

Figure 2. Genome organization of phage phiIPLA-RODI and BLASTN comparison. The outer ring with the arrows represents the *orf*s of the circularized phage. The predicted gene functions are also indicated. The different functional modules in the genome are shown as a coloured shadow. BLASTn, that is represented by each inner ring, was performed with the representative phage Twort (pink), the phage K (green) and the most similar GH15 (light blue). **Figure 3.** Genome organization of phage phiIPLA-C1C and BLASTN comparison. The outer ring with the arrows represents the *orf*s of the circularized phage. The predicted gene functions are indicated. The different functional modules in the genome are shown as a coloured shadow. BLASTn, that is represented by each inner ring, was performed with the representative phages Twort (pink), and K (green) and the most similar phiIBB-SEP1 (light blue).

782 Figure 4. Analysis by SDS-PAGE electrophoresis and silver staining of the 783 structural proteins of phages phiIPLA-RODI and phiIPLA-C1C. Protein molecular size 784 markers (kDa) are shown on the left (Lane L). Bands marked with a white arrow were 785 identified by mass-spectrophotometry: In phage phiIPLA-RODI (1) adsorption-786 associated tail protein (orf104), (2) major tail sheath protein (orf85), (3) capsid protein 787 (orf78) and (4) major tail protein (orf136). In phage phiIPLA-C1C, (5) tail protein 788 (orf40), (6) major tail sheath (orf18) (7) major capsid protein (orf11) and (8) 789 hypothetical protein (orf85).

Figure 5. Susceptibility of the strains (A) *S. aureus* IPLA16 and (B) *S. epidermidis* LO5081 to phages phiIPLA-RODI and phiIPLA-C1C. Cell counts of control cultures (\blacksquare) and treated cultures with phiIPLA-RODI (\blacktriangle) and phiIPLA-C1C (\bullet)) are represented as log (CFU/ml). Each value corresponds to the mean \pm standard deviation of three independent experiments.

Figure 6. Bacteriophage mediated removal of 24 h-old *S. aureus* and *S. epidermidis* biofilms. (A) Mono- or (B) dual-species biofilms of *S. aureus* IPLA16-rif^R and *S. epidermidis* LO5081 were treated with phage phiIPLA-RODI (dark grey), phage phiIPLA-C1C (light grey) or with a mixture of both phages (white), for 4 h. Control biofilms are presented in black. Adhered cell counts and supernatant cell counts were expressed as Log (CFU/well). Bacteria detection threshold [<10 Log (CFU/ml)].

Alternatively, biomass was calculated by crystal violet staining of adhered cells after phage treatment (C). Absorbance was measured at a wavelength of 595 nm. Means and standard deviations were calculated from three biological replicates. Bars having an asterisk are significantly different from the control (ANOVA; P<0.05) and bars with a lower case 'a' indicates a significantly different decrease in biomass between the treatment with the mixture of phages and the individual treatment either with phiIPLA-RODI or phiIPLA-C1C (ANOVA; P<0.05).

808 TABLE LEGENDS

809 Table 1. Strains used in this study, origin and phage sensitivity expressed as
810 efficiency of plaque formation (EOP). Means ± standard deviations were calculated
811 using three independent experiments. (-) Resistance to the phage.

812 Table 2. Comparative genome analysis using Emboss Strecher of the
813 *Myoviridae* phages infecting *Staphylococcus*.

Table 3. Fitness of *S. aureus* IPLA16 and *S. epidermidis* LO5081 and their BIMs for phages phiIPLA-RODI and phiIPLA-C1C, respectively. Values represent the mean \pm standard deviation of three biological replicates. The presence of an asterisk indicates those values that are significantly different from the wild type strain (ANOVA; *P*<0.05).

819 SUPPLEMENTARY MATERIAL

Figure S1. Phage sensitivity to environmental conditions. (A) Temperature and (B) pH, of phages phiIPLA-RODI (black) and phiIPLA-C1C (white). Values represent the mean \pm standard deviation of three independent experiments. Bars having an asterisk are significantly different from the control (ANOVA; *P*<0.05).

Figure S2: Progressive MAUVE comparison at the nucleotide level of phages
belonging to the *Myoviridae* family infecting Staphylococcal species. Coloured blocks

826 surround a region of the genome sequence that aligns and is homologous to part of 827 another genome. Regions with lack of homology are outside these blocks or white 828 inside the blocks. The height of the similarity profile corresponds to the average of 829 conservation in that region of the genome sequence.

Figure S3. Optical microphotographs of (A) S. aureus IPLA16; (B) S. aureus

831 IPLA16-R71 resistant to phage phiIPLA-RODI; (C) S. epidermidis LO5081 and (D) S.

832 epidermidis LO5081-R49 resistant to phage phiIPLA-C1C. Cultures were grown in

833 TSB at 37°C with shacking during 16 h.

834 Table S1: Features of bacteriophage phiIPLA-RODI *orfs*, gene products (gp)
835 and functional assignments.

836 Table S2: Features of bacteriophage phiIPLA-C1C *orfs*, gene products (gp) and
837 functional assignments.

Table S3: Putative promoters of phages phiIPLA-RODI and phiIPLA-C1C. -10
and -35 boxes are underlined. Nucleotide positions and presence of the TG dinucleotide
were also indicated. * Promoters without AT-rich upstream sequences.

Table S4: Putative terminators of phages phiIPLA-RODI and phiIPLA-C1C.
The underline sequence corresponds to the terminator stem. Lowercase letter in RNA
motifs indicates the spacer element between the stem-loop and T-rich region.

	Strain	Origin	Reference	EOP	
				phiIPLA- RODI	phiIPLA- C1C
S. aureus	IPLA-1	Dairy industries surfaces	<mark>66</mark>	1	-
	IPI A_2			0 98+0 03	_
	IPLA-3			0.90 ± 0.05 0.87+0.06	_
	IPLA-4			1.03 ± 0.04	_
	IPLA-5			0.91±0.01	-
	IPLA-6	Meat industries		1.01±0.03	-
	IPLA-7	surfaces		0.99±0.03	-
	IPLA-8			0.85±0.11	-
	IPLA-9			0.92±0.23	-
	IPLA-10			0.87 ± 0.07	-
	IPLA-11			0.89±0.06	0.09 ± 0.01
	IPLA-12			0.79±0.05	-
	IPLA-13			1.02±0.03	-
	IPLA-14			0.96 ± 0.02	-
	IPLA-15			1.02±0.03	-
	IPLA-16			1.23±0.04	1.09 ± 0.07
	IPLA-17			1.06±0.01	-
	IPLA-18	2 6 11 1	x x 1 1 · 1 1	0.96 ± 0.02	0.39 ± 0.05
	IPLA-19	Milk sample	Unpublished	1.12 ± 0.03	-
	15981	Clinical isolate	<u>67</u>	0.99 ± 0.02	-
	V 329	mastitis	<u>68</u>	1.01±0.01	-
S. epidermidis	F12	Women breast	<mark>69</mark>	-	1
	В	milk		0.19±0.01	0.78 ± 0.01
	DH3LIK			-	0.56 ± 0.07
	YLIC13			-	0.77 ± 0.06
	Z2LDC1 4			-	0.62 ± 0.03
	DG2ñ			-	0.88±0.06
	ASLD1			-	0.62 ± 0.04
	LO5081			0.87±0.04	1.23±0.04
	LX5RB4			-	0.89±0.02
	LO5RB1			-	0.97±0.03
Staphylococcus haemoliticus	ZL89-3	Women breast	<mark>70</mark>	0.91±0.03	-
	ZL114-1			0 87±0 02	-
Staphylococcus hominis	ZL31-13	•		0.77 ± 0.02	-
	ZL5-5	•		0.68 ± 0.01	-
Staphylococcus arlettae	ZL114-5	•		0.45 ± 0.03	-
	ZL98-5			0.55 ± 0.08	0.23±0.04
Staphylococcus	ZL5-11			0.69±0.04	0.56±0.05
lugdunensis					
-------------------------	---------	----------------	-------------	-----------------	-----------------
Staphylococcus	ZL90-5			0.71±0.06	0.68 ± 0.01
gallinarum					
Staphylococcus kloosii	ZL74-2			0.46 ± 0.03	0.65 ± 0.01
Staphylococcus pasteuri	ZL16-6			0.45 ± 0.06	-
Staphylococcus xylosus	ZL61-2			0.65 ± 0.02	0.56±0.01
Staphylococcus	ZL112-			0.89 ± 0.08	0.37±0.04
saprophyticus	15				
Staphylococcus sciuri	IPLA301			0.98 ± 0.05	-
Macrococcus	IPLA101	Dairy industry	Unpublished	0.65 ± 0.03	0.06 ± 0.03
caseolyticus		surface			

Table 1. Strains used in this study, origin and phage sensitivity expressed as efficiency of plaque formation (EOP). Means \pm standard deviations were calculated using three independent experiments. (-) Resistance to the phage.

	phiIPLA-	phiIPLA-
	C1C	RODI
phiIPLA-C1C	100	54.8
phiIPLA-RODI	54.8	100
G1	54.6	83.5
GH15	54.2	84.3
JD007	54.1	83.5
K	53.6	81.1
Twort	53.4	54.5
vB_SauM_Remus	53.6	54.6
vB_SauM_Romulus	52.9	54.2
SA11	54.7	56.2
SA1	44.1	44.7
ISP	54.7	83.8
A5W	54.7	83.2
Sb-1	54.1	79
SA5	54.3	83.1
S25-3	55.1	81.2
S25-4	55.3	80.1
SA012	54.8	81.6
phiIBB-SEP1	80.2	55.8
P4W	55.1	83.6
MSA6	54.9	81.7
Fi200w	55	84.2
676Z	55	84.3
A3R	55.1	82.6
Staph1N	54.7	83.1

Table 2. Comparative genome analysis using Emboss Strecher of the *Myoviridae*phages infecting *Staphylococcus*.

	Growth rate (μ) (h^{-1})	LD50 of NaCl	Biofilm formation	% of phage	Adsorption rate	Hydrophobicity (%	Reversion
		(%)	(Absorbance OD ₅₉₅	adsorption in 15	constant (k) (ml/min)	adhesion to	after
			nm)	min		hexadecan)	generation
S. aureus IPLA16	0.76±0.02	8.14±0.42	1.13±0.06	87.67±3.74	$8.9 \times 10^{-11} \pm 7.5 \times 10^{-12}$	85.62±5.47	-
S. aureus IPLA16-R40	0.56±0.02 (*)	6.12±0.33 (*)	0.31±0.01 (*)	62.66±2.09 (*)	$3.1 \text{ x} 10^{-10} \pm 7.1 \text{ x} 10^{-11} (*)$	44.47±7.67 (*)	27
S. aureus IPLA16-R53	0.59± 0.04 (*)	4.80±0.23 (*)	0.28±0.02 (*)	38.33±6.21 (*)	$6.5 \text{ x}10^{-10} \pm 1.7 \text{ x}10^{-11} (*)$	32.13±8.37 (*)	27
S. aureus IPLA16-R71	$0.49 \pm 0.03(*)$	2.82±0.34 (*)	0.41±0.02 (*)	39.66±3.25 (*)	$6.2 \text{ x} 10^{-10} \pm 1.2 \text{ x} 10^{-11} (*)$	34.77±8.17 (*)	27
S. epidermidis LO5081	0.74±0.03	8.23±0.74	9.81±0.38	90.60±8.19	$6.5 \times 10^{-11} \pm 2.3 \times 10^{-12}$	95.43±2.06	-
S. epidermidis LO5081-R32	0.58±0.02 (*)	8.15±0.25	0.39±0.06 (*)	17.60±7.23 (*)	$6.9 \text{ x} 10^{-10} \pm 1.3 \text{ x} 10^{-10} (*)$	33.78±6.65 (*)	57
S. epidermidis LO5081-R49	0.52±0.06 (*)	8.13±0.08	8.99±0.47	23.00±5.69 (*)	$9.9 \text{ x}10^{-10} \pm 1.7 \text{ x}10^{-10} (*)$	77.05±11.31 (*)	17

Table 3. Fitness of *S. aureus* IPLA16 and *S. epidermidis* LO5081 and their BIMs for phages phiIPLA-RODI and phiIPLA-C1C, respectively. Values represent the mean \pm standard deviation of three biological replicates. The presence of an asterisk indicates those values that are significantly different from the wild type strain (ANOVA; *P*<0.05).

Figure S1. Phage sensitivity to environmental conditions. (A) Temperature and (B) pH, of phages phiIPLA-RODI (black) and phiIPLA-C1C (white). Values represent the mean \pm standard deviation of three independent experiments. Bars having an asterisk are significantly different from the control (ANOVA; *P*<0.05).

				R	eplicati	on/		Lo	ng terr	ninal			
	Morph	ogenesis	3	Tr	anscrip	tion			repeat	ts		Ly	sis
10000	20000	30000	40000	sobeo	60000	70000	80000	90000	100000	110800	120000	1 30 000	340000
	1.0000	11. 100.1							n maarim "noo				
phiIPLA-RODI	20000	30000	40000	50000	00000	70000	80000	ančoo	100000	110800	120000	130000	140
		11 1011 1				0.1.0000) 1000 30 000 0		10		
676Z									1.0.1				1 (00***
10000	20000	30000	40000	50000	60000	70000	80000		100000	110000	120000	130000	
GH15		1.001	1.11.11	ra napr			(11),000,000,000		a co co acco acco				100
10000	20000	30000	40000	sañoo	60000	70000	80000	aotoa	todato	110000	120000	130000	
		11 2003 3		111.0.00					n me ⁿ or ^h am i		- 10 1 - 1 11 - 1	0000000 0 0	. m ^m
P4W 10000	20000	30000	40hco	saàco	60000	70000	80008	90000	100000	110000	120000	1 30000	140
		11 101 1				OTTO DO			nantorian i			ם מדונותיו	
Fi200w	20000	30000	40000	50000	60000	70000	80000	90000	100800	110800	120000	1 30'000	
		1011 11					EAGEA		1000 000 00000	1	ors Parleio		T
Staph1N		97							0.0. mu				
10000	20000	30000	40000	50000	60900	70000	80000		100000	110000	120000	130000	
ISP		1001 0	1.01.1.1	10.0.00		1000000		000001100000	m'anua ^{ca}				.m ⁰⁰
10000	20000	30000	40000	sobco	eodee	76606	80000	sočos	100000	110000	120000	5 30000	14000
		100.1		1.0.1100		101011-0010			o mo _s to no cu	non an	41111-100		II 10
JD007 10000	20000	30000	40800	50000	60000	70000	80008	90000	100000	110000	120000	1 30'000	140008
		1011 U				1.11011.11				, מרומי, גע מרומי			non m
K	20000	30000	40000	50000	6000	70000	80000	90000	100000	110000	120000	130000	140
							(AL)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-			
MSA6						inter cuint			a and a damage				1 101
10000	20000	30000	40000	50000	eoqua	76606	80000	90000	100000	110000	120000	130000	
GI		1001 0		1.0.1.00			0.0000000000000000000000000000000000000	ה הכווורביות <u>י</u> ם	unc'un cantor	10100 0000000			ı alt
10000	20000	30000	40000	50000	60000	70600	86000	00000	100000	110000	120000	130000	-
	atour 1 111	1001 0	1 11 1 3	10.1.001					ad ^a a ¹ 1 con ^{acco}				0 ⁰ 00
A5W 10000	20000	30000	40000	58060	60000	78000	80000	90000	100000	110000	120000	1 30'000	
						101001-0011		100 T 10000 000	9,00 1030,				
SA5	20000	38000	40000	50000	6000	70600	80000	90000	100800	110000	120000	130000	
										0.800			1000
S25-3													00000
10000	20000	30000	40000	50000	00000 1	70000	80000	soñoo Die	100000	110000	120000	130000	
A3R									ama a			o 100 ⁰⁰	
1000	20000	30000	40000	50000	60000	70000	80000	soboo	100880	110000	120000		
		mur n	тит		10000000000	11000 C.U.C.	שרבום מיום מ	0 1000 I ₀₀₁₀₀₀				ш	
Sb-1 10000	20000	30000	40000	50000	60000	70000	80008	90000	100880	110000	120000	136000	140000
		DIDE TUTT	0 1.11		UT 101 T	COCIDIC			00,0000,00	000 ₀₁₀₀₁			- 100 a m III
SA012	20000	30000	40000	50000	6000	70000	80000	990000	100000	110000	120000	130000	
	ID WIT T T		1.0.0							110000	120000		
S25-4								ann ⁵ ann an	"maanii a			11 ION	
10000	20000	30000	40000	50000	6000	70000	80000	90000	100000	110000 10	120000	130000	-
10-1000 001-000			1 1 1	0					OMECKE CO	000 carcacor			α
10000	20000	30000	40800	50000	60000	70000	80000	00000	100000	110000	120000	1 30'000	
	10 000001 0000	1013 II III	плт			0.000	00 0 000000	12) (10:00:00:00:00:00	0000,0000	opuno concesso		000 000	8
Remus 10000	20000	30000	40000	50000	60000	70000	80000	90000	100000	110000	120000	1 30'00	
			ri n 1			0 000			COMO DO 0,000 D				
Romulus	20000	ander	tohec	entro	solen	70000	00400	00100	todas		120027	1.200	
10000	AUGUU	JUUUU MAda Att. Antilifika	40000	0000		70000	0000	socoo		110000	120000	s 300	
Twort		1 10 1001	1 111	Tille to	naca ha		ייייייייייייייייי	10000000		er en an	Pantadan	II 800 ⁸⁰	
10000	20000	30000	40000	50000	eodro	70000	80000	90000 00000	100000	110000	120000	130000	14001
		10. mm - 1	<u>а т на</u>	TOCICIE		-00-20							10 10 ⁰⁰
	20000	30000	40000	50000	60000	70000	80000	90000	100000	110000	120000	130000	
	CID COOMO CO		1 1 1 1	1.101.0						יננטיים איניטיני	700000000		na

IBB-SEP1

Figure S2: Progressive MAUVE comparison at the nucleotide level of phages belonging to the *Myoviridae* family infecting Staphylococcal species. Coloured blocks surround a region of the genome sequence that aligns and is homologous to part of another genome. Regions with lack of homology are outside these blocks or white inside the blocks. The height of the similarity profile corresponds to the average of conservation in that region of the genome sequence.

