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As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to
increase. �e most featured solution for the optimal camera placement problem is based on binary integer programming (BIP).
Due to the NP-hard characteristic of the optimal camera placement problem, however, it is di	cult to 
nd a solution for a complex,
real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-
phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem
for a placement space larger than in current studies. �is study solves the problem in three-dimensional space for a real-world
structure.

1. Introduction

�e global surveillance camera market is rapidly growing.
According to the 2013 IMS Research data shown in Figure 1,
the surveillance camera market is expected to grow by 1.5
times or more in the next 
ve years. �is is because surveil-
lance cameras are used for more than simply preventing
and solving crime or managing tra	c. �ey are now needed
for production assembly lines or observing natural disasters
[1, 2]. Moreover, with the development in big data image-
processing techniques, it is also possible not only to watch the
images but also to extract the necessary data from them [3].

Along with the growth of the surveillance cameramarket,
interest in e	cient camera placement has also been increas-
ing. If the placement of cameras is ine	cient, even withmany
installed cameras the e
ect can be unsatisfactory. For e	cient
placement of surveillance cameras, several studies [4–15]
have investigated the optimal camera placement problem.
�e optimal camera placement problem, sometimes called
the camera network deployment problem, is de
ned as how
to adequately place cameras to maximize the coverage under
certain conditions [6, 10]. �is optimal camera placement

problem consists of 
nding theminimumnumber of cameras
that satis
es a speci
c coverage or 
nding the maximum
coverage with a given number of cameras [4].

Current studies [6, 7, 10, 11] hypothesized a continuous
space that is simpli
ed as a two-dimensional (2D) grid of
points. Here, the grid points are discrete points on �- and �-
axes by the minimum distance Δ, which takes into account
the spatial sampling frequency (�� = �� : Δ = 1/�� =1/��) a�er simplifying real space into 2D [6].Whenmodeling
a 
xed-area terrain using the above method, the solution
quality of the optimal camera placement problem with a
higher resolution tends to be better than that with a lower
resolution, because the ratio of the real-world terrain that is
re�ected in the modeling area with a high resolution (large��; small Δ) using a larger number of grid points is higher
than that with a low resolution (small ��; large Δ) using
fewer grid points.�usHörster and Lienhart [6] claimed that
considering a large number of grid points is necessary.

Because the optimal camera placement problem is NP-
hard [16], existing studies have focused on 
nding e	cient
and e
ective approximation algorithms rather than 
nding
an optimal solution.
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Table 1: Publications on the optimal camera placement problem.

Source Year Methods � grid � grid Number of grid points

[10] Surveillance of a 2D plane area with 3D deployed cameras 2014 PSO 4 4 16

[11] Particle swarm optimization inspired probability algorithm for
optimal camera network placement

2012 PSO 11 11 121

[6] Approximating optimal visual sensor placement 2006 IP 12 12 144

[13] Grid coverage for surveillance and target location in distributed
sensor networks

2002 IP 13 13 169

[7] Optimal camera placement for total coverage 2009 IP 12 6 72

Model simulation 1 in this paper Greedy 200 200 40,000

Model simulation 2 (Appendix) in this paper Greedy 500 500 250,000
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Figure 1: Surveillance Camera Market Size Prediction [20].

�e approximation algorithm proposed in previous stud-
ies solves the problem directly at the high resolution of
the desired level. On the other hand, our study proposes a
method of 
nding a solution under a low resolution using
BIP, then solving the problem correctly at its desired high
resolution based on the found solution.�eproposedmethod
decreases the complexity of the calculation, which can lead
to faster problem-solving at a high resolution than existing
methods.

�e reliability of setting the start point, which can cause
a localized optimization in the approximate algorithm, is
also improved. As a result, under the same conditions,
the con
dence of the proposed solution increases when
compared to solving the problem at a high resolution to begin
with.

Additionally, rather than using the virtual modeling area
generally used in existing studies, this study uses a real-
world modeling area from geographic information system
(GIS) data of actual terrain. �e data came from the satellite
pictures. �ree-dimensional (3D) camera placement was
selected to provide more practicality, instead of 2D camera
placement which is unrealistic to apply.

