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Abstract 

 

 Power electronics are vital to the operation and performance of hybrid-electric 

vehicles (HEVs) because they provide the interface between the energy sources and the 

traction drive motor.  As with any “real” system, power electronic devices have losses in 

the form of heat energy during normal switching operation, which has the potential 

ability to damage or destroy the device.  Thus, to maintain reliability of the PE system, 

the heat energy produced must be removed. Present HEV cooling methods provide 

adequate cooling effects, but lack sufficient junction temperature control to maintain 

long-term reliability. This thesis is based on using the automobile’s air conditioning 

system as an alternative to conventional power electronics cooling methods for hybrid-

electric vehicle applications. 

 This thesis describes the results from a series of experiments performed on a 

circuit containing an IGBT, gate controller card, and snubber while submerged in an 

automotive refrigerant bath (R134a).  The circuit was then tested while being cooled 

using a mock automotive air conditioning system.  Tests were performed on custom made 

thin-film resistors while being cooled by the same mock air conditioning system.  The 

thin-film resistors were arranged to resemble a six-switch, three-phase inverter in steady-

state operation.  Lastly, an active IGBT junction cooling technique is described and 

simulated, which incorporates direct cooling of the junction of the power electronic 

device rather than its case.  The results from the simulation indicate the exposed junction 

IGBT technique would benefit the device by reducing the junction temperature, 

increasing forward current ratings, and increasing reliability. 
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Chapter 1 

 

 
INTRODUCTION 

Electric cars have been an option since the beginning of the automobile 

revolution.  Early electric vehicles were mechanically robust, but lacking horsepower 

because of poor battery technology.  Thus, the internal combustion (IC) engine quickly 

became the best power plant for the automobile because petroleum fuel was a superior 

source of energy.  Petroleum fuel was chosen due to its high-energy density properties, 

ease of handling, and cheap abundant supplies.   

Today, more than 100 years later, cities have become choked with combustion by-

products of petroleum, and the world’s dependence on petroleum continues to increase, 

while petroleum deposits are diminishing.  Consequently, these concerns are renewing 

interest for alternative energy sources in the transportation industry.  While there are 

many options, the electric and hybrid electric vehicles (EV/HEV) are the most promising 

alternatives to the IC powertrain as these options maintain the automotive industry, which 

helps the world’s economy thrive.  This renewed interest has recently spurred the Toyota 

PriusTM and Honda InsightTM.  These HEVs are the first HEVs to make production. 

Power electronics (PEs) are vital to the operation and performance of EVs and 

HEVs.  Power electronics provide the interface between the energy sources such as 

batteries and the traction drive motor.  PEs must meet strict automobile manufacturers’ 

design criteria when used in EVs and HEVs.  The four most import design criteria for the 

automotive industry are weight, size, reliability, and cost. 
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The thermal management system for power electronics devices plays an important 

role in all four design criteria.  PEs capabilities are highly temperature dependent.  To 

maintain reliability of PE systems, the temperature must be strictly regulated.  If the 

temperature is allowed to vary, the PE devices must be oversized for their typical 

application in order to meet every operating condition.  Existing thermal management 

designs rely mainly upon oversizing the PEs as just described or by inclusion of large 

heat sinks, both of which detract from the size and cost criteria of automotive design 

criteria.  Present thermal management techniques for power electronics cannot meet all 

the requirements of the transportation industry.  However, existing air-conditioning (A/C) 

systems in automobiles with little modification can be used to cool PE devices.  

Utilization of the existing A/C systems to directly cool the PEs can help meet the design 

criteria described previously.   

This thesis describes a new technique of directly submerging PEs in a vehicle’s 

refrigerant (R134a) as an active method to cool power electronic devices.  This technique 

is shown to meet the demanding requirements of the automotive industry.  This technique 

will be discussed in the next sections with specific application to the HEV systems. 

 

1.1  Transportation Requirements 

 In an effort to increase HEV development, the United States Department of Energy 

(DOE) has partnered with automotive manufacturers, universities, national laboratories, 

and various industry leaders in a program called the FreedomCAR (Cooperative 

Automotive Research).  The goal of this partnership is to share technology in an effort to 
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develop more energy efficient and environmentally friendly highway transportation 

technologies. In turn, the transportation industry will provide these technologies to the 

consumers in the least amount of time.  To meet these goals, the technology must first be 

developed.  Outlining the efforts for the FreedomCAR partners are the following design 

requirements: 

• Electric propulsion systems, electric motor and inverter, with a 15-year life 

capable of delivering at least 55 kW of power for 18 seconds and 30 kW of 

continuous power at a system cost of $12/kW peak.  

• Electric propulsion system having a coolant inlet temperature of 105ºC. 

• Electric drivetrain energy storage with a 15-year life with discharge power of 25 

kW for 18 seconds and $20/kW.  

• Material and manufacturing technologies for high-volume production vehicles 

that provides 50% reduction in the weight of vehicle structure and subsystems, 

affordably, and increased use of recyclable/renewable materials.  

Thermal management technology of power electronics devices has a direct impact on 

all the above design requirements.  An effective, small, lightweight thermal management 

system will contribute to greater efficiency and reliability of the power electronics 

devices.   In turn, a lighter vehicle results in less demand on the engine and/or motor, 

faster acceleration, and greater energy efficiency.  Higher energy efficiency contributes to 

less fuel or battery consumption.   
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1.2  Power Electronics in HEVs 

 
Simplistically, power electronics are responsible for the process and controlled flow 

of electric energy by supplying voltages and currents in a form that is optimally suited for 

user loads [1].  In HEVs, PEs are the interface between the energy sources and the 

traction drive motor for both power consumption and regenerative cases.  Figure 1.1 

shows a HEV’s typical configuration. As shown in the figure, PEs allow the HEV to 

operate as they connect the batteries to the motor and generator (in some cases these may 

be the same devices) allowing the vehicle to function. 

 Driving conditions vary from flat interstate cruising to start and stop city driving.  

The most severe driving conditions require hard acceleration and braking.  These 

conditions force power electronics to their extreme limits such that they must conduct 

high forward biased currents, block high forward and reverse voltages, cycle on and off 

within microseconds, and resist thermal breakdown because of external environmental 

conditions and their own internally produced heat.   

Severe driving conditions can force the traction motors to exceed 100 Amps peak and 

80 Amps continuous.  The forward and reverse voltage blocking capabilities of PEs can 

greatly exceed 300 Volts; yet using PEs with higher voltage blocking capabilities will 

minimize the need to configure multiple devices in series, thus lowering on-state voltages 

and conduction losses.  PE devices must also be required to have fast turn-on and turn-off 

transitions, yet they must have small dv/dt and di/dt to minimize switching losses.  An 

increase in switching cycles will increase power losses.   
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Figure 1.1.  HEV energy distribution system configuration 
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Traditional automobiles as well as HEVs produce temperatures over 105°C in the 

engine compartment due mainly to the IC engine heat dissipation.  Unfortunately, this is 

the ideal physical location for most power electronics devices as it offers some 

environmental protection (rain, debris, etc), space for mounting, minimizes stray 

inductance, and is the location of existing A/C systems thus helping to minimize the 

additional PE load to A/C system. 