Figure S3. Optical microphotographs of (A) *S. aureus* IPLA16; (B) *S. aureus* IPLA16-R71 resistant to phage phiIPLA-RODI; (C) *S. epidermidis* LO5081 and (D) *S. epidermidis* LO5081-R49 resistant to phage phiIPLA-C1C. Cultures were grown in TSB at 37°C with shacking during 16 h.

orf	From	То	Length	aa	kDa (pI)	Predictive Function	Closes hit (E value)	% aa identity / % similarity	Accesion no.	Predicted domain (E value)
1	14	496	483	160	18.25 (3.60)	Terminal repeat-encoded protein	Terminal repeat-encoded protein [<i>Staphylococcus</i> phage phiSA012] (1e-66)	71% (83%)	BAO47048.1	
2	575	739	165	54	6.3 (4.96)	Terminal repeat-encoded protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (7e-28)	98% (98%)	YP_008853972.1	
3	739	1008	270	89	10.1 (5.12)	TreT	Hypothetical protein GH15_015 [<i>Staphylococcus</i> phage GH15] (1e-50)	93% (96%)	YP_007002138.1	
4	1093	1314	222	73	8.65 (4.51)	TreU	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (3e-37)	90% (93%)	YP_008853974.1	
5	1932	1642	291	96	11.59 (4.27)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (3e-62)	99% (98%)	YP_007112845.1	
6	2272	2036	237	78	9.55 (4.59)	BofL	gp ORF004 [<i>Staphylococcus</i> phage A5W] (4e-49)	100% (100%)	ACB88995.1	
7	2759	2274	486	161	19.16 (7.44)	Hypothetical protein	ORF088 [Staphylococcus phage G1] (8e- 105)	96% (97%)	YP_241045.1	
8	3179	2772	408	135	16.46 (5.06)	Hypothetical protein	ORF109 [Staphylococcus phage G1] (4e-93)	100% (100%)	YP_241046.1	
9	3610	3179	432	143	17.24 (4.33)	UboA	UboA [<i>Staphylococcus</i> phage Fi200W] (8e- 95)	100% (100%)	AFN38459.1	
10	3804	3613	192	63	7.88 (10.21)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (4e-36)	100% (100%)	YP_007112842.1	
11	4286	3801	486	161	18.41 (9.6)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiSA012] (5e-105)	98% (99%)	BAO47055.1	
12	4710	4279	432	143	167.44 (3.95)	Hypothetical protein	Hypothetical protein KgORF2 [Staphylococcus phage K] (5e-97)	99% (100%)	YP_024433.1	
13	5266	4724	543	180	21.55 (9.68)	Nucleotidyl transferase	Hypothetical protein KgORF3 [Staphylococcus phage K] (5e-123)	99% (99%)	YP_024434.1	COG1665 (9.88e-03)
14	5766	5278	489	162	19.5 (9.89)	ribA/ribD-fused hypothetical protein	Hypothetical protein KgORF4 [Staphylococcus phage K] (4e-115)	98% (100%)	YP_024435.1	ribofla_fusion[TIGR02464], (4.99e-75)
15	6177	5779	399	132	16.75 (9.4)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-3] (5e-87)	99% (99%)	YP_008854162.1	
16	6881	6174	708	235	27.62 (4.88)	Phosphatase	Putative protein phosphatase [Staphylococcus phage K] (9e-169)	98% (100%)	YP_024437.1	MPP_PPP_family[cd00144] (9.50e-27)
17	7535	6981	555	184	21.22 (4.33)	Hypothetical protein	Hypothetical protein KgORF7 [Staphylococcus phage K] (1e128)	99% (99%)	YP_024438.1	
18	7868	7551	318	105	11.80 (7.19)	Hypothetical protein	ORF138 [Staphylococcus phage G1] (4e-66)	99% (100%)	YP_241056.1	
19	9402	8854	549	182	21.95 (4.25)	Hypothetical protein	Hypothetical protein KgORF8 [Staphylococcus phage K] (6e-123)	99% (100%)	YP_024439.1	

20	9624	9406	219	72	8.41 (4.18)	Hypothetical protein	ORF201 [Staphylococcus phage G1] (3e.43)	100% (100%)	YP_241058.1	
21	9819	9625	195	64	7.64 (4.39)	Hypothetical protein	ORF218 [Staphylococcus phage G1] (1e-37)	100% (100%)	YP_241059.1	
22	10546	9809	738	245	28.67 (5.98)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (1e-171)	99% (99%)	YP_007112830.1	
23	10713	10609	105	34	4.13 (4.37)	Hypothetical protein	ORF437 [Staphylococcus phage G1] (7e-12)	85% (97%)	YP_241061.1	
24	10962	10735	228	75	89.2 (4.31)	Aspartate aminotransferase	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (3e-45)	97% (97%)	YP_008853991.1	PRK05937[PRK05937], (3.65e-03)
25	11350	10964	387	128	14.62 (4.57)	Hypothetical protein	Hypothetical protein GH15_039 [Staphylococcus phage GH15] (6e-89)	100% (100%)	YP_007002162.1	
26	11620	11447	174	57	6.81 (4.94)	Hypothetical protein	Hypothetical protein GH15_040 [Staphylococcus phage GH15] (8e-34)	100% (100%)	YP_007002163.1	
27	12143	11661	483	160	18.98 (4.52)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (8e-108)	98% (100%)	YP_008853994.1	
28	12735	12193	543	180	20.55 (4.60)	Hypothetical protein	Hypothetical protein GH15_042 [<i>Staphylococcus</i> phage GH15] (1e-114)	94% (96%)	YP_007002165.1	
29	13265	12735	531	176	20.51 (3.92)	Hypothetical protein	Hypothetical protein GH15_043 [<i>Staphylococcus</i> phage GH15] (7e-122)	99% (100%)	YP_007002166.1	
30	13432	13268	165	54	6.15 (9.9)	Membrane protein	ORF256 [Staphylococcus phage G1] (1e-26)	94% (98%)	YP_241068.1	
31	13722	13435	288	95	11.29 (9.45)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage JD007] (2e-06)	52% (69%)	YP_007112822.1	
32	14567	13722	846	281	31.77 (4.41)	Hypothetical protein	Hypothetical protein GH15_046 [Staphylococcus phage GH15] (0.0)	98% (99%)	YP_007002169.1	
33	15698	14580	1119	372	42.24 (4.48)	AAA family ATPase	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (0.0)	99% (99%)	YP_008854000.1	PHA02244 ATPase-like protein (0.0)
34	16177	15851	327	108	12.81 (4.52)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (9e-71)	97% (98%)	YP_008854001.1	
35	16586	16170	417	138	16.01 (5.21)	Hypothetical protein	Hypothetical protein GH15_049 [Staphylococcus phage GH15] (8e-94)	99% (99%)	YP_007002172.1	
36	17020	16718	303	100	11.30 (4.58)	NTP-PPase	Hypothetical protein KgORF17 [Staphylococcus phage K] 87e-64)	100% (100%)	YP_024448.1	NTP-PPase_u3[cd11540], (1.92e-24)
37	17208	17020	189	62	7.321 (4.04)	Hypothetical protein	Hypothetical protein GH15_051 [Staphylococcus phage GH15] (2e-34)	100% (100%)	YP_007002174.1	
38	17413	17252	162	53	6.37 (4.39)	Hypothetical protein	ORF259 [Staphylococcus phage G1] (3e-29)	100% (100%)	YP_241076.1	
39	19464	17413	2052	683	79.79 (6.52)	Hypothetical protein	Hypothetical protein GH15_053 [Staphylococcus phage GH15] (0.0)	99% (99%)	YP_007002176.1	
40	19806	19543	264	87	10.26 (4,97)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (2e-52)	98% (97%)	YP_008854007.1	
41	19996	19823	174	57	6.67 (7.15)	Peptidoglycan binding	Hypothetical protein [Staphylococcus phage	98% (100%)	YP_007112812.1	LysM[cd00118], (1.06e-07)

						protein	JD007] (4e-31)			
42	20581	20003	579	192	21.46 (8.93)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (4e-130)	100% (100%)	YP_008854009.1	
43	21173	20574	600	199	22.58 (4.65)	Nucleoside 2- deoxyribosyltransferase	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (2e-114)	82% (89%)	YP_008854010.1	Nuc_deoxyrib_tr[pfam05014], (3.71e-03)
44	22059	21166	894	297	34.55 (5)	RNA ligase	Putative DNA ligase [<i>Staphylococcus</i> phage GH15] (0.0)	95% (99%)	YP_007002182.1	RNA_ligase[pfam09414], (1.06e-11)
45	22287	22063	225	74	8.15 (9.42)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (6e-40)	100% (100%)	YP_008854012.1	
46	23096	22356	741	246	28.53 (4.96)	PhoH-related protein	Putative PhoH-related protein [<i>Staphylococcus</i> phage K] (0.0)	99% (100%)	YP_024453.1	PhoH[pfam02562], (5.49e-25)
47	23762	23148	615	204	23.08 (3.97)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (1e-142)	99% (99%)	YP_008854014.1	
48	24203	23778	426	141	15.79 (7.15)	Ribonuclease	Putative ribonuclease [<i>Staphylococcus</i> phage GH15] (2e-194)	100% (100%)	YP_007002186.1	
49	24384	24193	192	63	7.47 (5.61)	Hypothetical protein	ORF222 [Staphylococcus phage G1] (3e-37)	100% (100%)	YP_241086.1	
50	25048	24407	642	213	24.58 (3.82)	Hypothetical protein	Hypothetical protein KgORF25 [Staphylococcus phage K] (4e-143)	99% (100%)	YP_024456.1	
51	25268	25038	231	76	8.83 (9.12)	DNA binding protein	ORF187 [Staphylococcus phage G1] (1e-46)	100% (100%)	YP_241088.1	HTH_XRE[cd00093], (3.67e-10)
52	25498	25271	228	75	9.26 (10.21)	Hypothetical protein	ORF190 [Staphylococcus phage G1] (2e-42)	96% (98%)	YP_241089.1	
53	26299	25607	693	230	24.90 (4.75)	Transglycosylase	Putative transglycosylase IsaA [<i>Staphylococcus</i> phage GH15] (4e-167)	100% (100%)	YP_007002191.1	LT_GEWL[cd00254], (3.26e-5)
54	27291	26497	795	264	29.29 (9.28)	Membrane protein	Putative membrane protein [<i>Staphylococcus</i> phage GH15] (0.0)	100% (100%)	YP_007002192.1	
55	27599	27291	309	102	12.13 (9.31)	Hypothetical protein	Hypothetical protein GH15_070 [<i>Staphylococcus</i> phage GH15] (6e-65)	100% (100%)	YP_007002193.1	
56	28332	27712	621	206	24.55 (9.41)	Hypothetical protein	Hypothetical protein KgORF27 [Staphylococcus phage K] (9e-42)	42% (58%)	YP_024458.1	
57	29885	28395	1491	496	54.81 (9.8)	Endolysin	Putative lysin [<i>Staphylococcus</i> phage GH15] (0.0)	99% (100%)	YP_007002194.1	CHAP[pfam05257], (1.42e-11) Amidase_2[pfam01510], (4.58e-10) SH3b[smart00287], (2.66e-03)
58	30388	29885	504	167	18.11 (3.88)	Holin	Putative holin [<i>Staphylococcus</i> phage GH15] (2e-114)	98% (99%)	YP_007002195.1	Phage_holin_1[pfam04531], (1.28e-31)
59	30658	30473	186	61	7.06 (4.81)	Hypothetical protein	ORF233 [Staphylococcus phage G1] (1e-33)	100% (100%)	YP_241098.1	
60	32429	32211	219	72	8.67 (9.36)	Hypothetical protein	ORF200 [Staphylococcus phage G1] (4e-45)	100% (100%)	YP_241099.1	
61	33118	32909	210	69	7.76 (5.57)	Hypothetical protein	Hypothetical protein GH15_075 [<i>Staphylococcus</i> phage GH15] (1e-40)	100% (100%)	YP_007002198.1	