�is paper is organized as follows. Section 2 analyzes the
relevant studies. Section 3 explains the spatial con
guration
required for the camera placement and the calculation
method for the surveillance camera view and also describes
the algorithm that solves the actual problem. Section 4 com-
pares the quality of the solutions obtained frombinary integer

programming and from the proposed method. Section 5
presents the conclusion.

2. Literature Review

�e art gallery problem (AGP), studied in the 
eld of
computational geometry, is the problemof placing at least one
security guard to check every area of a museum or gallery.
Because AGP 
nds the optimal placement point within the
restricted viewpoint of the security guard and the optimal
camera placement problem
nds the optimal placement point
within the restricted viewpoint of the camera, solving the
optimal camera placement problem is very similar to solving
AGP [17, 18].

�is optimal camera placement problemhas been studied
to solve both MIN problem, which 
nds the minimum
number of cameras and placement conditions to satisfy the
target coverage under the given conditions, and the FIX
problem, which maximizes the coverage with a 
xed number
of cameras under the given conditions [4].

In the meantime, looking from the methodological view-
point of problem-solving, previous studies on solving the
optimal camera placement problem generally have been
based on binary integer programming (BIP) [5–9]. BIP o
ers
the global optimal solution; however, the studies based onBIP
only answer problems with limited, simple conditions due to
the NP-hard property of the problem [4].

�erefore, studies have approached the problem from
various directions to solve the optimal camera placement
problem within a modeling area that can re�ect reality with
complex conditions, and many approximation algorithms
have been suggested as a result [4–15]. Previous literature
in the modeling area and the camera installation area has
its roots in 2D-based studies [12]. �e greedy algorithm
[8, 14], genetic algorithm (GA) [10, 15], particle swarm
optimization (PSO) [11, 12], and so on have been used in
existing studies as approximation algorithms to solve the
problem. However, all the studies mentioned above have
high computational complexity, for they found the solution
directly at a high resolution. Table 1 lists the approximation
algorithms suggested in previous studies.

Moreover, the 2D model is too simple to compute a real-
world case of the optimal camera placement problem [12];
methods to solve the problem using 3D were studied in
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Figure 2: FOV computation parameters.

[11, 12]. However, 3D problem-solving exacerbates the issue
of high computational complexity.

Previous studies have consistently reported the issue
of high computational complexity as they continue to use
problem-solving methods at high resolution. To remove this
issue, phase 1 of the two-phase algorithm proposed in this
study uses BIP to 
nd the global optimal solution of the MIN
problem within the low-resolution area (small number of
grid points), and phase 2 uses an approximation algorithm,
hill climbing method, to solve the FIX problem at a high
resolution (large number of grid points).

With this process, the solution for awider high-resolution
area can be found based on the veri
ed global optimal
solution found in the low-resolution. Existing studies mainly
used methods to avoid local optima, such as the genetic algo-
rithm, particle swarmoptimization, and simulated annealing,
though they have high computational complexity [4]. �ere-
fore, this study proposes using a hill climbingmethod, known
to have low computational complexity. In general, greedy
algorithms like a hill climbing method can 
nd local optima
if they are assigned the wrong starting point; however, this
study proposes using the starting point found by BIP.�e low
computational complexity can re�ect the modeling area of a
large number of grid points with the same condition. �us,
this study proposes an approximation algorithm that is more
likely to be used for real-world cases.

3. Model and Solution

�is paper proposes a two-phase algorithm and assumes a
3D camera installation in a 2D modeling area. Phase 1 solves
the problem using BIP, which o
ers an optimal solution by
con
guring the modeling area with a low-resolution grid
for simple execution. Phase 2 
nds a real-world applicable
answer by setting the starting point from the low-resolution
solution of phase 1 and then using the hill climbing method
[19] for the modeling area con
gured with high-resolution
grids.

3.1. Modeling Space. �is paper assumes the surveillance
of a plane area without obstacles. �e surveillance area is
divided into grid points, as shown in [13], and a grid point
is captured by the camera if it is observed from the camera.
Asmentioned above, grid points refer to discrete points on x-
and y-axes, separated by minimum distance Δ for the spatial
sampling frequency [6]. Later, the plane area is divided into
camera-installable and not camera-installable areas, and the
surveillance area is assigned.