 

1.3  History of Refrigeration 

The definition of air conditioning is the control of temperature, humidity, purity, 

and motion of air in an enclosed space, independent of outside air conditions [2].  

Refrigeration or air conditioning was first widely introduced in the late 1800s in the form 

of household refrigerators for food product storage.  Soon air conditioning usage was 

expanded to cooling homes and business.  Eventually in the 1950s, automobiles started 

becoming equipped with A/C systems.  Today, nearly all of new automobiles sold in the 

US are equipped with an A/C system, becoming more of a standard rather than a luxury. 

The first refrigerators began by using a toxic mixture of refrigerant that included 

ammonia (NH3) and methyl chloride (CH3Cl).  This mixture is toxic to people if the 

system were to leak, so in 1928, a non-toxic replacement refrigerant called Freon was 

invented.  However, the Environmental Protection Agency (EPA) has determined that 

chlorofluorocarbons (CFCs) based refrigerants such as Freon, are harmful to the 

environment.  It was determined that these refrigerants are a major contributor to the 

depletion of the earth’s ozone layer.  The “Montreal Protocol,” an international 
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agreement, established a plan to reduce emissions of CFCs and was signed by a total of 

24 nations in September of 1987.  Since 1993, Tetrafluoroethane (R134a) has become the 

environmentally friendly replacement to Freon in automobiles.  R134a’s prevalent usage 

in A/C systems and ideal thermal properties makes it ideal for use as an active coolant for 

PE devices in HEV applications. 

 

1.4  Refrigeration Process 

Refrigeration is based upon exploiting the evaporation process.  When a liquid 

evaporates, it absorbs heat from its surrounds, thus reducing the surrounding temperature.  

Active A/C systems, such as the one in an automobile’s A/C system, extend this process 

to include a self-contained, re-circulating refrigerant system.  Figure 1.2 is a block 

diagram of the automobile’s refrigeration process.  The process begins at the compressor 

where it compresses R134a refrigerant from a low pressure cool gas to a high pressure 

hot gas (vapor).    The hot vapor flows through coils called a condenser to condense the 

vapor to a liquid by dissipating the heat in the hot gas.  The liquid travels through an 

expansion valve, and in the process, the liquid changes pressure to become a cold low 

pressure liquid.  The low pressure liquid flows through another set of coils called an 

evaporator that allows the vapor to absorb heat.  The absorbed heat is derived from 

standard automotive cabin load. 

 With little modification to existing automobile A/C systems, it can be used to cool 

power electronics.  It is desirable to modify the system by adding the PEs at the 

evaporator because the refrigerant  is  at  its  coldest  liquid  state.   The  modifications  to  

 7



 

Figure 1.2.  Diagram of air conditioner components 

existing automotive A/C systems would require two extra refrigerant tubes and a pressure 

vessel to hold the PEs.  One tube is used to divert the liquid refrigerant to the vessel 

containing the power electronics equipment, and the second tube is used as a return.  

Automobile manufacturers will benefit from this approach by reducing cost and weight of 

the vehicle.  

 

1.5 Outline of Thesis 

 The objective of this thesis is to investigate and evaluate a two-phase cooling 

method using R134a refrigerant to dissipate the heat energy generated by the rectifiers, 

converters, and inverters of PEs used in HEV application.   
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 First, a silicon IGBT current vs. voltage characteristics will be modeled.  Then, an 

evaluation of the IGBT submerged in R134a to identify advantages of the proposed 

cooling method over conventional cooling methods will be conducted.  Last, a system 

study of an inverter cooled by a vehicle’s air conditioning system is conducted to provide 

an increase in energy efficiency and reliability.   

 

Chapter 2 is a summary of existing thermal management techniques with several 

examples. 

Chapter 3 explains the approach used to characterize and model the IGBT, evaluate 

power dissipation, and study the effects R134a refrigerant on power electronics devices. 

Chapter 4 discusses the thermal model and applies it to an automotive application. 

Chapter 5 provides conclusions and recommendations. 
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Chapter 2 

 

HEAT SINK TECHNOLOGY 

In past years, electrical devices that delivered significant levels of power were 

typically packaged with large enclosures to house large heat sinks or base plates.  No 

formal method, other than experience, was widely used for predicting the size of the heat 

sink required to maintain a particular device temperature and operating life.  

Consequently, the solution to maintain an operating temperature became one of using the 

largest heat sink and enclosure, a brute force solution.  While this method is adequate for 

previous PE generations, present day power electronics are smaller, conduct more 

current, and generate larger heat densities, where the current cooling requirements are 

more complex and cannot generally be solved with a simple aluminum mass.   

This chapter begins by establishing a semiconductor thermal model where heat 

energy is calculated by formulas similar to Ohm’s Law.  The remainder of the chapter is 

dedicated to four thermal management systems commonly used by engineers today.  

These include natural convection, forced-convection, liquid cooled, and pool boiling.  

Each system has their own set of advantages and disadvantages all of which will be 

explored in some detail. 
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2.1  Semiconductor Thermal Model 

When a section of material has a temperature difference across the surface, there 

is a net flow of energy from the higher temperature surface to the lower temperature 

surface.  The energy flow per unit time or power is given by: 

d

TA
P

∆
=
λ

     (2.1) 

where ∆T=T2-T1 is in °C, A is the across-sectional area in m2, d is the length in meters, 

and λ is the thermal conductivity in W-m-1 °C-1.  Thermal conductivity is a measurement 

that yields a material’s ability to conduct heat given the amount of heat energy, in watts, 

per given distance, in meters, and change in temperature, in °C.  For 90% aluminum, 

which is typically used for heat sinks, the thermal conductivity is 220 W-m-1 °C-1 [1].  

 The concept of energy flow can be equivalent to circuit analysis by introducing an 

analogy of terms.  Ohm’s Law states an electrical voltage V is proportional to the product 

of current I and resistance R.   In the thermal circuit, a difference in temperature ∆T is 

viewed as a voltage drop V, the power dissipated P is viewed as a current I, and thermal 

resistance Rθ as electrical resistance R.  The thermal circuit equation takes the form: 

θPRT =∆      (2.2) 

The thermal characteristics of a semiconductor can also be modeled by the 

thermal circuit equation [3].  Shown in figure 2.1(a), the thermal circuit model identifies 

four different materials, each having different thermal conductivity and temperatures 

between each section, including junction to ambient.  Figure 2.1(b) is an equivalent 

steady-state thermal circuit for the semiconductor model.  Based on the thermal circuit,  
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(a) 

 

 
(b) 

 
Figure 2.1.  Semiconductor thermal model (a) Heat energy flow in PE devices 

(b) Steady-state thermal circuit 

equation 2.3 solves for the temperature of the junction Tj, where the resistances of the 

junction, case, sink, ambient temperature, and the total power dissipated (Rθjc, Rθcs, Rθsa, 

Ta and Ptotal respectively) are given, then: 

( ) asacsjctotalj TRRRPT +++= θθθ     (2.3) 

 

2.2  Power Electronics Cooling Methods 

Device junction temperature, ambient air temperature, enclosure size, and system 

cost are a few thermal management challenges facing engineers.  Manufacturers provide 

a wide variety of solutions for thermal management systems that assist engineers.  This 
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section will investigate four of the most popular among industry, then comment on each 

system’s advantages and disadvantages for HEV applications. 