62	33463	33131	333	110	12.50 (5.08)	Hypothetical protein	Hypothetical protein GH15_076 [Staphylococcus phage GH15] (8e-69)	99% (100%)	YP_007002199.1	
63	33802	33476	327	108	13.01 (5.14)	Membrane protein	Putative membrane protein [<i>Staphylococcus</i> phage GH15] (1e-69)	98% (99%)	YP_007002200.1	
64	34243	34629	387	128	14.84 (9.31)	Membrane protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (8e-81)	98% (100%)	YP_008854032.1	
65	34607	34885	279	92	10.57 (10.03)	Hypothetical protein	ORF161 [Staphylococcus phage G1] (2e-60)	100% (100%)	YP_241104.1	
66	34882	35292	411	136	15.62 (4.38)	Hypothetical protein	ORF133 [Staphylococcus phage G1] (6e-91)	99% (100%)	YP_241105.1	
67	35307	35657	351	116	13.56 (9.9)	Terminase large subunit	Putative terminase large subunit [<i>Staphylococcus</i> phage GH15] (2e-76)	100% (100%)	YP_007002205.1	
68	35897	36667	771	256	30.01 (9.2)	Group I intron VSR homing endonuclease	Group I intron protein [<i>Staphylococcus</i> phage vB_SauM_Romulus] (7e-134)	89% (94%)	YP_007677505.1	Very-short-patch-repair endonuclease [Replication, recombination, and repair] (3.42e-03)
69	36734	38194	1461	486	56.37 (5.74)	Terminase large subunit	Ter [Staphylococcus phage MSA6] (0.0)	100% (100%)	AFN38730.1	Terminase_GpA[pfam05876] (1.62e-17)
70	38187	39008	822	273	30.6 (4.92)	Hypothetical protein	Hypothetical protein GH15_083 [<i>Staphylococcus</i> phage GH15] (0.0)	96% (99%)	YP_007002206.1	
71	39165	39644	480	159	18.53 (4.62)	Hypothetical protein	Hypothetical protein GH15_085 [Staphylococcus phage GH15] (5e-109)	100% (100%)	YP_007002208.1	
72	39686	40936	1251	416	45.82 (3.89)	Membrane protein	Putative membrane protein [<i>Staphylococcus</i> phage GH15] (0.0)	94% (95%)	YP_007002209.1	
73	41021	41362	342	113	12.82 (9.61)	Membrane protein	Putative membrane protein [<i>Staphylococcus</i> phage GH15] (1e-71)	100% (100%)	YP_007002210.1	
74	41372	41752	381	126	14.84 (6.14)	Hypothetical protein	Hypothetical protein KgORF40 [Staphylococcus phage K] (2e-82)	99% (100%)	YP_024470.1	
75	41756	43447	1692	563	64.04 (6.19)	Portal protein	Putative portal protein [<i>Staphylococcus</i> phage GH15] (0.0)	99% (100%)	YP_007002212.1	Phage_portal[pfam04860], (1.99e-14)
76	43641	44414	774	257	28.62 (4.71)	Prohead protease	Hypothetical protein KgORF42 [<i>Staphylococcus</i> phage K] (0.0)	99% (100%)	YP_024472.1	Peptidase_U35[pfam04586], (2.03e-05)
77	44433	45383	951	316	35.74 (4.17)	Hypothetical protein	Hypothetical protein KgORF43 [<i>Staphylococcus</i> phage K] (0.0)	100% (100%)	YP_024473.1	
78	45499	46890	1392	463	51.27 (4.9)	Capsid protein	Putative capsid protein [<i>Staphylococcus</i> phage K] (0.0)	100% (100%)	YP_024474.1	
79	46982	47278	297	98	11.28 (9.88)	Hypothetical protein	ORF151 [Staphylococcus phage G1] (1e-59)	100% (100%)	YP_240904.1	
80	47291	48199	909	302	34.16 (4.93)	Hypothetical protein	Hypothetical protein KgORF45 [<i>Staphylococcus</i> phage K] (0.0)	100% (100%)	YP_024475.1	
81	48213	49091	879	292	33.71 (5.99)	Hypothetical protein	hypothetical protein GH15_095 [Staphylococcus phage GH15] (0.0)	99% (100%)	YP_007002218.1	
82	49091	49711	621	206	23.73 (10.85)	Hypothetical protein	Hypothetical protein GH15_096	99% (100%)	YP_007002219.1	

							[Staphylococcus phage GH15] (9e-148)			
83	49730	50566	837	278	31.76 (4.47)	Hypothetical protein	Hypothetical protein KgORF48 [Staphylococcus phage K] (0.0)	100% (100%)	YP_024478.1	
84	50568	50783	216	71	8.28 (9.14)	Hypothetical protein	ORF202 [Staphylococcus phage G1] (3e-45)	100% (100%)	YP_240909.1	
85	50810	52573	1764	587	64.43 (4.69)	Major tail sheath protein	Major tail sheath protein [<i>Staphylococcus</i> phage 812] (0.0)	99% (100%)	ABL87117.1	pfam04984: Phage_sheath_1 (1.73e-4)
86	52646	52984	339	112	12.45 (9.01)	Tail tube protein	TmpA [Staphylococcus phage A3R] (4e-73)	98% (99%)	AFN38130.1	
87	53779	54783	1005	334	39.42 (9.17)	Ioh	Ioh [Staphylococcus phage A3R] (3e-39)	35% (51%)	AFN38131.1	
88	54840	54980	141	46	5.39 (11.19)	Hypothetical protein	Hypothetical protein phi_A3R_ORF076 [<i>Staphylococcus</i> phage A3R] (4e-16)	76% (89%)	AFN38132.1	
89	55023	55481	459	152	18.12 (10.02)	Hypothetical protein	Hypothetical protein KgORF51 [Staphylococcus phage K] (9e-105)	97% (100%)	YP_024481.1	
90	55494	55688	195	64	7.15 (9.87)	Hypothetical protein	ORF215 [Staphylococcus phage G1] (3e-34)	100% (100%)	YP_240914.1	
91	55770	56081	312	103	12.25 (5.8)	Hypothetical protein	Hypothetical protein KgORF52 [Staphylococcus phage K] (9e-66)	100% (100%)	YP_024482.1	
92	56213	56671	459	152	18.15 (4.50)	Hypothetical protein	Hypothetical protein KgORF53 [Staphylococcus phage K] (5e-105)	100% (100%)	YP_024483.1	
93	56715	57251	537	178	20.92 (4.01)	Tail morphogenetic protein	Hypothetical protein KgORF54 [Staphylococcus phage K] (1e-125)	100% (100%)	YP_024484.1	
94	57307	61362	4056	1351	143.77 (9.51)	ТМР	Tail morphogenetic protein, tape measure protein [<i>Staphylococcus</i> phage phiSA012] (0.0)	99% (100%)	BAO47136.1	TACC[Cdd:pfam05010], (7.75e-06)
95	61441	63867	2427	808	91.25 (6.30)	CHAP domain protein	Hypothetical protein KgORF56 [Staphylococcus phage K] (0.0)	99% (99%)	YP_024486.1	CHAP[pfam05257], (6.45e-17)
96	63881	64768	888	295	34.58 (4.21)	Protease	Hypothetical protein GH15_109 [Staphylococcus phage GH15] (0.0)	99% (99%)	YP_007002232.1	IPR000064 Endopeptidase (0.00054)
97	64768	67314	2547	848	95.99 (4.61)	Glycerophosphoryl diester phosphatase	Glycerophosphoryl diester phosphodiesterase [<i>Staphylococcus</i> phage JD007] (0.0)	99% (99%)	YP_007112758.1	GDPD_SaGlpQ_like[cd08601] (6.54e-69)
98	67421	68212	792	263	29.32 (8.75)	Hypothetical protein	Hypothetical protein KgORF59 [Staphylococcus phage K] (0.0)	99% (100%)	YP_024489.1	
99	68212	68736	525	174	19.95 (4.24)	Hypothetical protein	ORF078 [Staphylococcus phage G1] (3e- 121)	100% (100%)	YP_240925.1	
100	68736	69440	705	234	26.58 (4.44)	Baseplate protein	Putative bacteriophage baseplate protein [Staphylococcus phage K] (6e-171)	100% (100%)	YP_024491.1	
101	69455	70501	1047	348	39.2 (4.53)	Baseplate protein	Hypothetical protein KgORF62 [<i>Staphylococcus</i> phage K] (0.0)	100% (100%)	YP_024492.1	LysM[cd00118] (4.35e-03) [COG3628], Phage baseplate assembly protein W (2.23e- 04)

102	70522	73587	3066	1021	116.45 (4.76)	Hypothetical protein	Hypothetical protein KgORF63 [Staphylococcus phage K] (0.0)	90% (94%)	YP_024493.1	IPR006949 Baseplate assembly protein J- like (4.5e-26)
103	73698	74219	522	173	19.23 (5.12)	Baseplate protein	Hypothetical protein KgORF64 [Staphylococcus phage K] (4e-122)	100% (100%)	YP_024494.1	Phage-Gp8[pfam09215], (1.40e-03)
104	74240	77698	3459	1152	129.33 (4.84)	Adsorption-associated tail protein	Adsorption-associated tail protein [Staphylococcus phage JD007] (0.0)	99% (99%)	YP_007112751.1	
105	77747	77905	159	52	62.8 (9.20)	Hypothetical protein	ORF262 [Staphylococcus phage G1] (9e-27)	100% (100%)	YP_240931.1	
106	77906	79825	1920	639	72.4 (6.22)	Carbohydrate binding domain protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (0.0)	97% (98%)	YP_007112749.1	IPR003305Carbohydrate-binding, (5.4e-07)
107	79847	80218	372	123	14.49 (4.58)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (7e-83)	100% (100%)	YP_007112748.1	
108	80225	81601	1377	458	50.49 (5.64)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (0.0)	98% (98%)	YP_007112747.1	
109	81691	83439	1749	582	67.23 (5.46)	DNA helicase	Putative helicase [<i>Staphylococcus</i> phage K] (0.0)	99% (100%)	YP_024499.1	Helicase, C-terminal (IPR001650) (7.6e-15)
110	83451	85064	1614	537	63.14 (8.28)	Rep protein	Putative Rep protein [<i>Staphylococcus</i> phage GH15] (0.0)	99% (99%)	YP_007002246.1	HTH_ARSR[cd00090] (1.49e-04)
111	85057	86499	1443	480	54.58 (5.38)	ATPase	Putative ATPase [<i>Staphylococcus</i> phage K] (0.0)	99% (99%)	YP_024501.1	IPR003593 AAA+ ATPase domain (1.4e- 05)
112	86578	86997	420	139	16.18 (5.39)	Hypothetical protein				
113	86997	88022	1026	341	39.34 (4.76)	Exonuclease	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (0.0)	96% (98%)	YP_008854079.1	MPP_Mre11_N[cd00840], (9.51e-25)
114	88022	88399	378	125	15.17 (4.81)	Hypothetical protein	Hypothetical protein KgORF73 [Staphylococcus phage K] (9e-72)	84% (92%)	YP_024503.1	
115	88399	90318	1920	639	73.34 (4.96)	ATPase	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (0.0)	98% (99%)	YP_008854081.1	ABC_ATPase[cd00267], (1.18e-04)
116	90318	90914	597	198	23.20 (5.96)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (5e-140)	98% (99%)	YP_007112958.1	
117	90929	91996	1068	355	41.04 (8.50)	DNA Primase	Putative primase [<i>Staphylococcus</i> phage K] (0.0)	99% (99%)	YP_024506.1	TOPRIM_DnaG_primases[cd03364], (2.75e-07)
118	92062	92400	339	112	12.88 (3.98)	Hypothetical protein	ORF127 [Staphylococcus phage G1] (1e-69)	98% (99%)	YP_240943.1	
119	92400	92852	453	150	17.10 (4.69)	Hypothetical protein	Hypothetical protein phi_676Z_ORF107 [<i>Staphylococcus</i> phage 676Z] (2e-96)	95% (99%)	AFN38356.1	
120	92839	93447	609	202	23.64 (5.36)	Resolvase	Resolvase [<i>Staphylococcus</i> phage JD007] (4e-146)	99% (100%)	YP_007112954.1	tRNA endonuclease-like domain (IPR011856)(4.6e-06)
121	93437	93856	420	139	15.75 (10.18)	Ribonucleotide reductase flavodoxin	gp ORF109 [Staphylococcus phage A5W] (9e-92)	98% (98%)	ACB89102.1	nrdI[PRK03600],(2.13e-25)
122	93871	95985	2115	704	80.30 (5.39)	Ribonucleotide reductase	Putative ribonucleotide reductase large	99% (99%)	YP_007002258.1	Ribonuc_red_lgC[pfam02867], (6.96e-176)

						large subunit	subunit [Staphylococcus phage GH15] (0.0)			
123	95999	97048	1050	349	40.45 (4.5)	Ribonucleotide reductase small subunit	Ribonucleoside-diphosphate beta subunit [Staphylococcus phage JD007] (0.0)	98% (99%)	YP_007112951.1	RNRR2[cd01049], (1.58e-59)
124	97066	97395	330	109	12.48 (4.39)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (2e-69)	96% (97%)	YP_007112950.1	
125	97379	97699	321	106	12.04 (4.57)	Thioredoxin-like protein	Thioredoxin-like protein [<i>Staphylococcus</i> phage K] (4e-68)	99% (100%)	YP_024513.1	TRX_family[cd02947], (7.08e-08)
126	97906	98502	597	198	23.59 (6.25)	Hypothetical protein	Hypothetical protein GH15_139 [<i>Staphylococcus</i> phage GH15] (2e-140)	100% (100%)	YP_007002262.1	
127	98512	98817	306	101	11.92 (5.62)	Integration host factor	Putative integration host factor [<i>Staphylococcus</i> phage K] (5e-66)	100% (100%)	YP_024515.1	HU_IHF[cd00591], (7.28e-08)
128	98893	102111	3219	1072	124.57 (5.21)	DNA polymerase	DNA polymerase I [<i>Staphylococcus</i> phage phiSA012] (0.0)	99% (99%)	BAO47171.1	DNA_pol_A_pol_I_C[cd08637] (5.79e-80)
129	102181	102423	243	80	9.26 (3.83)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (2e-48)	98% (100%)	YP_008854095.1	
130	102440	102922	483	160	18.94 (5.12)	Hypothetical protein	Hypothetical protein GH15_143 [<i>Staphylococcus</i> phage GH15] (2e-113)	99% (100%)	YP_007002266.1	
131	103009	104280	1272	423	47.01 (4.44)	Hypothetical protein	Hypothetical protein GH15_144 [<i>Staphylococcus</i> phage GH15] (0.0)	98% (99%)	YP_007002267.1	
132	104340	105596	1257	418	46.76 (4.95)	DNA repair protein	Putative DNA repair protein [<i>Staphylococcus</i> phage GH15] (0.0)	99% (100%)	YP_007002268.1	recA[cd00983] (1.49e-36)
133	105600	105953	354	117	13.38 (4.89)	Hypothetical protein	ORF121 [Staphylococcus phage G1] (6e-79)	100% (100%)	YP_240963.1	
134	105940	106602	663	220	26.60 (5.07)	Sigma factor	Putative sigma factor [<i>Staphylococcus</i> phage K] (1e-155)	100% (100%)	YP_024522.1	
135	106730	107362	633	210	23.21 (4.46)	Putative Ig-like protein	Hypothetical protein KgORF95 [Staphylococcus phage K] (3e-149)	99% (100%)	YP_024523.1	
136	107385	107897	513	170	17.83 (4.13)	Major tail protein	Putative major tail protein [<i>Staphylococcus</i> phage K] (4e-113)	99% (100%)	YP_024524.1	Big_2[pfam02368], (1.65e-05)
137	107912	108139	228	75	7.81 (4.17)	Tail protein	ORF189 [Staphylococcus phage G1] (9e-45)	100% (100%)	YP_240967.1	
138	108235	108495	261	86	10.27 (5.52)	Hypothetical protein	Hypothetical protein GH15_151 [<i>Staphylococcus</i> phage GH15] (8e-55)	100% (100%)	YP_007002274.1	
139	108499	109254	756	251	29.15 (4.21)	Hypothetical protein	Hypothetical protein KgORF97 [Staphylococcus phage K] (8e-180)	100% (100%)	YP_024525.1	
140	109247	110497	1251	416	47.56 (5.64)	DNA polymerase	DNA polymerase [<i>Staphylococcus</i> phage JD007] (0.0)	99% (100%)	YP_007112932.1	
141	110511	110879	369	122	13.99 (5.56)	Hypothetical protein	Hypothetical protein KgORF99 [Staphylococcus phage K] (2e-80)	100% (100%)	YP_024527.1	
142	110866	111177	312	103	12.01 (4.43)	Hypothetical protein	Hypothetical protein KgORF100	100% (100%)	YP_024528.1	