3.2. Modeling Surveillance Area. As in previous studies [4–
12], 
eld of view (FOV) modeling is proposed prior to
explaining the placement method. Finding a solution for the
optimal camera placement problem is equivalent to 
nding
the conditions that create the FOV of each properly placed
camera; the problem can be solved only if the method of
computing the FOV is de
ned beforehand.

Like the study in [6], this study assumes a camera that is

xed in a certain direction so that it only surveils the same
spot; therefore, a single camera has a 
xed FOV depending
on its installation condition. �e FOV of the surveillance
camera has a trapezoidal shape on the surveilled plane area,
corresponding to the installation location (�0, �0), horizontal
angle (�), vertical angle (�), installation height (�), horizontal
and vertical angles of camera view (	1, 	2), and maximum
recognition distance (
).�ehorizontal and vertical angles of
camera view mean the horizontal and vertical viewing angles
of the scene captured by the camera.

Figure 2(a) shows the location of a camera which is
installed at the ground coordinate �0(�0, �0) with the height� and the recognition distance �. Note that the actual
recognition distance (�) is less than or equal to the maxi-
mum recognition distance (� ≤ 
). Figure 2(b) shows the
horizontal view angle (	1) and the vertical view angle (	2),
as well as the horizontal angle (�) and the vertical angle
(�). Here, the horizontal angle (�) of the camera means the
direction in which the camera watches.�e vertical angle (�)
is the watching angle of the camera, measured from a line
perpendicular to the ground at the installation point.
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Table 2: Camera speci
cations for the comparison test.

Consideration
Number of
options

Details

Horizontal orientations (∘) 8 0, 45, 90, . . . , 270, 315
Vertical orientations (∘) 15 1, 3, . . . , 27, 29
Height (m) 1 7

Camera type

Horizontal angle of view (∘) 1 80

Vertical angle of view (∘) 1 80

Available sight range (m) 1 60

Based on the given camera conditions, the algorithm to
compute the coordinates of the trapezoid vertices, which are
the FOV of the camera, is described as follows.

Step 0. � = �/{cos(	2 + �)}. If 	2 + � < 90 or � > 
, then stop
the calculation.

Step 1. If �0 = (0, 0) and � = 0, FOV is made of four vertices{��1, ��2, ��3, ��4} (each point ��� is made of {��� , ��� }):
[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

ℎ × tan�
ℎ

cos� × {+ tan(	12 )}
ℎ × tan�

ℎ
cos� × {− tan(	12 )}
ℎ × tan (� + 	2)
ℎ

cos (� + 	2) × {+ tan(
	12 )}

ℎ × tan (� + 	2)
ℎ

cos (� + 	2) × {− tan(
	12 )}

]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

=

[[[[[[[[[[[[[[[[[[
[

��1��1��2��2��3��3��4��4

]]]]]]]]]]]]]]]]]]
]

. (1)

Step 2. Calculate vertex ���� by rotating ��� by �
[cos� − sin�
sin� cos� ][

������] = [
�������� ] . (2)

Step 3. Actual camera installation information is added to
each ����

[�������� ] + [
�0�0] = [

����] . (3)

Step 0 considers the maximum recognition distance (
),
vertical angle (�), and vertical view angle (	2) to check
whether the FOV can be computed. If � exceeds the maxi-
mumrecognition distance (
) set beforehand, FOVwith such
a condition does not exist and therefore is not computed.�e
FOV also does not exist if the sum of the vertical angle (�)
and the vertical view angle (	2) exceeds 90 degrees, for the
camera cannot see the �oor.

Step 1 explains the calculation of the coordinates for
the FOV trapezoid vertices, assuming that the surveillance
camera is installed in a direction parallel to �-direction from
the origin. Equation (1) takes the vertical angle (�) of the
camera installation into account, as well as the vertical view
angle (	2) and the horizontal view angle (	1).

Step 2 showshow to obtain the coordinates for the vertices
of the FOV trapezoid by taking the horizontal angle (�) of the
installed camera into account, based on the value obtained
from Step 1.

Step 3 includes the equation for calculating the coordi-
nates for the vertices of the actual FOV trapezoid a�er adding
the ground coordinates (�0,�0) of the installation point to the
value from Step 2.