 

2.2.1  Natural Convection 

Natural convection or air-cooling is still widely used, and will always be favored 

whenever possible, as it is the least expensive of all cooling systems [4].  However, 

directly cooling PEs by mere ambient air alone is typically not enough to keep the 

junction temperature below the manufacturer’s recommended level.  Thus, PEs must be 

mounted on heat sinks, typically aluminum.  Aluminum provides adequate thermal 

conductivity, reduced weight, and reduced cost when compared to materials such copper 

or steel [5].   

There are two main parts that comprise a heat sink, base plate and fins.  The base 

plate has three responsibilities:  

1. Provide a surface where the PE devices are attached 

2. Structural rigidity to the system 

3. Spread heat away from the PE to the fins.   

Engineers must compromise between the proper heat spreading and conduction losses 

within the base plate.  A base plate that is too thick will have minimum conduction 

losses, but heat spreading in the lateral direction will decrease, resulting in a lower 

system thermal efficiency and excessive weight.  A base plate too thin will obtain an 

increase in heat spreading, but an increase in conduction losses and lack the structural 

rigidity need for self support and support for mounted PEs.  The optimum base plate 

 13



thickness is governed by the number of PE devices, the surface area covered by each 

device, the mechanical requirements for device mounting, and the circuit application.  A 

circuit application in steady-state mode is cooled best with a thin base plate and a large 

number of fins along the width, while a circuit application in impulse mode is cooled best 

with a thicker base plate and reduced amount of fins across the width [5]. 

Fins are constructed of thin vertical plates of metal welded or machined to the 

base plate and provide deep channels for an increase in surface area to assist convective 

cooling.  The fins have constraints for height and spacing, where altering one will cause 

the performance of the fin to change.  Increasing the height of the fin beyond the point 

where the fin temperature reaches ambient temperature provides no useful purpose.  Fin 

spacing determines the airflow across the fin surface.  Movement of air molecules by 

natural convection is induced when a surface is at an elevated temperature above 

ambient.  Then as air molecules pass by the fin surface, heat energy is transferred to the 

air.  As fin spacing decreases, less air can pass across the fin surface and no heat energy 

is transferred.  On the other hand, as the fin spacing increases, fewer fins exist, thus 

reducing the convective heat transfer. 

Additional advantages of natural convection heat sinks are no moving parts and a 

large selection from manufacturers.  No moving parts greatly increase reliability and 

reduce cost of the cooling system.  Multiple options exist for most power levels and 

enclosure types giving design engineers flexibility to choose a heat sink that best fits their 

design application.  Figure 2.2 is an example of 12 different natural convection heat sinks 

including a table of corresponding thermal resistance and volume specifications for each.  

The thermal resistance Rθsa measured in  °C/W  is the  theoretical  resistance between  the  
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Figure 2.2.  Selection of natural convection heat sinks [1] 
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heat sink and the ambient air, which determines how much heat energy is dissipated to 

the ambient air.  The volume of each heat sink is measured in cm3, and this measurement 

is used to determine the enclosure requirements.   

Engineers must keep in mind that the cooling capability of natural convection heat 

sinks is heavily dependant upon the ambient temperature and a clean fin surface.  Dirt, 

dust, and related matter can also deteriorate the heat sink’s cooling capability by retaining 

excessive heat energy and increasing the thermal resistance Rsa.  As the surrounding air 

temperature increases, the cooling capability decreases, because less heat can be absorbed 

by the surrounding environment.  R-theta® designs all natural convection heat sinks for 

optimum performance at 50°C above ambient [5].  

2.2.2 Forced-Convection  

Because air has such poor thermal transport properties, forced circulation is often 

required to enhance the heat dissipation process in natural convection heat sinks [4].  Air 

is forced across the fin surface by use of a fan.  This lowers the thermal resistance Rθsa 

and enables the heat sink to disperse more heat.  Forced-convection heat sinks can 

provide 20 W/cm2 [6].  Figure 2.3 is a high power, three-fan, forced-convection heat sink. 

The fan can be designed into one of two arrangements, linear and impingement air flow, 

shown in figure 2.4.  The linear air flow is designed to push or pull air across the surface 

of the fins.  A pushing air system is used more frequently because cool, fresh air is drawn 

through the fan resulting in less wear on bearings; however, there is no difference in heat 

sink cooling capability between linear push and pull.  The impingement air flow design 

can reduce the heat sink size by 50% when  compared  to  the  linear air flow, because the  
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Figure 2.3.  High power, three-fan, forced-convection heat sink 

 

 

Figure 2.4.  Linear and impingement airflow [5] 
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free air area of the fin is doubled [5].  By design, the air in the impingement air flow 

system has a shorter distance to travel and a larger volume of flow resulting in a lower 

temperature difference between a fin’s beginning (side closest to the air in) and end (side 

closest to the air out) [7].   

The advantages of forced-convection heat sinks are smaller size, lighter weight, 

and more efficient compared to  natural  convection  heat sinks.  These advantages enable 

engineers to design PEs to be placed in smaller enclosures, which reduce the system’s 

overall size, weight, and possibly the cost.  The fan is usually a low current device 

drawing no more than 0.25 A and 30 W, which is only a fraction of the total power 

dissipated by the heat sink.   

Natural convection and forced-convection heat sinks are not capable of meeting 

HEV demands on power electronics [8].  Excessive ambient temperatures and dirty 

conditions in the engine compartment will likely cause a decrease in efficiency and 

ultimately lead to the premature failure of the PE devices.  Also, any air-cooled heat sink 

designed for HEV application would require an excessive mass of aluminum, much 

larger and heavier than an HEV application could conveniently accept. 

2.2.3  Liquid Cooled 

Liquid cooling is designed to exploit the excellent thermal conductivity properties 

of liquids such as water and ethylene glycol known as coolants.  The thermal 

conductivity of water is 0.60 W-m-1K-1, which makes it one of the best thermal 

conductors among all liquids.  Unfortunately, water has poor dielectric characteristics 

that contribute to short circuits and electrical equipment failure.    
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Traditionally, the solution to separating the liquid from the electrical devices is to 

contain the liquid in a closed loop system, where the liquid does not contact the device, 

but rather the substrate upon which the device is mounted.  The components needed for 

liquid cooling are comprised of a heat sink, piping, liquid pump, and a condenser.  A 

liquid cooled heat sink differs from an air cooled heat sink in the construction.  The liquid 

cooled heat sink has cavities that channels water through the heat sink, absorbing the 

sink’s heat, and then discharging the water without the liquid physically contacting the 

device.  

The process of liquid cooling PEs, shown in Figure 2.5, involves a coolant 

entering the heat sink, which houses the semiconductors.  Heat is conducted away from 

the semiconductor through the heat sink and absorbed by the coolant.  Then, the coolant 

travels out of the heat sink through a pipe, and enters the condenser.  Last, the hot coolant 

travels through the condenser where the heat from the water is dissipated to the 

surrounding air, before being cycled through the entire system repetitively.   