							[Staphylococcus phage K] (7e-68)		
143	111241	111777	537	178	20.78 (6.39)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage phiSA012] (3e-126)	99% (100%)	BAO47187.1
144	111770	112537	768	255	30.04 (9.83)	Hypothetical protein	Hypothetical protein KgORF101 [Staphylococcus phage K] (0.0)	100% (100%)	YP_024529.1
145	112515	112961	447	148	17.33 (10.63)	Hypothetical protein	Hypothetical protein KgORF102 [Staphylococcus phage K] (4e-103)	100% (100%)	YP_024530.1
146	112961	113824	864	287	32.35 (5.40)	Hypothetical protein	ORF036 [Staphylococcus phage G1] (0.0)	100% (100%)	YP_240976.1
147	114196	114927	732	243	28.35 (5.05)	Hypothetical protein	Hypothetical protein KgORF103 [Staphylococcus phage K] (1e-172)	100% (100%)	YP_024531.1
148	114945	115403	459	152	17.84 (4.62)	Hypothetical protein	Hypothetical protein GH15_161 [Staphylococcus phage GH15] (2e-105)	100% (100%)	YP_007002284.1
149	115468	115911	444	147	17.50 (5.96)	Hypothetical protein	Hypothetical protein KgORF105 [Staphylococcus phage K] (2e-98)	100% (100%)	YP_024533.1
150	115928	116632	705	234	27.36 (4.37)	Hypothetical protein	Hypothetical protein KgORF106 [Staphylococcus phage K] (4e-167)	99% (100%)	YP_024534.1
151	116694	117092	399	132	15.42 (9.30)	Hypothetical protein	Hypothetical protein KgORF107 [Staphylococcus phage K] (6e-90)	100% (100%)	YP_024535.1
152	117239	117481	243	80	9.39 (9.79)	Hypothetical protein	ORF182 [Staphylococcus phage G1] (3e-48)	100% (100%)	YP_240982.1
153	117486	118043	558	185	21.67 (9.88)	Membrane protein	Hypothetical protein PhageK_168 [Staphylococcus phage K] (2e-130)	99% (100%)	AHB80083.1
154	118079	118255	177	58	6.98 (4.37)	Hypothetical protein	ORF240 [Staphylococcus phage G1] (2e-32)	100% (100%)	YP_240984.1
155	118248	118496	249	82	9.04 (9.72)	Membrane protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (1e-46)	94% (98%)	YP_007112917.1
156	118489	118722	234	77	88.93 (7.61)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-3] (5e-42)	90% (96%)	YP_008854298.1
157	118804	119448	645	214	25.20 (5.49)	Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit	Putative ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit [<i>Staphylococcus</i> phage GH15] (1e-145)	98% (99%)	YP_007002293.1
158	119464	119712	249	82	9.04 (9.72)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (1e-35)	94% (100%)	YP_008854124.1
159	119724	119900	177	58	6.9 (10.19)	Hypothetical protein	Hypothetical protein phi_676Z_ORF149 [<i>Staphylococcus</i> phage 676Z] (1e-30)	98% (98%)	AFN38398.1
160	119893	120189	297	98	11.47 (8.99)	Hypothetical protein	Hypothetical protein GH15_172 [<i>Staphylococcus</i> phage GH15] (3e-62)	98% (99%)	YP_007002295.1
161	120237	120419	183	60	7.13 (9.35)	Membrane protein	ORF219 [Staphylococcus phage G1] (2e-32)	98% (100%)	YP_240988.1
162	120432	120803	372	123	14.34 (3.99)	Hypothetical protein	Hypothetical protein GH15_174 [Staphylococcus phage GH15] (3e-75)	93% (97%)	YP_007002297.1

163	120816	121163	348	115	12.97 (4.37)	Hypothetical protein	Hypothetical protein GH15_175 [<i>Staphylococcus</i> phage GH15] (4e-76)	99% (100%)	YP_007002298.1	
164	121169	121441	273	90	9.99 (4.03)	Membrane protein	Putative membrane protein [<i>Staphylococcus</i> phage GH15] (4e-53)	98% (99%)	YP_007002299.1	
165	121511	121816	306	101	12.14 (9.61)	Hypothetical protein	ORF140 [Staphylococcus phage G1] (8e-67)	100% (100%)	YP_240992.1	
166	121831	122181	351	116	136.67 (10.24)	Hypothetical protein	Hypothetical protein GH15_178 [<i>Staphylococcus</i> phage GH15] (2e-75)	100% (100%)	YP_007002301.1	
167	122215	122394	180	59	7.3 (7.17)	Hypothetical protein	Hypothetical protein GH15_180 [Staphylococcus phage GH15] (1e-33)	97% (100%)	YP_007002303.1	
168	122620	123030	411	136	15.32 (4.37)	Membrane protein	Putative membrane protein [<i>Staphylococcus</i> phage GH15] (9e-86)	94% (99%)	YP_007002304.1	
169	123032	123256	225	74	8.51 (6.54)	Hypothetical protein	Hypothetical protein GH15_198 [Staphylococcus phage GH15] (5e-44)	96% (100%)	YP_007002321.1	
170	123269	123469	201	66	7.60 (4.90)	Hypothetical protein	ORF211 [Staphylococcus phage G1] (5e-41)	100% (100%)	YP_241008.1	
171	123470	123760	291	96	11.13 (9.48)	Membrane protein	Putative membrane protein [<i>Staphylococcus</i> phage GH15] (6e-59)	100% (100%)	YP_007002323.1	
172	123853	124146	294	97	11.41 (6.15)	Hypothetical protein	Hypothetical protein GH15_201 [Staphylococcus phage GH15] (1e-63)	100% (100%)	YP_007002324.1	
173	124143	125051	909	302	34.92 (4.98)	Phosphoribosyl pyrophosphate synthetase	Putative ribose-phosphate pyrophosphokinase [<i>Staphylococcus</i> phage GH15] (0.0)	96% (98%)	YP_007002325.1	ibP_PPkin[TIGR01251], (7.63e-17)
174	125069	126538	1470	489	56.04 (5.05)	Nicotinamide phosphoribosyltransferase	Nicotinamide phosphoribosyl transferase [<i>Staphylococcus</i> phage phiSA012] (0.0)	98% (98%)	BAO47229.1	NAPRTase_PncB[cd01567], (3.65e-95)
175	126629	126940	312	103	11.87 (9.34)	Hypothetical protein				
176	126957	127190	234	77	9.27 (4.56)	Hypothetical protein				
177	127270	127464	195	64	7.41 (4.46)	Hypothetical protein	Hypothetical protein GH15_196 [<i>Staphylococcus</i> phage GH15] (5e-20)	65% (80%)	YP_007002319.1	
178	127478	127801	324	107	12.53 (6.37)	Hypothetical protein				
179	127814	128176	363	120	14.21 (4.51)	Hypothetical protein				
180	128176	128415	240	79	9.28 (4.16)	Hypothetical protein	Hypothetical protein GH15_212 [<i>Staphylococcus</i> phage GH15] (5e-07)	54% (70%)	YP_007002335.1	
181	128488	128898	411	136	16.29 (4.72)	Hypothetical protein	ORF113 [Staphylococcus phage G1] (6e-78)	94% (97%)	YP_241014.1	
182	128903	129157	255	84	9.88 (4.38)	Hypothetical protein	Hypothetical protein PhageK_205 [Staphylococcus phage K] (7e-40)	78% (92%)	AHB80120.1	Clr2[Cdd:pfam10383], (9.04e-03)
183	129261	129659	399	132	15.12 (5.15)	Hypothetical protein				
184	129673	130101	429	142	16.52 (4.31)	Hypothetical protein				
185	130103	130378	276	91	10.70 (4.57)	Hypothetical protein	Hypothetical protein GH15_213	72% (88%)	YP_007002336.1	

							[Staphylococcus phage GH15] (4e-32)			
186	130392	130781	390	129	14.35 (5.03)	Hypothetical protein				
187	130897	131523	627	208	23.19 (4.24)	Hypothetical protein	Putative uncharacterized protein [Staphylococcus equorum] (3e-20)	36% (46%)	WP_002512196.1	
188	131604	131720	117	38	4.51 (10.52)	Hypothetical protein				
189	131734	132135	402	133	16.03 (8.85)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage phiSA012] (8e-45)	59% (77%)	YP_024544.1	
190	132167	132376	210	69	8.33 (4.04)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus epidermidis</i>] (2e-07)	47% (65%)	WP_002493393.1	
191	132376	132732	357	118	13.49 (5.03)	Hypothetical protein				
192	133332	133631	300	99	11.56 (4.18)	TreA	gp ORF182 [<i>Staphylococcus</i> phage A5W] (1e-62)	96% (100%)	ACB89175.1	
193	133647	133832	186	61	6.67 (7.68)	TreB	ORF231 [Staphylococcus phage G1] (3e-25)	87% (93%)	YP_241023.1	
194	133939	134226	288	95	10.82 (4.43)	TreC	TreC [Staphylococcus phage A3R] (5e-60)	99% (100%)	AFN38033.1	
195	134226	134552	327	108	12.61 (4.07)	TreE	Hypothetical protein KgORF117 [<i>Staphylococcus</i> phage K] (9e-70)	99% (99%)	YP_024545.1	
196	134567	134860	294	97	11.62 (4.43)	TreE	TreE [Staphylococcus phage A3R] (3e-61)	97% (98%)	AFN38035.1	
197	134864	135049	186	61	7.44 (8.98)	TreF	ORF175 [Staphylococcus phage G1] (8e-35)	100% (100%)	YP_241027.1	
198	135186	135479	294	97	11.62 (4.43)	TreE	TreE [Staphylococcus phage A3R] (3e-61)	97% (98%)	AFN38035.1	
199	135483	135740	258	85	10.23 (6.10)	TreF	ORF175 [Staphylococcus phage G1] (4e-54)	100% (100%)	YP_241027.1	Peptidase_C26[pfam07722], (5.58e-03)
200	135828	136067	240	79	9.13 (4.63)	Hypothetical protein	gp ORF187 [<i>Staphylococcus</i> phage A5W] (2e-45)	94% (96%)	ACB89180.1	
201	136078	136425	348	115	13.59 (4.76)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (1e-71)	91% (99%)	YP_007112864.1	
202	136968	136630	339	112	13.47 (4.33)	Hypothetical protein	ORF128 [Staphylococcus phage G1] (3e-70)	98% (100%)	YP_241030.1	
203	137279	137587	309	102	11.79 (4.63)	TreJ	ORF145 [Staphylococcus phage G1] (8e-68)	99% (99%)	YP_241031.1	
204	137793	138077	285	94	10.98 (8.90)	TreK	gp ORF190 [<i>Staphylococcus</i> phage A5W] (1e-60)	97% (98%)	ACB89183.1	
205	138152	138343	192	63	7.67 (9.90)	Hypothetical protein	Hypothetical protein GH15_004 [<i>Staphylococcus</i> phage GH15] (4e-37)	100% (100%)	YP_007002127.1	
206	139325	138843	483	160	19.42 (9.61)	HNH homing endonuclease	ORF085 [Staphylococcus phage G1] (4e-93)	85% (89%)	YP_241035.1	HNH_3[pfam13392](1.26e-11)
207	139493	139651	159	52	60.56 (10.90)	TreN	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (2e-26)	100% (100%)	YP_008853962.1	
208	139724	139870	147	48	5.61 (9.82)	Hypothetical protein				

209	140036	140359	324	107	12.35 (4.97)	TreP	Hypothetical protein GH15_006 [Staphylococcus phage GH15] (2e-65)	93% (96%)	YP_007002129.1
210	140445	140840	396	131	15.39 (4.30)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-3] (4e-66)	75% (87%)	YP_008854145.1
211	141309	141530	222	73	8.46 (3.96)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage S25-4] (5e-45)	100%(100%)	YP_008853966.1
212	141789	141953	165	54	6.42 (4.67)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> phage JD007] (4e-29)	100% (100%)	YP_007112853.1
213	142033	142269	237	78	9.00 (4.03)	Hypothetical protein	hypothetical protein [<i>Staphylococcus</i> phage S25-4] (9e-39)	85% (97%)	YP_008853969.1

 Table S1: Features of bacteriophage phiIPLA-RODI orfs, gene products (gp) and functional assignments.

orf	From	То	Length	aa	kDa (pI)	Predictive Function	Closes hit (E value)	% aaidentity / % similarity	Accesion no.	Predicted domain (E value)
1	1	216	216	71	8.43 (10.51)	Hypothetical protein	ORF151 [<i>Staphylococcus</i> phage Twort] (2e- 39)	87% (98%)	YP_238726.1	
2	621	2168	1548	515	59.78 (5.76)	Terminase large subunit	Terminase large subunit [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48129.1	Terminase_GpA[pfam05876], Phage terminase large subunit (GpA) (1.39e-20)
3	2182	2985	804	267	30.63 (4.98)	Hypothetical protein	Hypothetical protein SEP1_002 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48131.1	
4	2972	3133	162	53	6.56 (9.53)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e-26)	100% (100%)	AGR48132.1	
5	3147	3638	492	163	19.21 (4.68)	Hypothetical protein	Hypothetical protein SEP1_004 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 110)	99% (100%)	AGR48133.1	
6	3715	4101	387	128	14.85 (9.57)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e-44)	100% (100%)	AGR48134.1	
7	4082	4453	372	123	14.57 (4.84)	Hypothetical protein	Hypothetical protein SEP1_006 [Staphylococcus phage phiIBB-SEP1](1e- 82)	99% (100%)	AGR48135.1	
8	4455	6146	1692	563	64.21 (5.85)	Portal protein	Portal protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48136.1	Phage_portal[pfam04860], Phage portal protein (4.87e-15)
9	6288	7058	771	256	28.70 (4.92)	Prohead protease	Hypothetical protein SEP1_008 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48137.1	Peptidase_U35[pfam04586], Caudovirus prohead protease (6.91e-06)
10	7061	8074	1014	337	38.40 (4.27)	Hypothetical protein	Hypothetical protein SEP1_009 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (98%)	AGR48138.1	
11	8201	9592	1392	463	51.28 (4.89)	Major capsid protein	Major capsid protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48139.1	
12	9692	9958	267	88	10.12 (10.00)	Hypothetical protein	Hypothetical protein SEP1_011 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 51)	99% (100%)	AGR48140.1	
13	9968	10876	909	302	33.99 (4.65)	Hypothetical protein	Hypothetical protein SEP1_012 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48141.1	
14	10890	11765	876	291	33.45 (5.82)	Capsid protein	Hypothetical protein SEP1_013 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	98% (99%)	AGR48142.1	
15	11765	12400	636	211	24.29 (11.22)	Hypothetical protein	Hypothetical protein SEP1_014 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 41)	95% (96%)	AGR48143.1	
16	12416	13273	858	285	32.27 (4.46)	Hypothetical protein	Hypothetical protein SEP1_015 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (98%)	AGR48144.1	
17	13248	13469	222	73	8.25 (9.31)	Hypothetical protein	Hypothetical protein SEP1_016 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 45)	100% (100%)	AGR48145.1	
18	13489	15273	1785	594	65.59 (4.72)	Major tail sheath	Tail sheath protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48146.1	Phage_sheath_1[pfam04984], Phage tail sheath protein (1.83e-05)
19	15333	15698	366	121	13.53 (9.04)	Hypothetical protein	Hypothetical protein SEP1_018 [Staphylococcus phage phiIBB-SEP1] (6e-	97% (98%)	AGR48147.1	

							148)			
20	16510	17448	939	312	36.68 (9.42)	Hypothetical protein	ORF018 [<i>Staphylococcus</i> phage Twort] (3e- 92)	50% (66%)	YP_238556.1	
21	17505	17639	135	44	5.45 (11.18)	Hypothetical protein	Hypothetical protein SEP1_022 [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e- 19)	93% (95%)	AGR48150.1	
22	17639	18100	462	153	18.17 (9.72)	Hypothetical protein	Hypothetical protein SEP1_023 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 102)	96% (98%)	AGR48151.1	
23	18105	18302	198	65	7.59 (4.55)	Hypothetical protein	Hypothetical protein SEP1_024 [<i>Staphylococcus</i> phage phiIBB-SEP1] (7e- 32)	97% (98%)	AGR48152.1	
24	18368	18661	294	97	11.69 (5.82)	Hypothetical protein	Hypothetical protein SEP1_025 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 60)	100% (100%)	AGR48153.1	
25	18787	19197	411	136	16.00 (4.53)	Hypothetical protein	Hypothetical protein SEP1_026 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 93)	100% (100%)	AGR48154.1	
26	19229	19738	510	169	20.17 (4.03)	Hypothetical tail protein	Hypothetical protein SEP1_027 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 117)	100% (100%)	AGR48155.1	
27	19793	23110	3318	1105	118.12 (10.11)	Tail lysin	Tail lysin [<i>Staphylococcus</i> phage phiIBB- SEP1] (0.0)	99% (99%)	AGR48156.1	SMC_prok_A[TIGR02169], chromosome segregation protein SMC (7.96e-03)
28	23855	24436	582	193	21.17 (9.72)	Glucosaminidase	Tail lysin [<i>Staphylococcus</i> phage phiIBB- SEP1] (6e-131)	100% (100%)	AGR48156.1	Glucosaminidase[pfam01832], Mannosyl- glycoproteinendo-beta-N- acetylglucosaminidase (2.51e-09)
29	24499	25296	798	265	28.59 (9.34)	Lytic transglycosylase	SLT-domain containing protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	AGR48157.1	SLT[pfam01464], Transglycosylase SLT domain (7.70e-06)
30	25353	27959	2607	868	98.03 (5.88)	Amidase	Putative N-acetylmuramoyl-L-alanine amidase [<i>Staphylococcus</i> phage phiIBB- SEP1] (0.0)	99% (100%)	AGR48158.1	CHAP[pfam05257], CHAP domain (1.28e- 21)
31	27974	28882	909	302	35.68 (4.24)	Endopeptidase	Hypothetical protein SEP1_032 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48159.1	IPR000064 Endopeptidase, NLPC/P60 domain(4.1e-05)
32	28885	31038	2154	717	81.76 (4.63)	Chromosome segregation protein	Hypothetical protein SEP1_033 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	98% (99%)	AGR48160.1	PRK01156 chromosome segregation protein (9.17e-05)
33	31059	31727	669	222	24.91 (4.94)	Phage-related replication protein	Hypothetical protein SEP1_034 [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e- 158)	99% (99%)	AGR48161.1	COG4195 Phage-related replication protein (3.31e-47)
34	31841	32638	798	265	26.69 (9.53)	Hypothetical protein	Hypothetical protein SEP1_035 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	AGR48162.1	
35	32638	33162	525	174	20.54 (5.08)	Hypothetical protein	Hypothetical protein SEP1_036 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 120)	100% (100%)	AGR48163.1	
36	33162	33866	705	234	27.13 (4.72)	Baseplate wedge subunit	Baseplate wedge subunit [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e-160)	93% (99%)	AGR48164.1	COG3628[COG3628], Phage baseplate assembly protein W (1.91e-07)