In conclusion, combining (1), (2), and (3) in Table 2 will
consider the actual installation location for the camera and
compute the coordinates of each vertex of the surveillance
area (FOV trapezoid) of a single camera, using the matrix
calculation of

[[[[[[[[[[[[[[[[[
[

cos� − sin� 0 0 0 0 0 0
sin� cos� 0 0 0 0 0 0
0 0 cos� − sin� 0 0 0 0
0 0 sin� cos� 0 0 0 0
0 0 0 0 cos� − sin� 0 0
0 0 0 0 sin� cos� 0 0
0 0 0 0 0 0 cos� − sin�
0 0 0 0 0 0 sin� cos�

]]]]]]]]]]]]]]]]]
]

[[[[[[[[[[[[[[[[[[[[[[[[[[
[

ℎ × tan�
ℎ

cos� × {+ tan(	12 )}
ℎ × tan�

ℎ
cos� × {− tan(	12 )}
ℎ × tan (� + 	2)
ℎ

cos (� + 	2) × {+ tan(
	12 )}

ℎ × tan (� + 	2)
ℎ

cos (� + 	2) × {− tan(
	12 )}

]]]]]]]]]]]]]]]]]]]]]]]]]]
]

+

[[[[[[[[[[[[[[[[[
[

�0�0�0�0�0�0�0�0

]]]]]]]]]]]]]]]]]
]

=

[[[[[[[[[[[[[[[[[
[

�1�1�2�2�3�3�4�4

]]]]]]]]]]]]]]]]]
]

. (4)
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3.3. Two-Phase Algorithm. Our two-phase algorithm (a)
generates the gridmodel of the candidate locations of camera
installation and the target area for surveillance; (b) solves the
small scale of phase 1 at a low-resolution; (c) sets the starting
value of phase 2 based on the solution from the previous step;
and (d) solves the large scale problem of phase 2 at a high-
resolution.

3.3.1. Phase 1. In phase 1, the minimum number of cameras
that satis
es the speci
c condition given with the grid points
of the simulation area is obtained; it is then used to solve the
MIN problem to 
nd the location of each camera and the
installation condition. We approached the problem using a
further-developed method based on BIP formulas [6] for the
existing 2D placement problem to solve the 3D placement
problem. �e detailed procedure is as follows.

(1) First, decision variables are assigned, just as when
solving a general BIP.

���	
�
= {{{

1, If there exists a camera at position # with horizontal orientation $ vertical orientation %, height &, and angle of view (AOV) ',
0, Otherwise,

�� = {{{
1, If the target at position * is covered by a camera,

0, Otherwise.

(5)

�us, ���	
� is 1 if there exists a camera at position # with
horizontal angle $, vertical angle %, height &, and AOV ' and
0 if not and �� equals 1 if the surveillance area * is watched
with ���	
� and 0 if not.

(2) Other parameters required for the formula are de
ned
as follows:

V��	
��

= {{{
1, if the target at position * is visible from camera position # with horizontal orientation $, vertical orientation %, height &, and AOV ',
0, Otherwise.

(6)

NC: number of camera positions.

NhD: number of horizontal orientations.

NvD: number of vertical orientations.

NE: number of heights.

NA: number of camera types.

NT: number of target positions.

CVR: given minimal coverage rate.

(3) �e objective function minimizes the number of
cameras as follows:

min

�∑
�=1


ℎ�∑
�=1



V�∑
	=1


�∑

=1


�∑
�=1
���	
�. (7)

(4) �e following constraints are also necessary:


�∑
�=1


ℎ�∑
�=1



V�∑
	=1


�∑

=1


�∑
�=1

V��	
�� ⋅ ���	
� ≥ ��
for ∀* (1, . . . , ?�) ,

(8)


�∑
�=1


ℎ�∑
�=1



V�∑
	=1


�∑

=1


�∑
�=1

V��	
�� ⋅ ���	
� ≤ ?� ⋅ ��
for ∀* (1, . . . , ?�) ,

(9)


�∑
�=1
�� ≥ ?� ⋅ CVR. (10)

Equations (8) and (9) are the constraints to obtain �� and (10)
is a constraint such that the sum of ��must be greater than or
equal to the product of the minimum coverage rate and the
target surveillance area.