Liquid cooling reduces the thermal resistance between the semiconductor case 

and ambient air, implying a greater heat transfer.  Heat flux of 100 W/cm2 can be 

achieved, well beyond the ability  of  forced-air  heat  sinks [6].   Presently,  HEVs  use  a 

liquid cooled heat sink with an ethylene glycol based coolant [9,10].  Based on 

FreedomCAR requirements for maximum liquid temperature of 105°C, the coolant loop 

is separate from the liquid loop used to cool the IC engine.   
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Figure 2.5.  Liquid cooled heat sink 

 

The major disadvantage of liquid cooling in HEVs is in power electronics 

reliability.  Liquid temperatures above 105°C lower PE reliability significantly, because 

the PEs are operating at temperatures 20°C above the recommended temperature for best 

reliability [4,11].  As a rule of thumb, the failure rate for semiconductors devices doubles 

for each 10-15°C temperature rise above 50°C [1]. Another disadvantage in using a 

separate coolant loop is an increase in vehicle weight from the additional components of 

the separate loop such as coolant and coolant hoses, pump, and a radiator. 

2.2.4  Pool Boiling 

Another technique of liquid cooling is pool boiling, where the coolant is in direct 

contact with the semiconductor.  Pool boiling requires a liquid with high dielectric 
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properties, because the fluid will flood the spaces around the semiconductor, and 

inherently, become in contact will electrical current.  The fluid must be an electrical 

insulator.   

The pool boiling cooling system relies upon the passive circulation of the 

dielectric fluid inside a sealed chamber.  Figure 2.6 shows heat generated by the 

semiconductor is dissipated to the dielectric liquid, which boils and produces vapor 

bubbles.  The bubbles are driven by buoyancy into the upper region of the chamber.  The 

vapor condenses on the surfaces of the vessel to form liquid droplets, which returns to the 

liquid pool.  The vessel dissipates the heat energy to the ambient air by external fins and 

in some cases forced air.   

 

 

Figure 2.6. Pool boiling technique [12] 

 21



Pool boiling is one of the most efficient techniques to remove heat from a device 

[13].  Heat flux for pool boiling can exceed 100 W/cm2; at this rate, more heat energy can 

be dissipated in less area than any previous thermal management techniques discussed 

previously [6].  Additional advantages of pool boiling include a decrease in the size and 

weight of the cooling system, and the PEs are isolated from external contaminants such 

as dust and dirt as this too is a closed system [12,14].   

The disadvantages of employing pool boiling cooling systems to an HEV 

application include a limited selection of dielectric fluids and contamination collection on 

vessel cooling fins from the engine compartment.  Intimate contact of the liquid with the 

device places stringent chemical and electrical compatibility constraints, limiting the 

choice of coolant to a select few.  One choice is CFCs based refrigerants; however, these 

fluids are harmful to the environment and are banned by governmental laws.  Another 

choice for a dielectric fluid is FC-72, more commonly known as Fluorinert.  Fluorinert is 

manufactured by the 3M™ company, and designed to be a pool boiling refrigerant.  It 

possesses high dielectric characteristics and has similar thermal conductivity 

characteristics to CFCs based refrigerants [11,12].  Additional fluids exist yet fail to be 

successful enough to be considered.   

Pool boiling cooling systems containing CFCs based refrigerants were used in 

traction drive and various motor drives applications before the governmental ban [12,14].  

Pool boiling cooling systems containing Fluorinert are currently in development for high 

power electronic chip applications [4,6,13].   
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2.3  Power Electronics Cooled By R134a Refrigerant 

In the next chapter, cooling power electronic devices by submerging the devices 

in R134a refrigerant is considered.  Experimental tests on a submerged and air-cooled 

IGBT and gate-controller card to study the R134a dielectric characteristics, deterioration 

effects, and heat flux capacity are conducted and results are presented.   
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Chapter 3 

 

EXPERIMENTAL RESULTS 

Power electronics devices inherently produce losses during conduction, blocking, 

and switching cycles.  Semiconductors that generate more heat than is properly dissipated 

will have reduced reliability, increased failure, and damage may possibly spread to other 

equipment.  Therefore, engineers must prevent failure by understanding how 

semiconductor losses are generated.  This chapter begins with a study of semiconductor 

losses, and then continues with experimental tests that determine losses in air-cooled and 

R134a-cooled environments, during an extended soak for more than 300 days were 

performed on a submerged IGBT and gate-controller card to study the R134a dielectric 

characteristics and deterioration effects.  Additionally, a mock automotive air conditioner 

system was used to cool the IGBT similar to an HEV application.  The results from these 

tests are presented in this chapter. 

 

3.1  Losses in Power Electronics 

Silicon (Si) based power electronics devices are based on four states of operation, 

which includes conduction, blocking, turn-on, and turn-off.  Conduction is the time 

period in which forward current passes through the device.  Blocking is the time period in 

which little current flows and full voltage is across the device.  Between the conduction 

and blocking states, the turn-on and turn-off transitions exist.  By design, the turn-on and 
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turn-off transition periods are on the order of 1000 times shorter in comparison to the 

conduction or blocking time periods.   

An ideal power electronic device would be one that conducts large forward 

currents with no voltage drop, blocks large forward and reverse voltages with no current 

flow, and transitions on-to-off or vise-versa instantaneously when triggered.  

Unfortunately, physical Si devices do not have these ideal characteristics, so they 

dissipate energy in the form of heat during these four states of operation.  Figure 3.1 plots 

instantaneous voltage, current, and energy dissipation (loss) waveforms during one cycle 

in a typical semiconductor.  In Figure 3.1, the instantaneous power peaks during the turn-

on and turn-off periods, while only a small amount of instantaneous power is dissipated 

during the conduction and blocking periods [1].  

  

 

Figure 3.1. Controllable semiconductor switching characteristics 
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Total average power dissipation, , in semiconductors during one cycle of 

operation can be calculated by (3.1).   

avgtP

∫ ⋅= sT

s
avgt dttitv

T
P

0
)()(

1
            (3.1) 

where Ts denotes the period of one complete waveform, v(t) is the instantaneous voltage 

across the semiconductor, and i(t) is the instantaneous current through the semiconductor.  

The equation consists of power dissipated during the four states of operation.  Equation 

3.1 can be modified to calculate the average power for individual time periods to appear 

as (3.2).  
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where a and b are the time boundaries for the semiconductor state of operation and Ts, 

v(t), and i(t) are the same as (3.1).  For example, the average power dissipated during 

conduction can be calculated between the interval a equal to t2 and b equal to t3 from 

Figure 3.1. 

Although the instantaneous power during the turn-on and turn-off periods has the 

largest peak value, the time duration is small; therefore, using (3.2), the average power 

dissipated is small.  Similarly, average power dissipated during block (blocking losses) 

are negligible because the leakage current is small.  Thus, from (3.2), the average power 

dissipated during conduction can dominate the total average power because the time 

duration for this period is much larger than the turn-on or turn-off time periods and the 

forward current is much greater than in the blocking time period.  However, the switching 

frequency plays an important role in the calculating the switching losses.  The switching 
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frequency can reach a level where the power losses during switching dominate the total 

average power dissipated.  This is a critical moment for the PE device because without a 

properly sized thermal management system, the heat energy is not dissipated quickly 

enough and the device will fail. 