37	33880	34926	1047	348	39.65 (4.69)	Baseplate J protein	Baseplate J protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48165.1	Baseplate_J[pfam04865], Baseplate J-like protein (8.10e-05)
38	34943	37600	2658	885	102.93 (4.63)	Hypothetical protein	Hypothetical protein SEP1_039 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48166.1	
39	37724	38245	522	173	19.41 (5.67)	Baseplate protein	Hypothetical protein SEP1_040 [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e- 123)	99% (99%)	AGR48167.1	Phage-Gp8[pfam09215], Bacteriophage T4, Gp8 (3.48e-03)
40	38266	41721	3456	1151	129.16 (5.29)	Tail protein	Hypothetical protein SEP1_041 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	98% (99%)	AGR48168.1	
41	41781	41933	153	50	5.95 (9.22)	Hypothetical protein	Hypothetical protein SEP1_042 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 16)	94% (98%)	AGR48169.1	
42	41939	43867	1929	642	73.16 (5.06)	Hypothetical protein	Hypothetical protein SEP1_043 [<i>Staphylococcus</i> phage phiIBB-SEP1](0.0)	83% (91%)	AGR48170.1	PHA01818[PHA01818]
43	43880	44272	393	130	15.11 (4.22)	Methyltransferase subunit G	Hypothetical protein SEP1_044 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 76)	95% (96%)	AGR48171.1	DUF2977[pfam11192], Protein of unknown function (DUF2977) (4.56e-06) PRK01026[PRK01026], tetrahydromethanopterin S- methyltransferase subunit G (8.57e-03)
44	44279	45649	1371	456	50.94 (6.50)	Hypothetical protein	Hypothetical protein SEP1_045 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48172.1	PHA01818[PHA01818], Hypothetical protein (3.54e-116)
45	45741	48743	3003	1000	115.97 (7.86)	DNA helicase	ORF006 [StaphylococcusphageTwort] (0.0)	83% (92%)	YP_238583.1	HELICc[cd00079], Helicase superfamily c- terminal domain (7.70e-12) Hint[cd00081], Hedgehog/Intein domain (8.98e-12)
46	48759	50372	1614	537	63.52 (9.26)	Rep protein	Transcriptional regulator [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	98% (99%)	AGR48174.1	IPR011991 Winged helix-turn-helix DNA- binding domain (2.2e-05)
47	50386	51492	1107	368	43.67 (10.47)	Transposase	Transposase [<i>Staphylococcus</i> phage phiIBB- SEP1] (0.0)	80% (91%)	AGR48183.1	OrfB_IS605[pfam01385], Probable transposase (4.42e-10) HTH_OrfB_IS605[pfam12323], Helix-turn- helix domain (1.38e-07) tspaseT_teng_C[TIGR01766], transposase, IS605 OrfB family, central region (1.42e-05)
48	51717	53117	1401	466	53.76 (5.32)	Helicase	DNA helicase [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48175.1	GP4d_helicase[cd01122] (7.91e-06)
49	53189	53494	306	101	11.78 (4.38)	Hypothetical protein	Hypothetical protein SEP1_049 [<i>Staphylococcus</i> phage phiIBB-SEP1] (6e- 63)	100% (100%)	AGR48176.1	
50	53494	54057	564	187	22.133 (5.15)	Hypothetical protein	Hypothetical protein SEP1_050 [Staphylococcus phage phiIBB-SEP1] (2e- 127)	100% (100%)	AGR48177.1	PTZ00211[PTZ00211], ribonucleoside- diphosphate reductase small subunit (2.12e- 03)
51	54057	55091	1035	344	39.78 (4.86)	Exonuclease	DNA repair exonuclease [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48178.1	MPP_Mre11_N[cd00840], Mre11 nuclease, N-terminal metallophosphatase domain (1.35e-24)
52	55169	55558	390	129	15.42 (4.66)	Hypothetical protein	Hypothetical protein KgORF73	81% (93%)	YP_024503.1	PHA02275[PHA02275], Hypothetical

							[Staphylococcus phage K] (2e-70)			protein (1.74e-24)
53	55551	57464	1914	637	73.95 (5.12)	Exonuclease	Putative exonuclease [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	YP_007677555.1	ABC_ATPase[cd00267], ATP-binding cassette transporter nucleotide-binding domain (2.14e-05) ABC_sbcCD[cd03279], ATP-binding cassette domain of sbcCD (1.11e-13)
54	57471	58070	600	199	23.58 (9.51)	Hypothetical protein	Hypothetical protein SEP1_054 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 140)	100% (100%)	AGR48181.1	
55	58082	59137	1056	351	40.53 (7.63)	DNA primase	Primase [<i>Staphylococcus</i> phage phiIBB- SEP1] (0.0)	99% (100%)	AGR48182.1	TOPRIM_DnaG_primases[cd03364], TOPRIM_DnaG_primases (1.69e-09) ZnF_CHCC[smart00400], zinc finger (1.80e-06)
56	59199	59510	312	103	11.92 (3.83)	Hypothetical protein	Hypothetical protein SEP1_057 [<i>Staphylococcus</i> phage phiIBB-SEP1] (6e- 64)	99% (100%)	AGR48184.1	
57	59510	59944	435	144	16.71 (4.69)	Hypothetical protein	Hypothetical protein SEP1_058 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 94)	100% (100%)	AGR48185.1	PHA02277[PHA02277], Hypothetical protein (1.96e-08)
58	59937	60548	612	203	23.51 (4.81)	Resolvase	Hypothetical protein SEP1_059 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 146)	99% (99%)	YP_240945.1	COG1591[COG1591], Holliday junction resolvase - archaeal type [DNA replication, recombination, and repair] (7.68e-05)
59	60566	60964	399	132	15.02 (9.83)	Flavoprotein	FlavoproteinNrdI [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e-90)	100% (100%)	AGR48187.1	Flavodoxin_NdrI[pfam07972], NrdI Flavodoxin like (1.86e-32)
60	60969	62123	1155	384	43.98 (5.13)	Ribonucleotide reductase large subunit	Ribonucleotide reductase large subunit [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48188.1	RNR_I[cd01679], Class I ribonucleotide reductase (2.84e-71) RNR_N[pfam08343], Ribonucleotide reductase N-terminal (6.97e-22)
61	62253	62837	585	194	22.36 (9.95)	Group I intron GIY-YIG homing endonuclease	Group I intron endonuclease [<i>Staphylococcus</i> phage vB_SepS_SEP9] (8e-22)	36% (53%)	AHG24002.1	GIY-YIG_ SegABCDEFG [cd10444], N- terminal catalytic GIY-YIG domain of bacteriophage T4 segABCDEFG gene encoding proteins (1.05e-10)
62	63115	64038	924	307	34.73 (5.85)	Ribonucleotide reductase large subunit	Ribonucleotide reductase large subunit [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	AGR48188.1	RNR_I[cd01679], Class I ribonucleotide reductase (9.03e-72)
63	64053	65099	1047	348	40.76 (4.62)	Ribonucleotide reductase small subunit	Ribonucleotide reductase beta subunit [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48189.1	RNRR2[cd01049], Ribonucleotide Reductase, R2/beta subunit, ferritin-like diiron-binding domain (2.18e-69)
64	65139	65450	312	103	12.11 (4.29)	Hypothetical protein	Hypothetical protein SEP1_063 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 66)	100% (100%)	AGR48190.1	
65	65453	65776	324	107	12.11 (4.08)	Thioredoxin-like	Thioredoxin-like protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (7e-68)	100% (100%)	AGR48192.1	TRX_family[cd02947], TRX family (3.35e- 07)
66	65842	66567	726	241	28.59 (9.06)	Hypothetical protein	Hypothetical protein SEP1_066 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 172)	100% (100%)	AGR48193.1	

67	66576	66875	300	99	11.85 (5.86)	DNA binding protein	DNA-binding protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e-63)	100% (100%)	AGR48194.1	Bac_DNA_binding [pfam00216], Bacterial DNA-binding protein (1.40e-12)
68	66956	69187	2232	743	86.85 (6.10)	DNA polymerase	DNA polymerase [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	AGR48195.1	DNA_polA_I_Ecoli_like_exo [cd06139] (4.46e-15) 35EXOc[smart00474], 3'-5' exonuclease (2.71e-07) UDG_F4_TTUDGA_like [cd10030] (1.17e- 03)
69	69353	70162	810	269	31.39 (10.13)	Group I intron HNH homing endonuclease	HNH endonuclease [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48196.1	NUMOD4 [pfam07463], NUMOD4 motif (5.02e-08)
70	70429	71271	843	280	32.30 (5.32)	DNA polymerase	DNA polymerase [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48195.1	DNA_pol_A_pol_I_C [cd08637] (4.07e-50)
71	71325	71807	483	160	18.75 (5.92)	Hypothetical protein	Hypothetical protein SEP1_071 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 112)	99% (100%)	AGR48197.1	
72	71898	73142	1245	414	47.22 (4.50)	Hypothetical protein	Hypothetical protein SEP1_072 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48198.1	
73	73200	73424	225	74	80.01 (8.66)	Recombination protein	Recombination protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (9e-40)	100% (100%)	AGR48199.1	SSF52540 P-loop containing nucleoside triphosphate hydrolases (2.7e-07)
74	73769	74737	969	322	38.36 (9.53)	Intein DOD homing endonuclease	I-MsaII [<i>Staphylococcus</i> phage MSA6] (0.0)	98% (99%)	AFN38796.1	IPR004042 Intein DOD homing endonuclease (4.4e-07)
75	74885	75805	921	306	34.33 (5.20)	DNA repair protein	Recombination protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	AGR48199.1	recA[cd00983] (2.79e-18)
76	75802	76170	369	122	14.32 (6.37)	Hypothetical protein	Hypothetical protein SEP1_074 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 83)	100% (100%)	AGR48200.1	
77	76151	76807	657	218	26.09 (5.59)	Sigma factor	Putative sigma factor [<i>Staphylococcus</i> phage phiIBB-SEP1] (8e-150)	99% (99%)	AGR48201.1	
78	76883	77227	345	114	13.03 (10.19)	Holin	Holin [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e-70)	100% (100%)	AGR48202.1	Holin_SPP1[TIGR01592], holin, SPP1 family (1.73e-06)
79	77244	77903	660	219	24.89 (4.40)	Hypothetical protein	Hypothetical protein SEP1_078 [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e- 158)	100% (100%)	AGR48203.1	PHA02283[PHA02283], Hypothetical protein (2.59e-80)
80	78011	78271	261	86	10.13 (5.71)	Hypothetical protein	Hypothetical protein SEP1_079 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 54)	98% (100%)	AGR48204.1	
81	78274	79014	741	246	28.97 (5.63)	Hypothetical protein	Hypothetical protein SEP1_080 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 163)	93% (97%)	AGR48205.1	PHA02284[PHA02284], Hypothetical protein (1.81e-21)
82	79017	80282	1266	421	48.18 (5.71)	Mre11 nuclease	Putative metallophosphatase [Staphylococcus phage phiIBB-SEP1] (0.0)	99% (100%)	AGR48206.1	MPP_Mre11_N[cd00840], Mre11 nuclease, N-terminal metallophosphatase domain (2.77e-05)
83	80295	80633	339	112	13.11 (9.37)	Hypothetical protein	Hypothetical protein SEP1_082 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 71)	99% (100%)	AGR48207.1	

84	80698	81237	540	179	20.64 (8.74)	Hypothetical protein	Hypothetical protein SEP1_083 [<i>Staphylococcus</i> phage phiIBB-SEP1] (8e- 125)	100% (100%)	AGR48208.1	
85	81227	81976	750	249	29.45 (9.81)	Hypothetical protein	Hypothetical protein SEP1_084 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48209.1	
86	81969	82382	414	137	16.08 (10.81)	Hypothetical protein	Hypothetical protein SEP1_085 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 93)	99% (100%)	AGR48210.1	
87	82382	83227	846	281	32.40 (5.49)	Hypothetical protein	Hypothetical protein SEP1_086 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	AGR48211.1	
88	83311	83811	501	166	18.97 (4.16)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e-109)	98% (98%)	AGR48212.1	
89	84149	84874	726	241	28.15 (5.15)	Hypothetical protein	Hypothetical protein SEP1_088 [Staphylococcus phage phiIBB-SEP1] (9e- 167)	98% (98%)	AGR48213.1	
90	84899	85387	489	162	19.04 (4.56)	Hypothetical protein	Hypothetical protein SEP1_089 [Staphylococcus phage phiIBB-SEP1] (1e- 111)	100% (100%)	AGR48214.1	
91	85430	85870	441	146	17.33 (9.28)	Hypothetical protein	Hypothetical protein SEP1_090 [<i>Staphylococcus</i> phage phiIBB-SEP1] (7e- 98)	100% (100%)	AGR48215.1	IPR009057 Homeodomain-like(1e-05)
92	85903	86604	702	233	26.97 (4.48)	Hypothetical protein	Hypothetical protein SEP1_091 [<i>Staphylococcus</i> phage phiIBB-SEP1] (8e- 165)	99% (100%)	AGR48216.1	PHA02290[PHA02290], Hypothetical protein (1.56e-17)
93	86669	87052	384	127	14.63 (9.93)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e-69)	90% (98%)	AGR48217.1	PHA02291[PHA02291], Hypothetical protein (1.03e-11)
94	87189	87371	183	60	7.32 (10.34)	Hypothetical protein	Hypothetical protein SEP1_093 [Staphylococcus phage phiIBB-SEP1] (2e- 31)	93%(95%)	AGR48218.1	
95	87364	87645	282	93	10.95 (6.13)	Hypothetical protein	Hypothetical protein SEP1_094 [Staphylococcus phage phiIBB-SEP1] (5e- 58)	96% (100%)	AGR48219.1	
96	87642	87995	354	117	13.95 (10.08)	Hypothetical protein	Hypothetical protein SEP1_096 [<i>Staphylococcus</i> phage phiIBB-SEP1] (9e- 28)	96% (100%)	AGR48221.1	
97	87995	88495	501	166	19.42 (5.64)	Hypothetical protein	Hypothetical protein SEP1_097 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 113)	100% (100%)	AGR48222.1	
98	88499	88822	324	107	12.20 (4.52)	Hypothetical protein	Hypothetical protein SEP1_098 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 63)	95% (96%)	AGR48223.1	
99	88915	89475	561	186	22.05 (9.82)	Hypothetical protein	Hypothetical protein SEP1_099 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 123)	96% (97%)	AGR48224.1	
100	89529	89876	348	115	13.20 (10.06)	Membrane protein	Membrane protein [Staphylococcus phage	71% (80%)	AGR48225.1	