3.3.2. Phase 2. Phase 2 solves the FIX problem, which 
nds
the combination for maximum coverage with the constraint
of the number of cameras determined from phase 1, with
the result obtained from phase 1 as the initial value. �is
study uses the hill climbing method [19]. Since the objective
function is nongradient, a direct-search method was applied;
among the di
erent direct-search methods, the alternating
variable search method was used, as the problem has a mul-
tidimensional variable. �is study proposes a hill climbing
method, as [19] proposed such a method.
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Figure 3: Flowchart of Phase 2.

Since phase 2 aims to maximize the coverage rate with
the minimum number of cameras obtained in phase 1, the
number of cameras does not change; only the conditions for
each camera change. Each ���	
� has the speci
cation data for
the �-coordinate, �-coordinate, horizontal angle (�), vertical
angle (�), installation height (�), horizontal view angle (	1),
and vertical view angle (	2) according to the camera type,
as well as the maximum recognition distance. Each piece of
information is both variable and dimensional. A �owchart of
this phase is shown in Figure 3 and a hill climbing method of
phase 2 is described as follows.

�e notations and their meaning are as follows:

@: set of ���	
�@�: set of optimal solutions found in the 'th operation
': the number of operations

A': the number of iterations that have an identical
objective value

B(@�): coverage rate of camera set @ at 'th trial

C: index of a camera

D: index of a camera setting variable (one of#, $, %, &, '). (# has both �- and�-coordinate properties,
therefore treated as two di
erent variables).

Step 0 (initialization). Establish a starting point @∗0 and set' = 0, A' = 0.
Step 1 (variant search). Set ' = ' + 1.

In @, the Cth variable ���	
� is selected. For each index
(#, $, %, &, ') of ���	
�, the variants are generated by numerically
changingmth index of ���	
� to the ± direction. �e objective
function for each variant is evaluated, and the best one among
the tried variants is taken upon comparing the values of the
objective function.
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(c) 60 × 60 grid model

Figure 4: Map of Sevit Island (683 Olympic Blvd, Seocho-gu, Seoul, Korea) width 400m; length 400m.

Step 1.0 (initialization). Establish a starting point @� and setC = 0,D = 0.
Step 1.1 (selection of a camera and calculation of the coverage
rate)

For C = 1: C(@�);
Let@best

� = @�;
Let �� = Cth variable in@�
ForD = 1 : 6

Let @���+ to be a variant solution gener-
ated by numerically increase the value of
the mth index of ��, B(@���+) to be the
coverage rate of@���+;
Let@���− to be a variant solution generated
by numerically decrease the value of the
mth index of ��, and B(@���−) to be the
coverage rate of@���−;
Update @best

� to be
argmax�∈{�best� ,���	+,���	−} (B(@)), where in

case of a tie one is randomly selected

End of ForD
End of For C.

Step 1.2 (solution improvement). Set@� = @best

� .

Step 2 (check for improvement)

IfB(@�) > B(@�−1), then set@�+1 = @�, A' = 0 and go
to Step 1.

Otherwise set A' = A' + 1.
Step 3 (termination criterion)

If A' > 1, then@∗ = @�; terminate the search.

Otherwise go to Step 4.

Step 4 (check for equivalent)

If B(@�) < B(@�−1), then set@�+1 = @�−1, A' = 0; and
go to Step 1.

Otherwise set@�+1 = @� and go to Step 1.
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Figure 5: Solution for each step.

Step 0 sets the initial starting point. Here, ' and A' are set
to 0.

Step 1 
nds the best variant to improve the objective
function, among the variants generated by increasing or
decreasing the indices of each ���	
� in the solution set @�.
Here, ' is increased by 1. Step 1.0 initializes the current optimal
solution @� to be the starting point of this iteration. Step
1.1 
nds the best solution which gives the highest coverage
rate among the variants of@�, generated by changing each of
indices if ���	
� is in@�.

Step 2 checks if the coverage rate of @� found in Step 1
actually increased compared to the coverage rate of@�−1. If it
is increased,@�+1 stays as@� and A' becomes zero. If not, A' is
increased by 1.

Step 3 checks whether the terminating conditions have
been met. Here, if A' is greater than 1, the optimal solution
of phase 2 becomes @∗ = @� and the solution search is
completed.