Because loss, during conduction, is the largest among a semiconductor’s overall 

losses, Section 3.1.1 will use a piece-wise linear model method to determine the series 

resistance during the conduction time period.  This method will be used to verify the 

experimental results, and give an accurate representation of the conduction losses 

associated with an increase in temperature. 

 

3.1.1  Conduction Losses 

A clear representation of the on-state, or conduction, characteristics of a minority 

carrier device (diode, BJT, or IGBT) can be determined by the I-V (forward current 

versus voltage) curve.   From the I-V curve, the on-state voltage drop across the 

semiconductor is determined along with the series resistance.  A typical diode I-V curve 

is shown in Figure 3.2(a), where the curve is modeled based upon (3.3).   
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where   Is is the saturation current, 

   q is the magnitude of electron charge (1.601x10-19C), 

   k is Boltzmann’s constant (1.3805x10-23 J/K), 

   T is the temperature in Kelvin, 
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(a) (b) 

 

Figure 3.2. I-V characteristics (a) Typical diode (b) Tested IGBT 

 

n  is the ideality factor, 

   V is the voltage across the diode, 

   I is the current through the diode, and  

   Rs is the series resistance of the diode. 

Power diodes, BJTs, and IGBTs operate in the linear region of the I-V curve shown in 

Figure 3.2(a). Figure 3.2(b) is a plot of the NPT-IGBT (Non-Punch-Through Insulated 

Gate Bipolar Transistor) semiconductor I-V curves that was tested with multiple forward 

currents.  Clearly shown is the linear region, which can determine the series resistance 

and the on-state voltage drop across the device.   
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3.1.1.1 Piece-Wise Linear (PWL) Model  

A piece-wise linear (PWL) model is an approximation of a diode, BJT, or IGBT 

parameters by representing the device during conduction as an ideal diode with all of its 

non-ideal characteristics modeled as a diode to prevent reverse current, a constant dc 

voltage drop, and a series resistor detailed previously in Figure 3.3(a).  The parameters 

for the PWL model are taken directly from the I-V characteristics as shown in Figure 

3.3(b) and (3.4).  The x-intercept of the line is the PWL voltage drop, VD, and the inverse 

slope of this line is the series conduction resistance, RD, during the conduction period.  VF 

is the forward voltage across the device, and IF is the forward current through the device.   
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Figure 3.3. PWL diode model (a) Diode symbol and PWL model (b) I-V curve of the 
PWL model 
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3.1.1.2  Calculating Conduction Losses 

The voltage drop of the device, series resistance, and average and root-mean-

squared values of forward current are the sources of a device’s conduction losses.  These 

losses can be expressed as: 

DrmsDavgcond RIVIP ⋅+⋅= 2      (3.5) 

where VD and RD are the PWL parameters found earlier and avgI  an rms  are the  forward 

current average and root-mean-squared values.   

d I 

Equation 3.3 defines forward current as a function of temperature.  The tested 

IGBT is a minority carrier device with a positive temperature coefficient meaning that as 

the temperature increases, so does the series resistance.  As the series resistance increases 

so do conduction losses, which can cause catastrophic failure if the thermal energy is not 

managed within specification.  Typically, the junction temperature of Si power devices is 

limited to 125 - 150°C, which is also directly proportional to device reliability.  As rule 

of thumb, the failure rate for semiconductor devices doubles for each 10-15°C 

temperature rise above 50°C [1].   

 

3.1.2  PWL Experimental Results 

 
An experimental test was performed to study the effects of junction temperature 

on series resistance.  The test procedure for determining the temperature characterization 

curves for the IGBT were as follows: 
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1. Modify a sacrificial IGBT by drilling a small hole into the junction layer 

and epoxy a type K thermocouple into the junction layer in an effort to 

accurately measure the junction temperature. 

2. Place the sacrificial and tested IGBTs in a temperature chamber 

3. Increase chamber temperature from 20ºC to 160ºC in 20°C increments. 

4. Record the I-V curve data using a Characteristic Curve Analyzer and the 

tested IGBT at each target temperature. 

The results of the experiment are shown in Table 3.1. Figure 3.4 is a plot of the 

experimental I-V curves.  Observations made from the data taken include: 

 

 

 

22˚C 

160˚C 

Figure 3.4. Temperature dependant I-V curves of the IGBT tested 
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Table 3.1. Temperature dependent RD and VD results of the IGBT tested 
 

Temp (°C) RD (Ω) VD (V) %diff RD %diff VD Pcond (W) at 6 A 

22 0.0746 1.7067 0.00 0.00 12.9258 

40 0.1103 1.5534 32.37 -9.87 13.2912 

60 0.1586 1.3449 52.96 -26.90 13.779 

80 0.1468 1.4026 49.18 -21.68 13.7004 

100 0.1625 1.2964 54.09 -31.65 13.6284 

120 0.1664 1.2497 55.17 -36.57 13.4886 

140 0.1972 1.1289 62.17 -51.18 13.8726 

160 0.1949 1.1139 61.72 -53.22 13.6998 

 

 

 

1. The voltage drop across the device decreases and the series resistance increases as 

the junction temperature increases as shown in Figure 3.5.   

2. The voltage drop decreases from 1.7067 V at 22ºC to 1.1139 V at 160ºC, a 

percent difference of 53%.   

3. The series resistance increases 61.7% from 74.6 mΩ at 22ºC to 194.9 mΩ at 

160ºC. 

 

Suppose the forward current Irms and Iavg are 6 A, using (3.5) and the values found in 

Table 3.1 for RD and VD, Pcond increases shown in Table 3.1.  This confirms that 

maintaining a junction temperature at or close to 22ºC lowers the conduction losses and 

increases the efficiency and reliability of the PE device. 
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Figure 3.5. PWL model parameters versus temperature (a) RD vs. T  (b) VD vs. T 
 

 

3.1.3  Switching Losses 

  
Diode, BJT, and IGBT switching losses consist of the power dissipated during 

turn-on and turn-off time periods.  Each of the three devices has minor differences during 

the switching process that contribute to differences in switching losses.  Diode switching 

losses consist of turn-on, turn-off, and reverse recovery losses.  The reverse recovery loss 

is dominant, while turn-on and turn-off losses are negligible.  BJT and IGBT switching 

losses consist of turn-on and turn-off losses based on forward current and voltage.  IGBT 

switching losses are usually smaller than BJT switching losses because of shorter 

switching times.  

The switching losses for the experimental IGBT can be calculated using (3.2), 

where a and b are either t1 and t2 or t3 and t4 from Figure 3.1.  The time period between t1 

and t2 is the turn-on time ts(on).  This is when the voltage across the semiconductor 
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transitions from the blocking voltage, Vs, to the conducting voltage, Von.  The converse is 

true for the turn-off time ts(off), the time period between t3 and t4.  This is when the voltage 

across the semiconductor transitions from the conducting voltage, Von, to the blocking 

voltage, Vs.   