							phiIBB-SEP1] (4e-48)			
101	89890	90117	228	75	8.69 (4.43)	Hypothetical protein	Hypothetical protein SEP1_101 [<i>Staphylococcus</i> phage phiIBB-SEP1] (7e- 46)	100% (100%)	AGR48226.1	
102	90135	92471	2337	778	92.03 (6.24)	RNA ligase	Hypothetical protein SEP1_102 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	99% (99%)	AGR48227.1	RNA_lig_T4_1[pfam09511], RNA ligase (2.26e-38) MPP_PPP_family[cd00144], phosphoprotein phosphatases of the metallophosphatase superfamily (5.91e-15) AAA_33[pfam13671], AAA domain (1.49e- 23)
103	92669	92812	144	47	5.49 (4.71)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (9e-10)	96% (95%)	AGR48228.1	
104	92815	93621	807	268	29.79 (9.08)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	100% (100%)	AGR48229.1	Band_7[pfam01145], SPFH domain / Band 7 family (1.80e-26)
105	93740	93928	189	62	6.76 (4.65)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e-29)	100% (100%)	AGR48230.1	
106	93943	94119	177	58	6.89 (4.83)	Hypothetical protein	Hypothetical protein SEP1_106 [<i>Staphylococcus</i> phage phiIBB-SEP1] (7e- 30)	98% (98%)	AGR48231.1	
107	94135	94644	510	169	19.96 (9.90)	Hypothetical protein	Hypothetical protein SEP1_107 [<i>Staphylococcus</i> phage phiIBB-SEP1] (8e- 116)	98% (99%)	AGR48232.1	
108	94698	95807	1110	369	43.41 (7.99)	Hypothetical protein				
109	95883	96077	195	64	7.78 (10.02)	Hypothetical protein	Hypothetical protein PhageK_209 [<i>Staphylococcus</i> phage K] (0.38)	50% (78%)	AHB80124.1	
110	96110	96619	510	169	20.24 (5.16)	Hypothetical protein				
111	96649	96816	168	55	6.14 (4.43)	Hypothetical protein				
112	96951	97259	309	102	11.85 (5.51)	Hypothetical protein				
113	97286	97447	162	53	6.32 (5.02)	Hypothetical protein	Hypothetical protein PhageK_209 [<i>Staphylococcus</i> phage K] (4e-06)	46% (72%)	AHB80124.1	UPF0182[pfam03699], Uncharacterized protein family (UPF0182) (6.06e-03)
114	97463	97969	507	168	19.72 (4.44)	Hypothetical protein	Hypothetical protein [Paenibacilluspolymyxa] (1e-11)	28% (53%)	WP_019687640.1	
115	97996	98232	237	78	9.16 (4.65)	Hypothetical protein	Hypothetical protein IPLA7_0054 [<i>Staphylococcus</i> phage vB_SepiS-phiIPLA7] (1e-44)	91% (93%)	YP_006561216.1	
116	98256	98666	411	136	15.76 (8.46)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage vB_SepS_SEP9] (9e-52)	89% (90%)	YP_009007710.1	
117	98672	99208	537	178	21.08 (4.92)	Hypothetical protein	Hypothetical protein SEP1_108 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 109)	87% (94%)	AGR48234.1	
118	99224	99424	201	66	7.82 (5.14)	Hypothetical protein	Hypothetical protein SEP1_109 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 39)	100% (100%)	AGR48235.1	
119	99450	99707	258	85	9.89 (5.53)	Hypothetical protein	Hypothetical protein SEP1_110	99% (100%)	AGR48236.1	

							[<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 53)			
120	99709	100209	501	166	19.28 (5.92)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e-106)	97% (98%)	AGR48237.1	
121	100220	100609	390	129	14.38 (5.51)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage vB_SepS_SEP9] (3e-53)	73% (87%)	YP_009007709.1	
122	100699	101094	396	131	15.57 (4.47)	YopX	Phage conserved Hypothetical protein TIGR01671 [<i>Staphylococcus epidermidis</i>] (5e-44)	64% (72%)	WP_002504181.1	YopX [pfam09643], YopXprotein (4.94e- 24)
123	101095	101412	318	105	12.29 (5.03)	Hypothetical protein	Hypothetical protein, partial [Staphylococcus aureus] (1e-23)	54% (73%)	WP_000193480.1	
124	101502	101795	294	97	11.31 (5.02)	Hypothetical protein	Hypothetical protein SEP1_112 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 62)	98% (97%)	AGR48238.1	
125	101816	102034	219	72	8.61 (4.28)	Hypothetical protein	Hypothetical protein SEP1_113 [<i>Staphylococcus</i> phage phiIBB-SEP1] (8e- 40)	96% (97%)	AGR48239.1	
126	102038	102253	216	71	8.35 (4.42)	Hypothetical protein	Hypothetical protein SEP1_114 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 43)	100% (100%)	AGR48240.1	
127	102297	102650	354	117	13.28 (4.85)	Hypothetical protein	Hypothetical protein SEP1_115 [<i>Staphylococcus</i> phage phiIBB-SEP1] (9e- 80)	99% (100%)	AGR48241.1	
128	102679	103077	399	132	15.19 (4.88)	Hypothetical protein	Hypothetical protein SEP1_116 [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e- 91)	99% (99%)	AGR48242.1	
129	103131	103334	204	67	8.10 (9.83)	Hypothetical protein	Hypothetical protein [<i>Staphylococcus</i> epidermidis] (2e-39)	99% (100%)	WP_002469455.1	
130	103346	103615	270	89	10.61 (5.73)	Hypothetical protein	Hypothetical protein SEP9_088 [<i>Staphylococcus</i> phage vB_SepS_SEP9] (4e-49)	91% (95%)	YP_009007756.1	
131	103627	104040	414	137	16.00 (4.65)	Hypothetical protein	Hypothetical protein SEP1_120 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 77)	85% (94%)	AGR48246.1	
132	104272	104673	402	133	16.02 (9.87)	Hypothetical protein				
133	104686	104886	201	66	7.63 (9.20)	Hypothetical protein	Hypothetical protein SEP9_038 [<i>Staphylococcus</i> phage vB_SepS_SEP9] (2e-34)	92% (98%)	YP_009007708.1	
134	104918	105334	417	138	16.42 (4.50)	Hypothetical protein	Hypothetical protein SEP1_122 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 90)	97% (98%)	AGR48248.1	
135	105337	105573	237	78	9.31 (4.19)	Hypothetical protein	Hypothetical protein SEP1_123 [<i>Staphylococcus</i> phage phiIBB-SEP1] (9e- 47)	99% (100%)	AGR48249.1	
136	105589	106032	444	147	17.63 (9.81)	Hypothetical protein	Hypothetical protein SEP1_124	88% (93%)	AGR48250.1	

							[<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 87)			
137	106051	106389	339	112	13.04 (4.58)	Hypothetical protein				
138	106410	106853	444	147	17.46 (5.39)	Hypothetical protein	Hypothetical protein SEP1_126 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 88)	90% (94%)	AGR48252.1	
139	106867	107259	393	130	15.53 (7.32)	Hypothetical protein				
140	108656	108390	267	88	10.26 (4.14)	Hypothetical protein	Hypothetical protein SEP1_131 [<i>Staphylococcus</i> phage phiIBB-SEP1 (3e- 52)	98%/98%	AGR48257.1	
141	108935	108675	261	86	9.87 (4.09)	Hypothetical protein	Hypothetical protein SEP1_132 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 52)	100% (100%)	AGR48258.1	
142	109349	109011	339	112	13.50 (4.21)	Hypothetical protein	Hypothetical protein SEP1_133 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 54)	84% (84%)	AGR48259.1	
143	109491	110165	675	224	25.45 (4.54)	Pentapeptide repeat protein	Pentapeptide repeat protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e-140)	92% (92%)	AGR48263.1	IPR001646 Pentapeptide repeat (3.3e-08)
144	110252	110596	345	114	13.53 (5.08)	Hypothetical protein	Hypothetical protein SEP1_137 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 71)	98% (100%)	AGR48264.1	
145	110738	111073	336	111	13.30 (8.88)	Hypothetical protein	Hypothetical protein SEP1_138 [<i>Staphylococcus</i> phage phiIBB-SEP1 (1e- 69)	100% (100%)	AGR48265.1	
146	111098	111298	201	66	7.84 (4.51)	Hypothetical protein	Hypothetical protein SEP1_139 [<i>Staphylococcus</i> phage phiIBB-SEP1 (1e- 35)	100% (100%)	AGR48266.1	
147	112349	112149	201	66	7.83 (10.58)	Hypothetical protein	Hypothetical protein SEP1_142 [<i>Staphylococcus</i> phage phiIBB-SEP1 (1e- 32)	98% (100%)	AGR48269.1	
148	112603	112382	222	73	8.62 (5.04)	Hypothetical protein	Hypothetical protein SEP1_143 [<i>Staphylococcus</i> phage phiIBB-SEP1 (9e- 47)	100% (100%)	AGR48270.1	
149	113189	113497	309	102	11.71 (5.08)	Hypothetical protein	Hypothetical protein SEP1_144 [<i>Staphylococcus</i> phage phiIBB-SEP1 (7e- 67)	100% (100%)	AGR48271.1	
150	113700	113981	282	93	10.92 (5.73)	TreK	Hypothetical protein SEP1_145 [<i>Staphylococcus</i> phage phiIBB-SEP1] (9e- 51)	90% (91%)	AGR48272.1	
151	114031	114303	273	90	10.47 (4.35)	Hypothetical protein				
152	114979	115110	132	43	5.09 (10.36)	TreO	Hypothetical protein SEP1_146 [<i>Staphylococcus</i> phage phiIBB-SEP1 (1e- 20)	98% (100%)	AGR48273.1	
153	115176	115316	141	46	5.61 (4.53)	Hypothetical protein	Hypothetical protein SEP1_147 [<i>Staphylococcus</i> phage phiIBB-SEP1 (5e-	100% (100%)	AGR48274.1	

							19)			
154	115396	115635	240	79	9.13 (7.96)	Hypothetical protein	Hypothetical protein SEP1_148 [<i>Staphylococcus</i> phage phiIBB-SEP1 (2e- 49)	100% (100%)	AGR48275.1	
155	115639	115785	147	48	5.42 (9.61)	TreN	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e-23)	100% (100%)	AGR48276.1	
156	115953	116282	330	109	13.11 (3.70)	Hypothetical protein	Hypothetical protein SEP1_151 [<i>Staphylococcus</i> phage phiIBB-SEP1 (7e- 66)	96% (97%)	AGR48278.1	
157	116456	116719	264	87	10.46 (4.12)	Tre protein	Hypothetical protein SEP1_152 [<i>Staphylococcus</i> phage phiIBB-SEP1 (1e- 52)	100% (100%)	AGR48279.1	
158	116791	117264	474	157	18.53 (3.60)	Hypothetical protein	Hypothetical protein SEP1_153 [<i>Staphylococcus</i> phage phiIBB-SEP1 (2e- 102)	99% (98%)	AGR48280	
159	117376	117645	270	89	10.44 (4.94)	Hypothetical protein				
160	117704	117841	138	45	5.18 (4.32)	Hypothetical protein	Hypothetical protein SEP1_154 [<i>Staphylococcus</i> phage phiIBB-SEP1] (7e- 19)	91%(95%)	AGR48281.1	
161	117911	118189	279	92	11.18 (3.87)	Hypothetical protein	Hypothetical protein SEP1_155 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 31)	93% (96%)	AGR48282.1	
162	118527	119954	1428	475	56.41 (9.26)	Hypothetical protein	Hypothetical protein SEP1_156 [<i>Staphylococcus</i> phage phiIBB-SEP1] (0.0)	98% (98%)	YP_007005520.1	
163	120441	120013	429	142	16.49 (4.18)	Hypothetical protein	ORF062 [<i>Staphylococcus</i> phage Twort] (4e- 11)	31% (56%)	YP_238669.1	
164	121022	120516	507	168	20.44 (4.76)	Hypothetical protein	Hypothetical protein SEP1_157 [<i>Staphylococcus</i> phage phiIBB-SEP1 (5e- 103)	99% (100%)	AGR48284.1	
165	121335	121081	255	84	10.34 (4.59)	BofL	Hypothetical protein SEP1_158 [<i>Staphylococcus</i> phage phiIBB-SEP1 (1e- 51)	99% (98%)	AGR48285.1	
166	121922	121338	585	194	23.29 (4.81)	Hypothetical protein	Hypothetical protein SEP1_159 [<i>Staphylococcus</i> phage phiIBB-SEP1 (1e- 129)	98% (98%)	AGR48286.1	
167	122270	121962	309	102	12.19 (8.65)	Hypothetical protein	Hypothetical protein SEP1_161 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 66)	97% (98%)	AGR48288.1	
168	122721	122359	363	120	14.19 (5.06)	Staphylococcal nuclease	Nuclease [<i>Staphylococcus</i> phage phiIBB- SEP1] (2e-81)	100% (100%)	AGR48289.1	Staphylococcal nuclease homologues (1.40e- 16)
169	123080	122802	279	92	9.67 (4.03)	Tail protein	Hypothetical protein SEP1_163 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 57)	100% (100%)	AGR48290.1	
170	124126	123548	579	192	22.38 (4.63)	Hypothetical protein	Hypothetical protein SEP1_164 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e-	100% (100%)	AGR48291.1	

							136)			
171	124487	124146	342	113	26.48 (10.25)	Tail protein	Hypothetical protein SEP1_165 [<i>Staphylococcus</i> phage phiIBB-SEP1] (8e- 74)	100% (100%)	AGR48292.1	
172	125186	124503	684	227	15.62 (10.16)	GIY-YIG homing endonuclease	Intron-associated endonuclease [<i>Staphylococcus</i> phage vB_SepS_SEP9] (2e-22)	41% (61%)	YP_009007670.1	SSF82771 GIY-YIG endonuclease (1.5e-11)
173	125347	125186	162	53	6.39 (10.63)	Resolvase	Resolvase [Lactobacillusequi] (3e-15)	66% (86%)	WP_023859949.1	IPR000551 MerR-type HTH domain (1.3e- 10)
174	126136	125474	663	220	23.67 (6.27)	Transglycosylase	Transglycosylase-like domain protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 155)	97% (98%)	AGR48293.1	IPR008258 Lytic transglycosylase-like SLT domain (1.1e-07)
175	126411	126259	153	50	5.86 (5.76)	RinB	Transcriptional activator RinB [<i>Staphylococcus</i> phage phiIBB-SEP1] (9e- 22)	90% (94%)	AGR48294.1	
176	126732	126415	318	105	12.50 (5.69)	Hypothetical protein	Hypothetical protein SEP1_168 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 63)	93% (97%)	AGR48295.1	
177	127141	126725	417	138	16.24 (5.13)	Hypothetical protein	Hypothetical protein SEP1_169 [<i>Staphylococcus</i> phage phiIBB-SEP1] (4e- 91)	99% (100%)	AGR48296.1	IPR021739 Bacteriophage T7, Gp1.7 (1.8e- 08)
178	127566	127264	303	100	10.99 (4.68)	NTP pyrophosphohydrolase	Pyrophosphatase [Solibacillus silvestris StLB046] (8e-39)	67% (82%)	YP_006461979.1	IPR004518 NTP pyrophosphohydrolase MazG, putative catalytic core (1.5e-07)
179	127780	127613	168	55	6.57 (4.99)	Hypothetical protein	Hypothetical protein SEP1_172 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 29)	96% (100%)	AGR48299.1	
180	128169	127903	267	88	9.95 (5.13)	Hypothetical protein	Hypothetical protein SEP1_173 [<i>Staphylococcus</i> phage phiIBB-SEP1] (6e- 41)	94% (98%)	AGR48300.1	
181	128785	128150	636	211	23.63 (9.63)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e-138)	97% (99%)	AGR48301.1	
182	129158	128856	303	100	11.25 (9.15)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e-59)	93% (97%)	AGR48302.1	
183	129777	129160	618	205	23.37 (4.21)	Nucleoside-2- deoxyribosyltransferase	nucleoside 2-deoxyribosyltransferase [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 80)	63% (74%)	AGR48303.1	IPR007710 Nucleoside 2- deoxyribosyltransferase (2.8e-16)
184	130051	129791	261	86	9.84 (10.13)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (7e-34)	69% (79%)	AGR48305.1	
185	130308	130066	243	80	9.73 (6.74)	Hypothetical protein	Hypothetical protein SEP9_060 [<i>Staphylococcus</i> phage vB_SepS_SEP9] (6e-47)	98% (100%)	YP_009007729.1	
186	131139	130363	777	258	31.03 (9.86)	HNH homing endonuclease	HNH endonuclease [<i>Staphylococcus</i> phage vB_SepS_SEP9] (3e-179)	97% (98%)	YP_009007730.1	HNH_3[pfam13392], HNH endonuclease (7.35e-03)
187	131879	131151	729	242	27.83 (5.29)	PhoH-related protein	PhoH-related protein [<i>Staphylococcus</i> phage vB_SepS_SEP9] (1e-169)	94% (97%)	YP_009007731.1	IPR003714 PhoH-like protein (2.3e-25)