Step 4 checks if the coverage rate of@� decreased from the
coverage rate of @�−1. If decreased, @�+1 is reverted to @�−1
and moves to Step 1; if not, meaning that the values are the
same,@�+1 stays at@� and Step 1 is repeated.

�e existing alternating variable search method [19]
assigns the variable of the changing dimension; when it
changes, the moving direction and the magnitude of change
for the dimension variable where the objective function
value improved the most are found. However, the method
adapted for this study preassigns the magnitude of change
for the dimension variable, and then 
nds which dimension
variable inwhich direction improves the value of the objective
function most.�is method was utilized because the existing
method vibrates near the optimal point, causing prolonged
computation. �us, it was more desirable to stop the compu-
tation at a proper point and use the solution than to continue
the computation until it 
nished [19].�emethod developed
in this study eliminates the vibrating solution problem.
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Figure 6: Solution obtained from high-resolution terrain.

4. Experimental Results

To evaluate the time e	ciency and the coverage rate of
the proposed two-phase algorithm, a comparison test was
performed using a PC with an Intel Core i5-3337U processor,
with 8GB of DDR3 SDRAM. Matlab R2013b was used, and
the BIP solution was obtained using the IBM ILOG CPLEX
Optimization Studio 12.6.1. Additionally, the satellite map
image of the actual landscapewas transformed from an image
to text (or numbers) with coordinates using Ascgen 2.0.0
from Jonathan Mathews So�ware.

To compare the global optimal solution obtained from
BIP with a solution of the proposed two-phase algorithm,
the modeling area was con
gured as in Figure 4. Figure 4(a)
is the picture of the actual landscape of a 400m × 400m
square for the modeling area. Figure 4(b) is the modeling
area transformed into 2304 low-resolution grids (48 × 48),
and Figure 4(c) is the one transformed into 3600 high-
resolution grids (60 × 60). It can be seen that the modeling
area in Figure 4(c) with higher resolution re�ects the actual
landscape of Figure 4(a) better than the modeling area in
Figure 4(b) at low-resolution. Since the geometric feature
of the Sevit Island shown in Figure 4 is quite complicated
requiring a high-resolutionmodeling, it is adequate to test the
e
ectiveness of the proposed algorithm. Experimental results
for three other problems are shown in the appendix.

�e speci
cations of cameras for the comparison test
are shown in Table 2. �e horizontal angle for the camera
l installation has eight options, starting from 0 degrees and
stepping by 45 degrees; the vertical angle has 15 options,
starting from 1 degree and stepping by 2 degrees. �e height

of the installed camera is assumed to be 7m, the horizontal
view angle (	1) and vertical view angle (	2) are 80 degrees,
and the maximum recognition distance is set to 60m.

With the speci
cations shown in Table 2, a test that solves
a real-world camera placement problem was carried out and
the results were compared. As mentioned before, the two-
phase algorithm consists of phase 1, which 
nds the initial
solution (Figure 5(a)) using BIP with the speci
cations of
Table 2 in the modeling area of Figure 4(b), and phase 2,
which sets the starting point (Figure 5(b)) of the hill climbing
method in the modeling area in Figure 4(c), based on the
solution of Figure 5(b), and 
nds the solution (Figure 5(c)).
Figure 5(d) is the solution directly obtained by BIP in the
modeling area of Figure 4(c). Consequently, results from the
proposed approximation algorithm andBIP can be evaluated,
respectively, by comparing Figures 5(c) and 5(d).

�e coverage rate of the solution and the time required
for the test in case of Sevit Island area are as follows.
When using the two-phase algorithm proposed in this study,
the coverage rate is 94.72%, whereas it is 96.23% when
using BIP. �erefore, comparing the solutions’ coverage rates
indicates that the proposed approximation algorithm obtains
a solution with 98.43% of BIP’s quality. �e approximation
algorithm took 15,823ms, whereas BIP took 31,724ms. �us,
the approximation algorithm needs about 49.88% of BIP’s
computing time.

As shown in these results, the coverage rate of the solution
computed by the two-phase algorithm was comparable to
that computed by BIP. �is stems from the disadvantage of
using the hill climbing method, which is simpler than the
metaheuristic approximation used in previous studies, which
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Figure 7: Map of Gangjeong Goryeong-bo (Daegu, Korea) 600m × 600m square.

was complemented by using the optimal solution obtained by
BIP in phase 1 as the starting point.