 

3.2  Experimental Results of Power Dissipation 

This section will first present the experimental results of a comparison of the heat 

energy dissipated from an IGBT in an air cooled and R134a environments.  Second, the 

test results from cooling the same IGBT by a mock automotive refrigerant system. 

 

3.2.1  Air Cooled and R134a Cooled Experimental Results 

 In an effort to determine if R134a is a viable solution to cooling power 

electronics, a circuit was constructed and tested in both an air cooled environment and 

submerged in an R134a bath.  The experimental circuit, a simple chopper circuit, 

consisted of a DC voltage source, IGBT, snubber circuitry, gate controller card, and a 

resistive load shown in Figure 3.6. (This experimental circuit resembles one sixth of a 

complete converter or inverter is used in HEV applications.)  The experimental IGBT is a 

non-punch-through device with a rated continuous current of 13 A at 25ºC and maximum 

forward and blocking voltages of 600 V. A detailed specification list for the IGBT is 

included in Appendix I. 
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Figure 3.6. Experimental circuit 

 

 

Both experiments were performed using the same circuit and components to 

insure no new variables other than cooling technique were introduced.  The IGBT was 

cycled on and off at 1 kHz with a 50% duty cycle.  The voltage Vdc applied was 480 V 

with a fixed load resistance RL of 40 Ω that drew an average current of 6 A.   

The R134a cooled circuit required a custom vessel to house the circuit and the 

R134a refrigerant.  The vessel and setup is shown in Figure 3.7.  The experimental vessel 

is comprised of a glass wall with an aluminum flange at the top and bottom enclosing the 

refrigerant.  Interior to the vessel was the, IGBT, gate-controller card, and associated 

snubber components.  The electrical connections for the DC-bus and gate-controller card 

are made via feed-through pins held in place using potted epoxy for a leak proof seal.  No 

special coatings on the electronic equipment for electrical isolation or surface 

enhancement materials for increased heat transfer were used.  
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(a)  

 

 

 (b)  

 
Figure 3.7. Experimental R134a system (a) Submerged IGBT cooling technique   

                    (b) Test vessel including PE circuit 
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As mentioned previously, the instantaneous voltage and current waveforms were 

obtained using a power analyzer.  The power analyzer is an instrument that can digitally 

sample voltage and current, display their waveforms, store the waveform data, and 

perform associated power calculations.  The test procedures for obtaining the 

instantaneous voltage and current waveforms for the air cooled circuit are as follows: 

1. Configure power supply, Vdc, power analyzer, load resistors, RL, and IGBT 

circuit as shown in Figure 3.8. 

2. Activate gate controller card to cycle the IGBT at 1 kHz and 50% duty cycle. 

3. Adjust the power supply to be in current control mode with a maximum 

average value of 6.0 A. 

4. Use power analyzer to sample a complete period Ts. 

 

 

 

 
Figure 3.8. Experimental circuit containing power analyzer and connections  
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The test procedures for the R134a cooled circuit are the same as for the air cooled 

circuit with the exception of enclosing the circuit in the test vessel, pulling the interior of 

the test vessel into a vacuum, then filling the vessel with R134a to an appropriate level 

where the liquid is slightly above the circuit components. 

The IGBT voltage and current waveforms are identical in both air-cooled and 

refrigerant-cooled environments.  Figures 3.9(a) and (b) are views of voltage and current 

transitions for one complete period Ts.  Figure 3.9(c) has an expanded view of the voltage 

turn-off and current turn-off transitions.  Because the waveforms are identical it indicates 

that R134a does not change the IGBT turn-on and turn-off periods through the 

introduction of additional capacitance across the IGBT terminals or the gate-controller 

card.  Additional capacitance could slow the IGBTs switching times by momentarily 

sustaining a voltage across the gate and source, Vgs, there by increasing switching losses.  

Figure 3.9(d) is a plot of instantaneous and average power for both tests.  The average 

power loss for one complete period Ts of the refrigerant-cooled test was 24.73 W while 

the air-cooled test was 22.21 W.     

The average power dissipated in Figure 3.9(d) was found using (3.1).  Table 3.2 

displays the results of average power dissipated from the IGBT in both the air cooled and 

R134a cooled environments.  The average power for each switching instance of the 

switching cycle is found using (3.2).   

Mentioned in section 3.1, average conduction losses are the largest power losses 

in semiconductors.  This idea is shown in Table 3.2, where the average conduction losses 

for the experiments are the largest in magnitude among all switching periods.   In  the  air 
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(a)  (b)   

 
 

 
 

(c)  (d)  
 

 

 

Figure 3.9. Experimental results for R134a-cooled and air-cooled power systems 
(a) Voltage waveforms (b) Current waveforms 
(c) Expanded voltage and current turn-off waveforms 

(d) Instantaneous and average power loss  
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 Table 3.2. Power dissipated from tested IGBT and PWL comparison. 
 

  
Ptotal  

(W) 

Pblocking  

(W) 

Ps(on) 

(W) 

Ps(off) 

(W) 

Pcond  

(W) 

PPWL  

(W) 

%diff  

PPWL & Pcond

Air 22.12 2.65 0.38 5.85 13.24 13.88 4.8 

R134a 24.73 2.26 0.41 5.75 16.32 15.70 3.8 

 

 

 

cooled environment, the IGBT dissipates 13.24 W, while it dissipates 16.32 W in the 

R134a environment.  The PWL model is compared to the experimental conduction losses.  

The PWL model calculates the conduction losses to be 13.88 W for the IGBT in the air 

cooled environment, and 15.70 W for the IGBT in the R134a cooled environment.  These 

results are reasonably accurate as compared to the experimental results with only a small 

percent difference. Due to the marginal difference between the PWL model and 

experimental, it can be concluded that the PWL is an excellent means for determining the 

conduction parameters for semiconductors. 

 

3.2.2  Automotive R134a Air Conditioner System Results 

 The results from the air cooled and R134a cooled experiments demonstrated that 

the refrigerant provides no interference with normal operation of the power circuit.  

These electrical components have been submerged in the refrigerant for over 300 days 

with no evidence of damage.  Switching characteristics of the IGBT were not affected; 

therefore, to take full advantage of the thermal characteristics of R134a, the circuit is 

operated simultaneously with  the  mock  automotive  A/C  system  shown in Figure 3.10.   
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Figure 3.10. Mock automotive air conditioner system with vessel and power circuit  
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The mock automotive A/C system is constructed from components that comprise 

a 2003 Buick Park Avenue A/C system, which includes a compressor, condenser, 

evaporator, and control system.  A 5 hp, three-phase induction motor provides the 

compressor with mechanical power.  Two service ports are placed in parallel with the 

evaporator refrigeration circuit to provide external mounting and operation to the test 

vessel.  The automotive A/C system has 9320 W of cooling capacity for cooling the 

cabin, which should provide plenty of capacity for cooling the IGBT and proven later. 

The objective of this experiment is to observe the IGBT case temperature, IGBT 

voltage and current waveforms, and air conditioner system behaviors during 

simultaneous operation.  The procedures were as follows: 

1. Enclose experimental IGBT circuit in the test vessel, and connect associated 

refrigerant lines to the air conditioner system. 