188	132419	131907	513	170	19.55 (4.63)	Hypothetical protein	Hypothetical protein SEP1_181 [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e- 114)	99% (99%)	AGR48308.1	
189	132850	132434	417	138	15.81 (8.99)	Ribonuclease H	Ribonuclease H [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e-94)	100% (100%)	AGR48309.1	RNase_HI_bacteria_HBD[cd09277], Bacterial RNase HI containing a hybrid binding domain (HBD) at the N-terminus (2.36e-41)
190	133028	132840	189	62	7.33 (9.16)	Hypothetical protein	Hypothetical protein SEP1_183 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 35)	100% (100%)	AGR48310.1	
191	133647	133051	597	198	22.72 (4.11)	Hypothetical protein	Hypothetical protein SEP1_184 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 129)	99% (98%)	AGR48311.1	
192	133861	133640	222	73	8.70 (5.38)	Transcriptional regulator	Putative transcriptional regulator [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 41)	99% (98%)	AGR48312.1	IPR001387 Cro/C1-type helix-turn-helix domain (3.8e-13)
193	134092	133871	222	73	8.80 (10.41)	Hypothetical protein	Hypothetical protein SEP1_186 [<i>Staphylococcus</i> phage phiIBB-SEP1] (5e- 33)	97% (100%)	AGR48313.1	
194	135717	134263	1455	484	55.01 (9.78)	Endolysin	Endolysin [<i>Staphylococcus</i> phage phiIBB- SEP1] (0.0)	99% (99%)	AGR48314.1	Amidase_2[pfam01510], N- acetylmuramoyl-L-alanineamidase (1.68e- 14) CHAP[pfam05257], CHAP domain (2.70e- 24) H3_5[pfam08460], Bacterial SH3 domain (1.01e-10)
195	136280	135720	561	186	20.03 (4.27)	Holin	Holin [<i>Staphylococcus</i> phage phiIBB-SEP1] (8e-128)	99% (100%)	AGR48316	Phage_holin_1[pfam04531], Bacteriophage holin (1.18e-19)
196	136958	136593	366	121	14.08 (9.98)	Hypothetical protein	Hypothetical protein SEP9_085 [<i>Staphylococcus</i> phage vB_SepS_SEP9] (3e-59)	77% (89%)	YP_009007753.1	
197	138169	137948	222	73	9.02 (10.09)	Hypothetical protein	Hypothetical protein SEP1_194 [<i>Staphylococcus</i> phage phiIBB-SEP1] (1e- 45)	99% (100%)	AGR48320.1	
198	138833	138624	210	69	78.97 (7.74)	Hypothetical protein	Hypothetical protein SEP1_196 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 41)	100% (100%)	AGR48322.1	
199	139176	138844	333	110	12.82 (4.73)	Hypothetical protein	Hypothetical protein SEP1_197 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 67)	99% (100%)	AGR48323.1	
200	139513	139187	327	108	12.72 (6.51)	Hypothetical protein	Hypothetical protein SEP1_198 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 67)	98% (99%)	AGR48324.1	
201	139924	140283	360	119	13.97 (5.42)	Membrane protein	Membrane protein [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e-75)	99% (100%)	AGR48326.1	

202	140264	140527	264	87	10.01 (10.19)	Membrane protein	Hypothetical protein SEP1_200 [<i>Staphylococcus</i> phage phiIBB-SEP1] (2e- 55)	99% (100%)	AGR48327.1	
203	140532	140951	420	139	15.67 (4.08)	Hypothetical protein	Hypothetical protein SEP1_201 [<i>Staphylococcus</i> phage phiIBB-SEP1] (3e- 92)	99% (100%)	AGR48328.1	

Table S2: Features of bacteriophage phiIPLA-C1C orfs, gene products (gp) and functional assignments.

Promoter	Strand	Sequence	Nt position	Spacer	TG	Gene
phiIPLA-	RODI		<u> </u>			
P1	_	ТТGACATTCTAATTAATATCCTTTATACT	1964-1992	17	_	Orf5
P2	_	TTGACTTTTTTTACTAAGTATGGTAAGAT	6909-6937	17	+	Orf16
P3	_		11380-11408	17	+	Orf25
20		TTGACAAAATAGAAAAAGTAGTGTATAGT	11000 11100	- /		01120
P4	-		15732-15760	17	-	Orf33
		ТТБАСАААТБААААТАСТТБТАТТАТААТ				
P5	_	TTGACAAATATGACTTACTATGATATGAT	19495-19523	17	+	Orf39
P6	_		22318-22346	17	+	Orf45
		TTGACAAACCTCCTTAGTTATGGTATACT			-	
P7	_	TTGACTTCATAAGTTAACTATGCTATAAT	25531-25559	17	+	Orf52
P8	_		27631-27659	17	+	Orf55
		ТТБАСААААТТАААТАСАТАБТБТАТАБТ			-	
P9	_	TTGACTTATTTATCAATATAGTATATAGT	32469-32497	17	_	Orf60
P10*	+	TTGACCTATTATTTCTAGAACTTTTAGATT	34122-34151	18	-	Orf64
P11	+	TTGACAAATTAAAACTAATAAATTATAAT	55708-55736	17	_	Orf91
P12	+	TTGACAGAAAGTTAATAATATGGTATACT	73596-73624	17	+	Orf103
P13	+	TTGACTTAGGGAGCATTATGTGGTATACT	81631-81659	17	+	Orf109
P14	+	TTGACATTTTATATGTTAGGTGGTATAAT	86518-86546	17	+	Orf112
P15	+	TTGACAAGATTTAAAATATATGGTATAGT	98834-98862	17	+	Orf128
P16	+	TTGACAATATGTTTAACTTATGTTATACT	102120-102148	17	+	Orf120
P17	· +	TTGACAAATATAAAAAACTATGTTATAAT	102120 102140	17	+	Orf131
P18	· +	TTGACAAGAACAAATAAGTGTAGTATAGT	118027-118055	17	-	Orf154
P10	т -	TTGACAAATCATTTTATATAGTGTATAGT	118747-118775	17		Orf157
$\frac{1}{P20}$	т -	TTGACACTTCTAAACTTTTGTATTATACT	121451-121479	17		Orf165
$\frac{120}{D21}$	T L	TTGACAAATGAGTGTGCATAGGTTATACT	121451-121475	17	_	Orf168
$\frac{121}{D22}$	T L	TTGACAAAGGGAGTTTTTTATTGTATAGT	122409-122497	17	-	Orf175
1 22 D23	т -	TTACATTAGTAAGTAATATGGTAATATT	120337-120383	19	т	Orf177
<u>r 23</u> D24	+ -		12/212-12/241	10	-	Orf191
<u>F 24</u> D25	+		120429-120437	17	-	OII101 Orf192
<u>F 23</u> D26	+		129202-129230	17	-	OII165 Orf197
<u>F20</u> D27	+	TTCACATACATACACTATATACTATACTATACT	121544 121572	17	-	OII107 Orf199
	+		131344-131372	17	-	OII100 Orf102
P20*	+	$\frac{110ACA}{A}$	133272-133300	17	+	On192
P29* D20	-	TTCACTTTATTATCATATCCTACTAATAT	137034-137082	17	-	011202
P30 D21	+	TTCACI CATACATACOTACITATAT	13/1//-13/203	17	-	011205
	+	TTGACATTA ACACCCA ATTATTATATA AT	13/08/-13//13	17	+	Or1204
P32 D22	-	$\frac{11GACA}{TTATTATTTATTTATTATTATTATTATTATTATTATTAT$	139300-139388	17	-	Ori200
P33 D24	+		139434-139302	17	-	Ori207
P34	+		139655-139683	17	+	Orf208
г ээ р <u>э</u> е	+	$\frac{110ACA}{01CA} = \frac{110ACA}{01CA} = \frac{100A}{00} = 100A$	139909-139997	17	+	Orf210
r 30 D27	+	$\frac{110AUI}{100} 100A0UUIA0UA1011A11A1}$	1405/5-140401	17	+	On210
r37	+		141244-141272	17	+	
P38	+	TTCACATTTACCCCCTTACATCATATAT	141/28-141/56	17	+	Orf212
P39	+	<u>IIGACA</u> IIIAGCCCCCIIAGAIGI <u>IAIIAI</u>	1419/2-142000	17	÷	Orf213
P40	+	<u>ITGACA</u> TCCTAGCAAATAGATGG <u>TAATAT</u>	142290-142318	17	+	Orfl
philPLA-	CIC		b72 2 0 0	4.6		0.00
P1*	+	IIGACAAAATAATAATATATGA <u>TATAAT</u>	372-399	16	+	Ort2
P2	+	IIGACAACCATCAAGGGTTAAAT <u>TATAAT</u>	1/452-1/480	17	-	Ort21
P3	+	ITGACAAACTAATAAAGAGAAGA <u>TATAAT</u>	18306-18334	17	-	Ort24
P4	+	ITGACITATTAAAAGTTAAGTGG <u>TATAAT</u>	53130-53158	17	+	Ort49
P5	+	<u>IITGACT</u> TATCAAAAGTTAAGTGG <u>TATAAT</u>	55110-55138	17	+	Orf52
P6*	+	<u>ITGACA</u> AACTATATCTATTTATGA <u>TATAGT</u>	71274-71303	18	+	Orf71
P7*	+	<u>ITGACA</u> AATATATACATATATGT <u>TATAGT</u>	77949-77975	17	+	Orf80
P8*	+	<u>ITGACA</u> AAAAAGTTATTATAGTT <u>TATAGT</u>	89480-89508	17	-	Orf100
P9	+	<u>TTGACA</u> GGGGTCTTTTTTTTTATGT <u>TATAGT</u>	93681-93710	18	+	Orf105

<mark>P10</mark>	+	<u>TTGACA</u> CTGGGTGTTTTTTGTTA <u>TATACT</u>	95823-95851	17	-	Orf109
<mark>P11</mark>	+	<u>TTGACA</u> ACTGTATAAATATAGTG <u>TATATT</u>	104207-104235	17	_	Orf132
<mark>P12</mark>	-	<u>TTGACA</u> GGAGGTCTTTTCTATGA <u>TATACT</u>	108967-108995	17	+	Orf141
<mark>P13</mark>	-	<u>TTGACA</u> ACTAATATTACTTATGC <u>TATAAT</u>	109378-109406	17	+	Orf142
<mark>P14*</mark>	-	<u>TTGACT</u> ATTGCTTTTTAATGCAGAT <u>TAATAT</u>	112897-112927	19	-	Orf148
<mark>P15</mark>	+	<u>TTGACA</u> CCTTATAAGAAACATGT <u>TAATAT</u>	113600-113628	17	+	Orf150
<mark>P16</mark>	+	<u>TTGACA</u> ATATTATATATAAAAATGC <u>TATAAT</u>	114425-114454	18	+	Orf152
<mark>P17</mark>	+	<u>TTGACA</u> ACTTAAACACAACATGT <u>TATTAT</u>	115114-115142	17	+	Orf153
<mark>P18</mark>	+	<u>TTGACA</u> ATCAACCCCTACACATGT <u>TATTAT</u>	115333-115362	18	+	Orf154
<mark>P19</mark>	+	<u>TTGACA</u> ATCTCTTCACTATTTGA <u>TATTAT</u>	115788-115816	17	+	Orf156
<mark>P20</mark>	+	<u>TTGACA</u> GTAATTTGAAACTATGA <u>TAATAT</u>	116298-116326	17	+	Orf157
<mark>P21</mark>	+	<u>TTGACA</u> ACGTAACTAGAACATGA <u>TATTAT</u>	116730-116758	17	+	Orf158
<mark>P22</mark>	+	<u>TTGACA</u> GTTTCTATGTTATAATGT <u>TATAAT</u>	117850-117879	18	+	Orf161
<mark>P23</mark>	-	<u>TTGACA</u> GATAAAGTTATCTATGG <u>TATACT</u>	122302-122330	17	+	Orf167
<mark>P24</mark>	-	<u>TTGACA</u> AAAATGAATAGCTATGG <u>TATACT</u>	127601-127629	17	+	Orf178
<mark>P25</mark>	-	<u>TTGACA</u> ACTTAAGTAGTAAATGT <u>TATAAT</u>	127855-127883	17	+	Orf179
<mark>P26</mark>	-	<u>TTGACT</u> TTTAAGTTTATATGTGT <u>TATAAT</u>	134125-134153	17	+	Orf193
P27	-	<u>TTGACA</u> TTTATCAAAAATAAGAT <u>TATAAT</u>	138211-138239	17	+	Orf197

Table S3: Putative promoters of phages phiIPLA-RODI and phiIPLA-C1C. -10 and -35 boxes are underlined. Nucleotide positions and presence of the TG dinucleotide were also indicated. * Promoters without AT-rich upstream sequences.