Moreover, the two-phase algorithm proposed in this
study solved the problem more quickly than BIP. �is means
that the computational complexity of our proposed model is
lower than that of BIP and, as mentioned in Section 2, our
model is more adequate to a large-area problem, as well.

For the comparison study in this passage, phase 2 was
performed with the area of a 3600 grid (60 × 60), which
is much smaller than the actual area that can be computed
for a comparison of the solution quality. However, it would
be more realistic and more accurate to approach with the
higher-resolution area in phase 2, because the high-resolution
terrain can re�ect the actual landscape more precisely than
the low-resolution terrain in the same space. Figure 6 shows
the solution obtained by phase 2, performed in a higher-
resolution terrain (40,000 grids (200 × 200)) based on
Figure 5(b). While existing studies have a di	culty in 
nding
a solution for such a large terrain, the approximation algo-
rithm proposed in this study can 
nd a solution.

We performed the test not only with Sevit Island as a
modeling area, but also with other modeling areas. Table 3
shows the comparison results of the two-phase algorithm
(TPA) and BIP in the other modeling areas, of which solution
details are described in Appendix.

�is study was able to 
nd the solution for terrains with a
large number of grid points because it used phase 1 and phase
2. Phase 1 
nds the global optimal solution using BIP at a
low resolution, and phase 2 elaborates on the solution o
ered
in phase 1 at a high resolution. �is study’s contribution is
providing an e
ective method to solve the optimal camera
placement problem for a wide, detailed area, which can be
applied in real-world situations.

5. Conclusions

�is study presented a two-phase approximation algorithm to
solve the optimal camera placement problem.�is algorithm
had lower computational complexity than existing methods
and did not reduce the quality of the solution. As a result,
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Figure 8: Solution to each step for Gangjeong Goryeong-bo (Weir) problem.

Table 3: Comparison test results.

Test area
Computing time (milliseconds) Coverage rate (%)

TPA BIP TPA/BIP TPA BIP TPA/BIP

Sevit Island 15,823 31,724 49.88% 94.72 96.23 98.43%

Gangjeong Goryeong-bo (weir) 4,378 17,030 25.71% 85.51 90.58 94.40%

Incheon port 9,896 32,665 30.30% 86.32 91.45 94.40%

Dongmyeong dock 31,403 48,785 64.37% 70.00 80.56 86.89%
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Figure 9: Map of Incheon International Airport Passenger Terminal (Incheon, Korea) 700m × 700m square.

the optimal camera placement problem could be solved, even
with wide, real-world terrain under complex conditions that
could not be solved with the existing BIP method.

�e two-phase algorithm proposed in this study 
nds a
global optimal solution in phase 1 to use as the starting point
in phase 2; thus, the con
dence for the starting point is large.
A comparison study in Section 4 reveals that the quality of
the solution did not show signi
cant di
erences from BIP.

Meanwhile, the two-phase algorithm proposed in this
study had too high computational complexity to solve com-
plex problems and thus could not re�ect reality. However, the
low-resolution problem could be solved using BIP, which not
only o
ered a global optimal solution but also provided the
idea of applying the solution of phase 1 in higher-resolution
terrains that look more like reality. Phase 2 changed the
method of solving the problem so that other perspectives
could be applied to problems in the future. �is study used
a hill climbing method in phase 2 with low computational

complexity, but othermethods, such asGAor PSO, could also
be used in later studies.

�e limitation of the study was that it used a hill climbing
method in phase 2, which converges to relative local optimal
solutions, instead of other approximate algorithms such as
SA, GA, or PSO that have a higher chance of avoiding local
optima. In this regard other approximate algorithms could
also be applied in later studies. To solve the optimal camera
placement problem with this modeling area with a large
number of grid points under realistic restrictions, one of
two approaches should be chosen: (i) to solve the problem
through a simple algorithm at high resolution or (ii) to solve
the problem at a relatively low resolution using a di
erent
method that needs more computational resources but has
a higher change of 
nding a global optimal solution. �is
paper proposed the former to solve the problem at a high
resolution in a wider terrain. Finding a proper balance point
by comparing the two methods is le� for future work.
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Figure 10: Solution to each step for the Incheon port problem.