2. Pull a vacuum in the vessel and refrigerant lines. 

3. Fill vessel and refrigerant lines to appropriate level. 

4. Follow 1 through 4 of air cooled circuit procedure. 

5. Activate air conditioner system and open service valves to cycle refrigerant 

through the vessel. 

6. Monitor the refrigerant liquid level and make necessary adjustments. 

7. Turn-on power supply and power analyzer and monitor instantaneous voltage 

and current waveforms. 

8. Increase current by 1 A in 30 minute intervals from 6 A to 10 A. 

The test required temperature acquisition devices to capture, analyze, and record 

ambient, IGBT case, and vessel refrigerant temperatures.  A LabView program was 
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written to analyze and record temperature data from Model # 44008 thermistors.  More 

detail of the LabView program is given in Appendix III.  One thermistor was attached to 

the body of the IGBT using epoxy to capture the IGBT case temperature.  It was placed 

in the IGBT’s screw hole, which would not interfere with the operation of the IGBT or 

the refrigerant’s ability to remove heat energy from the IGBT.  Another thermistor was 

submerged in the R134a liquid to capture the vessel temperature.  Analyzing the 

temperatures will quantify how much the mock automobile A/C system will cool with the 

PE devices. 

The test results from the mock A/C test are shown in Figures 3.11 and 3.12.  

Figure 3.11 is a plot of the ambient, IGBT case, and vessel refrigerant temperatures 

versus time.  The IGBT case temperature was calculated to be 4.2°C, while vessel 

refrigerant was on average 1.1°C and the ambient temperature was 22.9°C outside the test 

vessel.  The ambient, IGBT case, and vessel refrigerant temperatures remain nearly 

constant throughout the average forward current levels of 6, 7, 8, and 9 A.  A failure to 

the IGBT occurred at the beginning of the 10 A test.  Evidence indicated that the IGBT 

was conducting a peak current of 20 A for approximately 0.5 ms, which is beyond the 

rating of the device. 

The IGBT experienced a failure during the first moments of the 10 A test.  The 

failure was determined to have been caused by three factors: 

1. Operating the IGBT near rated voltage.  

2. Conducting 20 A for half of period (0.0005 s).  

3. Large stray inductance in the circuit that produces significant voltage and current 

overshoots during turn-off.   
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Figure 3.11. Temperature versus time from refrigeration test  
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(c)  (d)   

 
 Figure 3.12. Instantaneous voltage, current, and power waveforms from automotive air 

conditioner system cooling IGBT 

(a) 6 A test (b) 7 A test (c) 8 A test (d) 9 A test 
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Figure 3.12(a)-(d) are plots of the instantaneous IGBT voltage vce (t), current ic (t), 

and power p(t) for the average current levels of 6, 7, 8, and 9 A.  From Figure 3.12, the 

refrigerant system does not disturb the normal operation of the IGBT voltage and current.   

The efficiency of the IGBT is an indicator of performance in PEs.  Efficiency is 

determined by comparing the total average power dissipated from the complete system 

and the average power dissipated by the PE device.  The efficiency, η, is calculated using 

(3.6).  The IGBT efficiency during the preceding test is calculated to be 99%, which is 

illustrated in Table 3.3.   

%100%100 ⋅
⋅

−⋅
=⋅=

avgdc

IGBTavgdc

in

out

IV

PIV

P

P
η    (3.6) 

Conclusions from the data in this test indicate a typical automotive A/C system 

has more than sufficient cooling capacity to cool the single test IGBT.  As the 

temperature of the IGBT case remained well below ambient temperature, it can be 

concluded that the A/C system can dissipate more heat from additional PE devices.    

 

Table 3.3. Efficiency of IGBT  
 

Iavg (A) Vdc (V) Ptotal (W) PIGBT (W) %eff η 

6.00 461 2766 25.5 99.1 

7.00 533 3731 34.2 99.0 

8.00 522 4176 39.7 99.0 

9.00 587 5283 54.7 98.9 
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3.3 Summary 

Silicon (Si) based power electronics devices are based on four states of operation, 

which includes conduction, blocking, turn-on, and turn-off.  The instantaneous power 

dissipated during each state can be calculated using )()( titv ⋅ , where v(t) is the voltage 

drop across the device and i(t) is the forward current through the device.  A power circuit 

containing an IGBT, gate controller card, and snubber was built to study the power 

dissipation device and switching characteristics in a PE.  An open air and a submerged 

test were performed on the circuit to study the switching characteristics of the circuit in 

the R134a bath, and the results indicate that the refrigerant offers no alterations to the 

circuit. A piece-wise linear (PWL) model was developed using the forward 

characteristics of the IGBT, then compared to the average conduction losses found by 

.  The percent difference for the PWL model was within 5%.  And then the 

circuit was tested while being cooled by a mock automotive air conditioning system.  

Conclusions from the data in this test indicate a typical automotive air conditioner system 

has more than sufficient cooling capacity to cool the single test IGBT.  As the 

temperature of the IGBT case remained well below ambient temperature, it can be 

concluded that the air conditioner system can dissipate more heat from additional PE 

devices. 

)()( titv ⋅
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Chapter 4 

 

SYSTEMS AND SIMULATION 

In the previous chapter, an IGBT circuit was the subject of a series of tests that 

provided evidence showing that R134a has good dielectric properties for the voltage and 

current range found in HEVs, in addition to having excellent cooling effects on a single 

IGBT.  This chapter will take the results of chapter 3 and extrapolate the results to a 

three-phase, six-IGBT inverter similar to what is found in HEV applications.  The 

requirements for the inverter are taken directly from the FreedomCAR specifications, and 

it will be simulated using custom thin-film resistors in the mock automotive A/C system.   

 

4.1  Three-Phase Inverter 

 
 From chapter 1, an HEV is propelled via an IC engine and an electric motor.  

Electric motors are manufactured in many voltage and horsepower ratings.  While many 

HEV configurations are possible (series, parallel, hybrid, etc), the common denominator 

to all of them is the usage of PEs for the interface and control of the electric motor.  The 

electric motor of HEVs is typically a three-phase motor because of their convenience in 

non-traction applications.  The PE package used to control the electric motor is called the 

‘inverter’, which is designed to shape and control the three-phase output voltages in 

magnitude and frequency.   Using an inverter, HEVs can change the on-board battery’s 

dc voltage to a three-phase sinusoidal voltage suitable for traction drive motors.  A three-

phase inverter consists of three switching legs, one leg per phase, as shown in Figure 4.1.   
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Figure 4.1. Three-phase inverter driving an ac machine 

 

 

Each switching leg contains two PE switching devices in series for a total of six switches 

within the inverter.   