Terminator	Strand	Sequence (5'-3')	Nt position	Stem lenght	ΔG	After
phiIPLA-R	ODI			itingiti		gene
T1	+	GUUUAGACUAAGAGGGAAUAAAAUCCCUCUUUUAUUUUA	1304-1344	18	-9.8	Orf4
T2	-	UGAACUAGUUGGAGGGGGGGGGGGGGGGGGGGGGGGGGG	1608-1649	19	-8.4	Orf5
Т3	-	UUAAAUGAUAAACACCUAU UAAAUUA AUAGGUGUUUUUUUUUUUAUUGACU	6932-6978	23	-8.6	Orf17
T4	-	AUUAAUUCUUAGGCUACUUUAAUUAGUAGCCUUUUUUUUU	11405-11447	20	-11.2	Orf26
T5	-	UAGGUACAGAAGCAGACUUUUAAAUAAGUCUGCUUUUCUCUUAUAU	12171-12215	21	-11.8	Orf28
T6	-	CUUUCCUUUUU <u>CACCUUGCUUGUAUCCAAGCAGGGUG</u> UUUUUUUAUAUA	16604-16652	26	-11.7	Orf36
T7	-	AUAUUGACAAACCUCCUUAGUUAUGGUAUACUUACUUUAUAAUAACUAAGGAGGaUUUUUUUUAUGAAU	22282-22349	43	-10.6	Orf46
Т8	-	UAAUAUAUUAA <u>GACUAAGAUUAAUUUCUUAGUC</u> UUUUUUGUAUAUU	25564-25609	22	-10.5	Orf53
Т9	-	AAUAAUAAAUUAGAGAGGUUAAUACCUCUCUUUUUUUUUU	26457-26501	20	-11.6	Orf54
T10	-	AAUAGUAAUUU <u>AGACGGAUUUUAAAUCCGUCU</u> aUUUUUUUGCAAA	27666-27711	21	-11	Orf56
T11	+	AUAAAACUGAA <u>GAGGAGUAAUUACUCCUC</u> UUUUUUGUUUGC	40917-40957	18	-10.8	Orf72
T12	+	AUUAAUUAAUA <u>AGCCUAGAAUAAAUCUAGGCU</u> UUGUUUAUUUUUU	43443-43487	21	-11.3	Orf75
T13	+	ACAAGAGAAUA <u>GGGAUAAACUUAGGGUUUAUCCC</u> UUUUUUAUUAAAA	46911-46957	23	-10.2	Orf78
T14	+	UUUCUUAUUAA <u>GACCUAACAAUAAAAGUUAGGUC</u> UUUUUUUUUUAUUGA	53676-53721	23	-11.4	Orf86
T15	+	GUAUAUGUAAA <u>GGGUGGUAGGUGAUACUACCAUCC</u> UUAUUUUUUAA	57242-57288	24	-12.1	Orf93
T16	+	UUUAAUAUUAA <u>AGACCUAUUAAUUUAGGUCU</u> UUUUUUAGUUGUA	67310-67353	20	-9	Orf97
T17	+	UGAAUAAACUA <u>GAGGGGUUGAUUGACCCCUC</u> UUUAUUUAAUAA	77692-77734	20	-14.4	Orf104
T18	+	AAUAUGCCAUA <u>GACUAGGAAACUUAUCCUAGUC</u> UUUUUUUUUUGA	81590-81634	22	-12.1	Orf108
T19	+	GACUUAAUGAA <u>GAAGAGAAAUAAUUCUCUUC</u> UUUUUUUUUUUGACA	98795-98839	20	-9.3	Orf127
T20	+	UAUAAGAUAUA <u>GAGUGCCUUAGAGCACUC</u> UUUUAUUUGAGA	104276-104316	18	-9.2	Orf131
T21	+	GUAAAAGAAUC <u>UUUGGGGAAUGCAAAUUCCUCAGA</u> UGUUCUUCCUUU	105633-105679	24	-8.2	Orf132
T22	+	AUAAUAAUUAA <u>GACCAACUAAAAAGUUGGUC</u> UUUUUUUUUUAUUGA	108136-108178	20	-11.5	Orf137
T23	+	GAUUUCUUAUA <u>GAGUCAAGUCUUUACUUGACUC</u> UUUUUACUAUAU	111166-111210	22	-12.1	Orf142
T24	+	GAACAGUGAUU <u>GAGUCAAGUUAAUUCUUGACUC</u> UCUUUUUGUUUU	117159-117203	22	-11.5	Orf151
T25	+	AUAAAUCUUAA <u>ACUCCCUAUUGACAAAGGGAGU</u> UUUUUAUUGUAUA	126538-126583	22	-10.2	Orf174
T26	+	AAAAACUUUGA <u>CUCUAUCUAUUGACAUGGAUAGAG</u> UUUUACUAUAUA	131524-131570	24	-9.5	Orf187
T27	+	AAAAAUAAAUA <u>CACUAGGAUAUUAUUCCUAGUG</u> UAUUAUAUAUU	136582-136626	22	-12.3	Orf201
T28	-	AAUUAUAUAAU <u>ACACUAGGAAUAAUAUCCUAGUGU</u> aUUUAUUUUUGCGG	136578-136626	24	-12.2	Orf202
T29	+	AAUUAUACAAU <u>UCCCUAGGAUUAAAUUCCUAGGGA</u> UUUUUAUUUGUU	138352-138398	24	-14.6	Orf205
T30	-	ACAAAUAAAAA <u>UCCCUAGGAAUUUAAUCCUAGGGA</u> aUUGUAUAAUUUUU	138349-138397	24	-14.9	Orf206
T31	+	AAAAAUUAAAA <u>UAAGGGGUUGACAUUUAGCCCCUUA</u> gaUGUUAUUAUUAA	141954-142003	25	-11.5	Orf213
T32	+	AUAAAUCUUAA <u>ACUCCCUAUUGACAAAGGGAGU</u> UUUUUAUUGUAUA	126538-126583	22	-10.2	Orf174

T33	+	AAAAACUUUGA <u>CUCUAUCUAUUGACAUGGAUAGAG</u> UUUUACUAUAUA	131524-131570	24	-9.5	Orf187
T34	+	AAAAAUAAAUA <u>CACUAGGAUAUUAUUCCUAGUG</u> UAUUAUAUAUU	136582-136626	22	-12.3	Orf201
T35	-	AAUUAUAUAUAAU <u>ACACUAGGAAUAAUAUCCUAGUGU</u> aUUUAUUUUUGCGG	136578-136626	24	-12.2	Orf202
T36	+	AAUUAUACAAU <u>UCCCUAGGAUUAAAUUCCUAGGGA</u> UUUUUAUUUGUU	138352-138398	24	-14.6	Orf205
T37	-	ACAAAUAAAAA <u>UCCCUAGGAAUUUAAUCCUAGGGA</u> aUUGUAUAAUUUUU	138349-138397	24	-14.9	Orf206
T38	+	AAAAAUUAAAA <u>UAAGGGGUUGACAUUUAGCCCCUUA</u> gaUGUUAUUAUUAA	141954-142003	25	-11.5	Orf213
T39	+	AUAAAUCUUAA <u>ACUCCCUAUUGACAAAGGGAGU</u> UUUUUAUUGUAUA	126538-126583	22	-10.2	Orf174
T40	+	AAAAACUUUGA <u>CUCUAUCUAUUGACAUGGAUAGAG</u> UUUUACUAUAUA	131524-131570	24	-9.5	Orf187
T41	+	AAAAAUAAAUA <u>CACUAGGAUAUUAUUCCUAGUG</u> UAUUAUAUAUU	136582-136626	22	-12.3	Orf201
T42	-	AAUUAUAUAAU <u>ACACUAGGAAUAAUAUCCUAGUGU</u> aUUUAUUUUUGCGG	136578-136626	24	-12.2	Orf202
T43	+	AAUUAUACAAU <u>UCCCUAGGAUUAAAUUCCUAGGGA</u> UUUUUAUUUGUU	138352-138398	24	-14.6	Orf205
T44	-	ACAAAUAAAAA <u>UCCCUAGGAAUUUAAUCCUAGGGA</u> aUUGUAUAAUUUUU	138349-138397	24	-14.9	Orf206
T45	+	AAAAAUUAAAA <u>UAAGGGGUUGACAUUUAGCCCCUUA</u> gaUGUUAUUAUUAA	141954-142003	25	-11.5	Orf213
T46	+	AUAAAUCUUAA <u>ACUCCCUAUUGACAAAGGGAGU</u> UUUUUAUUGUAUA	126538-126583	22	-10.2	Orf174
T47	+	AAAAACUUUGA <u>CUCUAUCUAUUGACAUGGAUAGAG</u> UUUUACUAUAUA	131524-131570	24	-9.5	Orf187
T48	+	AAAAAUAAAUA <u>CACUAGGAUAUUAUUCCUAGUG</u> UAUUAUAUAUU	136582-136626	22	-12.3	Orf201
T49	-	AAUUAUAUAAU <u>ACACUAGGAAUAAUAUCCUAGUGU</u> aUUUAUUUUUGCGG	136578-136626	24	-12.2	Orf202
T50	+	AAUUAUACAAU <u>UCCCUAGGAUUAAAUUCCUAGGGA</u> UUUUUAUUUGUU	138352-138398	24	-14.6	Orf205
T51	-	ACAAAUAAAAA <u>UCCCUAGGAAUUUAAUCCUAGGGA</u> aUUGUAUAAUUUUU	138349-138397	24	-14.9	Orf206
T52	+	AAAAAUUAAAA <u>UAAGGGGUUGACAUUUAGCCCCUUA</u> gaUGUUAUUAUUAA	141954-142003	25	-11.5	Orf213
phiIPLA-C	C1C					
T1	+	UAAGUAAUUUA <u>AAGGGUAGAUAUACUACCCUU</u> UUUUUGCAUGUUAU	3632-3676	21	-10.6	Orf5
T2	+	AAAAUUUUAUA <u>GAGGGUAAACUUUGUUUAUCCUC</u> UUUUUUUUUUUUU	9623-9668	23	-8.7	Orf11
Т3	+	UUCUAAGUAAA <u>UAGACCAGGAUUAAAUUCUUGGUCUA</u> UUUAACUUGACA	16407-16455	26	-9	Orf19
T4	+	UUAAUACAAAA <u>CCUAUACUAUCUGUUAUAUUAAUUAUGAAUAAUUAAAUAGUAUAGG</u> UUUAUUUUACGUU	18696-18765	46	-7.31	Orf24
Т5	+	UAUAUAUGUAG <u>GGUGGUAGGAUGUUACUACCACC</u> UUUUUUUAAAGU	19728-19773	23	-14.2	Orf26
T6	+	GAGUUUAAUAA <u>GGUGGUUUAUAAACCACC</u> UUUUAUACAUAU	25289-25329	18	-10.1	Orf30
T7	+	UUAAUUUAUAA <u>GGCGGUUUUAUACCGUC</u> UUUUUUUUUUUUUU	31717-31756	17	-8.5	Orf33
Т8	+	UAUCUAUUUAA <u>GACUAAGUUAAAAACUUAGUC</u> UUUUUUUUUUUGCA	455639-45684	21	-9.3	Orf44
Т9	+	AAAGACUUAGA <u>GAGACAGAUUAAAAAAUUUGUCUC</u> UUUUUUUUUUUAUUGA	66853-66899	24	-9.2	Orf67
T10	+	AUUUAAUAUUA <u>GAGUGCUUAAGCACUC</u> UUUUAUUUGAUU	73137-73174	16	-9.7	Orf72
T11	+	ACCGCUUUUUAGACUAGGAUUAAAUUCCUAGUCUUUUUUUU	77907-77951	22	-12.9	Orf79
T12	+	AUUAAGAAAAA <u>GUAGAGGCAUAUUUGCUUCUAC</u> UUUAAUUAUAUG	80619-80663	22	-11.9	Orf83
T13	+	CUUUUUUUAAG <u>CAGUCGAUACUAAAAAGUAUUGACUG</u> UUUUUUGCUUUU	87110-87158	26	-7.4	Orf94
T14	+	AAUUUUUUACUGACCCCUAUUGACAGGGGUCUUUUUUUUU	93662-93704	20	-12.7	Orf104

T15	+	UAAAUUAUAAA <u>AACACCCUUGACACUGGGUGUU</u> UUUUGUUAUAUAC	95805-95849	22	-10.3	Orf108
T16	+	GAUGAAAUGGG <u>GGAGUAGGGAAACUUACUCC</u> UUUUUUUUUUAUUUA	101395-101437	20	-15	Orf123
T17	-	AAUAGUUGAGU <u>ACCGCUUCAGUAAUAUAGAAGCGGU</u> aUUUUUUUUUUUUUUU	108276-108325	25	-12.2	Orf140
T18	-	AAUAAUUACUA <u>GACCUCUUGACAGGAGGUC</u> UUUUCUAUGAUAU	108970-109012	19	-10.3	Orf142
T19	+	UAUAAUAACAA <u>ACCGCUUCAGAUUAAAUUCUCGAAGCGGU</u> cUUAUUUUUUAGG	111294-111347	29	-11.3	Orf146
T20	-	AUAAUCAAUUA <u>GACUAGGGUUUUUCCCUAGUC</u> UUUUUAUGUUCUA	112122-112165	20	-14	Orf147
T21	+	UAAUUUAAAAU <u>UAGGGGUUGCAAUCAAAACCCCUA</u> UUUGCUAUAAUA	113490-113536	24	-12.5	Orf149
T22	+	AAUAAUAUUAA <u>GCCUAGGAUUAAAUUCCUAGGU</u> UUUUUUUUUUUUUUU	114326-114371	22	-12.6	Orf151
T23	+	GUAAGAGAGUA <u>CAAAGGGGGAAUAAUUCCCUUUG</u> UAUUUUUUUUUUUU	118166-118210	22	-10.1	Orf161
T24	+	AUAAUUUAAAA <u>AGCAAGAGAUAAAAAACUCUUGCU</u> UUUAUUUAUAUAGA	119932-119979	23	-10.2	Orf162
T25	-	AAAGAUUUAAA <u>AGACUAGUUACAAACUAGUCU</u> UUUUUUUUUUUAUUUAU	122332-122376	21	-9	Orf168
T26	-	AAUAAUUACUA <u>GGACUAGGAUUUAUUCCUAGUCC</u> UUAUUUUUUAGG	122731-122777	23	-14.3	Orf169
T27	-	AUUAGUAAUAA <u>ACAAGGGAUAAAACCCUUGU</u> UUAUUUUUUUUAC	125421-125464	20	-9.5	Orf174
T28	-	UCUUUCCUUUU <u>CCCUUAUUACUUUUGUAGUAAGGG</u> UUUUAUUUAUA	127155-127201	24	-8.5	Orf178
T29	-	ACUAUUACUAC <u>AGAAGAACUUUAAAAAAGUUCUUCU</u> UUUUUUUUUUUGACA	127878-127926	24	-9	Orf180
T30	-	AUUUAUUUUA <u>GACUAGGAUUAAAUUCCUAGUC</u> UUUUUUUUUUGA	134211-134255	22	-12.9	Orf194
T31	-	AUAUAGAAUAA <u>CCACCUAUUUAUGUAGGUGG</u> UUUUCUUAUAUU	136347-136389	20	-12	Orf196
T33	-	GAAUUAUUAAA <u>GGCUAACUUAUGUUAGUC</u> UUUUUUUUUAUAUA	138593-138633	18	-8.3	Orf198

Table S4: Putative terminators of phages phiIPLA-RODI and phiIPLA-C1C. The underline sequence corresponds to the terminator stem.

Lowercase letter in RNA motifs indicates the spacer element between the stem-loop and T-rich region.

Figure 1. A) Transmission electron microphotographs of phages phiIPLA-RODI and phiIPLA-C1C; scale bars correspond to 100 nm. B) One-step growth curves of phage phiIPLA-RODI in *S. aureus* IPLA16 and phiIPLA-C1C in *S. epidermidis* LO5081. Values correspond to the number of PFU per infected cell in chloroform-treated cultures (●). Each data point is the mean ± standard deviation of three independent experiments.

Figure 2. Genome organization of phage phiIPLA-RODI and BLASTN comparison. The outer ring with the arrows represents the *orf*s of the circularized phage. The predicted gene functions are also indicated. The different functional modules in the genome are shown as a coloured shadow. BLASTN, that is represented by each inner ring, was performed with the representative phage Twort (pink), the phage K (green) and the most similar GH15 (light blue).

Figure 3. Genome organization of phage phiIPLA-C1C and BLASTN comparison. The outer ring with the arrows represents the *orfs* of the circularized phage. The predicted gene functions are indicated. The different functional modules in the genome are shown as a coloured shadow. BLASTN, that is represented by each inner ring, was performed with the representative phages Twort (pink), and K (green) and the most similar phiIBB-SEP1 (light blue).

Figure 4. Analysis by SDS-PAGE electrophoresis and silver staining of the structural proteins of phages phiIPLA-RODI and phiIPLA-C1C. Protein molecular size markers (kDa) are shown on the left (Lane L). Bands marked with a white arrow were identified by mass-spectrophotometry: In phage phiIPLA-RODI (1) adsorption-associated tail protein (*orf104*), (2) major tail sheath protein (*orf85*), (3) capsid protein (*orf78*) and (4) major tail protein (*orf136*). In phage phiIPLA-C1C, (5) tail protein (*orf40*), (6) major tail sheath (*orf18*) (7) major capsid protein (*orf11*) and (8) hypothetical protein (*orf85*).

Figure 5. Susceptibility of the strains (A) *S. aureus* IPLA16 and (B) *S. epidermidis* LO5081 to phages phiIPLA-RODI and phiIPLA-C1C. Cell counts of control cultures (\blacksquare) and treated cultures with phiIPLA-RODI (\blacktriangle) and phiIPLA-C1C (\bigcirc) are represented as log (CFU/ml). Each value corresponds to the mean \pm standard deviation of three independent experiments.

Figure 6. Bacteriophage mediated removal of 24 h-old *S. aureus* and *S. epidermidis* biofilms. (A) Mono- or (B) dual-species biofilms of *S. aureus* IPLA16-rif^R and *S. epidermidis* LO5081 were treated with phage phiIPLA-RODI (dark grey), phage phiIPLA-C1C (light grey) or with a mixture of both phages (white), for 4 h. Control biofilms are presented in black. Adhered cell counts and supernatant cell counts were expressed as Log (CFU/well). Bacteria detection threshold [<10 Log (CFU/ml)]. Alternatively, biomass was calculated by crystal violet staining of adhered cells after phage treatment (C). Absorbance was measured at a wavelength of 595 nm. Means and standard deviations were calculated from three biological replicates. Bars having an asterisk are significantly different from the control (ANOVA; *P*<0.05) and bars with a lower case 'a' indicates a significantly different decrease in biomass between the treatment with the mixture of phages and the individual treatment either with phiIPLA-RODI or phiIPLA-C1C (ANOVA; *P*<0.05).