Appendix

A. Additional Comparison Studies

�e conditions for the additional comparison studies men-
tioned in Table 2 are identical to those described in Table 2.

A.1. Gangjeong Goryeong-bo (Weir) Problem. �e modeling
area in Figure 7 was con
gured to perform the model
on Gangjeong Goryeong-bo (Weir) mentioned in Table 3.
Figure 7(a) is the actual landscape of a 600m × 600m square
to con
gure the modeling area. Figure 7(b) makes the 600m× 600m square terrain into a low-resolutionmodeling area of
2500 grids (50 × 50), and Figure 7(c) makes the same terrain
into a high-resolution modeling area of 5625 grids (75 × 75).

A comparison test to solve the real-world optimal camera
placement problem was carried out with the conditions
mentioned above. Figure 8(a) shows the solution found in the
modeling area in Figure 7(b), using BIP with the conditions
of Table 2. Based on the solution of Figure 8(a), Figure 8(b) is
the starting point of phase 2 for the hill climbing method in

the modeling area of Figure 7(c). Figure 8(c) is the solution
obtained by performing phase 2. �e solution obtained by
performing BIP in the modeling area of Figure 7(c) to begin
with is Figure 8(d). �e di
erence between the problems
solved using the approximation algorithm proposed in this
study or BIP can be studied by comparing Figures 8(c) and
8(d). �e computing times and coverage rates of the result
can be con
rmed in Table 3.

A.2. Incheon Port Problem. �e modeling area in Figure 9
was con
gured for the model on Incheon port mentioned in
Table 3. Figure 9(a) is the actual landscape of a 700m× 700m
square to con
gure the modeling area. Figure 9(b) shows the
700m × 700m square terrain as a low-resolution modeling
area of 3600 grids (60 × 60), and Figure 9(c) shows the same
terrain as a high-resolution modeling area of 6400 grids (80× 80).

A comparison test to solve the real-world optimal camera
placement problemwas carried out with the conditions men-
tioned above. Figure 10(a) shows the solution found in the
modeling area in Figure 9(b) using BIP with the conditions
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Figure 11: Map of Dongmyeong dock (Busan, Korea) 1000m × 1000m square.

of Table 2. Based on the solution of Figure 10(a), Figure 10(b)
is the starting point of phase 2 for the hill climbingmethod in
the modeling area of Figure 9(c). Figure 10(c) is the solution
obtained by performing phase 2. �e solution obtained by
performing BIP in the modeling area of Figure 9(c) to begin
with is Figure 10(d). �e di
erence between the problems
solved using the approximation algorithm proposed in this
study or BIP can be studied by comparing Figures 10(c) and
10(d). �e computing times and coverage rates of the result
can be con
rmed in Table 3.

A.3. Busan Dongmyeong Dock Problem. �e modeling area
in Figure 11 was con
gured to perform the model on the
Dongmyeong dock mentioned in Table 3. Figure 11(a) is the
actual landscape of a 1000m × 1000m square to con
gure
the modeling area. Figure 11(b) shows the 1000m × 1000m
square terrain as a low-resolutionmodeling area of 2500 grids
(50 × 50), and Figure 11(c) shows the same terrain as a high-
resolution modeling area of 3600 grids (60 × 60).

A comparison test to solve the real-world optimal camera
placement problemwas carried out with the conditions men-
tioned above. Figure 12(a) shows the solution found in the
modeling area in Figure 11(b) using BIP with the conditions
of Table 2. Based on the solution of Figure 12(a), Figure 12(b)
is the starting point of phase 2 for the hill climbingmethod in
the modeling area of Figure 11(c). Figure 12(c) is the solution
obtained by performing phase 2. �e solution obtained by
performing BIP in the modeling area of Figure 11(c) to begin
with is Figure 12(d). �e di
erence between the problems
solved using the approximation algorithm proposed in this
study or BIP can be studied by comparing Figures 12(c) and
12(d). �e computing times and coverage rates of the result
can be con
rmed in Table 3.
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Figure 12: Solution to each step for the Busan Dongmyeong dock problem.
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