The most common switching method uses a unipolar switching method for a 

pulse-width- modulated (PWM) output voltage waveform.  Unipolar switching method 

uses a sinusoidal control waveform at the same frequency as the desired output 

fundamental frequency.  This control waveform is then compared to a carrier triangular 

waveform, which determines the firing pattern for the switch.  In a three-phase inverter, 

each leg has a control waveform 120° out of phase with each other, and all three 

waveforms are compared to one carrier wave, illustrated in Figure 4.2(a).  The output 

line-to-neutral voltage waveform for leg a, Van, is shown in Figure  4.2(b).   Likewise, the  
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(a) (b) 

 

 (c) (d) 

 

Figure 4.2. Characteristic waveforms for three-phase inverter  
(a) Carrier triangle wave and control waveforms 
(b) Van output waveform 
(c) Vbn output waveform 
(d) Vab output waveform 
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output voltage waveform for leg b, Vbn, is shown in Figure 4.2(c).  The output line-to-line 

voltage waveform is found by (4.1) and shown in Figure 4.2(d). 

)()()( tVtVtV bnanab −=     (4.1) 

Mentioned in Chapter 1, the FreedomCAR partners developed a list of design 

requirements to be used in the next generation of HEV vehicles.  One requirement of the 

FreedomCAR is that the electric propulsion system, including inverter, must be capable 

of delivering 30 kW of continuous power.  The efficiency of the inverter is an important 

factor among HEV engineers because it is an indicator of wasted power converted into 

heat by the PE devices.  The wasted power robs the power from the motor and draws 

extra power from the batteries.  Efficiency for an inverter is based on many variables 

such as semiconductor ratings, switching frequency, supply voltage, phase current, stray 

inductance, etc.  Typically, an inverter’s efficiency is 96%; therefore, an estimated loss 

for a 30 kW inverter is 1200 W continuous.   

In the next section, the inverter will be simulated using six thin-film resistors as 

the PE devices.  Resistors are used because the power loss in an inverter is considered 

purely resistive, and an RI 2  loss can model the continuous power loss of each IGBT 

during switching.  The resistors are cooled by the mock automotive A/C system to 

emulate heat from an inverter.   

 

4.2 Thin-Film Resistor 

 
An industry leader in the manufacture of thin-film components, Vishay Electro-

thin-film Films, produced a custom thin-film resistor for the Oak Ridge National 
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Laboratory designed to resemble the footprint of a small PE device.  The physical 

dimensions of a resistor are 0.51 cm by 0.83 cm by 0.05 cm, and it has a value of 10 Ω.  

The manufacturers did not provide any specifications of the resistors; therefore, power 

dissipation, current, and temperature limits were unknown.   

Our main objective is to test the resistors in a method that best simulates the 

power dissipation of an inverter used in an HEV application during normal operation. 

From section 4.1, the average power dissipated by the PE devices in the form of waste 

heat was estimated to be 1200 W.   

Six resistors were configured into a circuit as shown in Figure 4.3.  Three parallel 

branches of two parallel resistors were placed into the vessel, used and described 

previously, and connected to an external dc power supply.  The experimental procedures 

used to test the power dissipation capabilities of the system were the following: 

1. Enclose the resistor circuit in the test vessel, and connect associated 

refrigerant lines to the air conditioner system. 

2. Pull a vacuum in the vessel and refrigerant lines. 

3. Fill vessel and refrigerant lines to appropriate level with refrigerant. 

4. Activate air conditioner system and open service valves to cycle refrigerant 

through the vessel. 

5. Monitor the refrigerant liquid level and make necessary adjustments  

6. Turn-on power supply and monitor voltage and current meters.  

7. Record the temperatures of each resistor branch and vessel refrigerant. 

8. Increase current by 1 A intervals beginning at 16 A after resistor temperatures 

reach steady state 
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LEFT LEG 
RESISTORS 

(tab not shown) 

CENTER LEG 
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(under tab) 

RIGHT LEG 
RESISTORS 

(tab not shown) 

THERMISTORS 

(a) (b) 

Figure 4.3. Thin-film resistor circuit (a) Circuit diagram (b) Resistor assembly 

 

Each branch temperature represents the case temperature of the IGBT device in 

that branch.  A plot of the resistor temperatures of each branch versus time is shown in 

Figure 4.4.  At a first look, the resistor temperatures are different because of the 

configuration of the resistors; see Figure 4.3(b).  The center resistor branch receives heat 

energy from the two neighboring resistor branches conducted by the metal substrate to 

which the resistors are mounted, which increases the center branch resistor temperature.  

The left branch is the coolest because it is placed closest to the inlet refrigerant tube, 

where a fresh supply of refrigerant is being forced across the branch.  

Initially the resistors dissipate 422 W at 16 A as illustrated in Table 4.1, which 

shows each interval of power dissipation.  During this period, temperature fluctuations 

are present due to adjustments on the bulk refrigerant level within the vessel.  Once the 

liquid level settled, the current was increased to 18 A, and the total power dissipated was  
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Figure 4.4. Resistor temperature and power dissipation versus time 
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Table 4.1. Thin-film resistor experimental results 

 

  Branch Temperature (°C) 

Iavg (A) Ptotal (W) Center  Right  Left  

16.0 422 55.5 39.7 35.4 

18.0 531 56.6 40.9 36.0 

19.0 589 61.8 43.9 38.5 

18.4 605 58.9 41.0 37.7 

18.0 592 58.8 40.8 37.5 

17.9 589 58.3 38.7 36.9 

17.8 586 58.3 39.2 36.8 

17.7 582 58.1 38.7 36.5 

17.5 576 57.5 37.8 35.5 

17.4 572 57.5 37.7 35.4 
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531 W.  The center, right, and left branch temperatures reached a steady state temperature 

of 55.5°C, 39.7°C, and 35.4°C respectively.  The current level was then set to 19 A, and 

the total power dissipated was 589 W.  After 100 seconds, a portion of the center branch 

resistor failed at a temperature of 61.8°C.  The center, right, and left branch temperatures 

reached a peak of 75.6°C, 49.7°C, and 44.0°C respectively; at which point, the power 

supply was deactivated for 80 seconds.  A decision was made to continue the experiment 

and the power supply was again activated.   

Because of the failure, the center branch resistance was altered from 5 Ω to 6.3 Ω; 

therefore, more power would be dissipated from the center branch resistors.  A decrease 

of current from 19.0 A to 18.4 A was set, which resulted in a new power dissipation of 

605 W.  During this period, the center, right, and left branch temperatures leveled to 

59.2°C, 41.5°C, and 37.7°C respectively.  Once again, the center resistor begins to fail, 

but the power supply was set at a voltage and current limit to prevent a complete failure.  

From Figure 4.4, the power dissipated takes a series of decreasing steps because of more 

resistor failures until ultimately deactivating the power supply terminated the experiment.   

The results of the experiment demonstrate that the automotive air conditioner is 

capable of cooling the resistors up to 605 W.  The power ratings of the resistors was 

unknown, although a reasonable conclusion based upon the experimental results is that if 

the resistors have a larger current rating, the automotive A/C could sustain the resistor 

temperatures below 120°C at power levels beyond 600 W.   

In the next section, the data is extrapolated to determine the temperatures of each 

branch resistors and bulk refrigerant temperature while dissipating 1200 W. 
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4.2.1 Thin-Film Resistor Extrapolation 

The thin-film resistor experiment presented insightful data as to the effectiveness 

on PEs and cooling capacity of the mock A/C system.  From this experiment, the data is 

used to model the temperatures of each branch of resistors and bulk refrigerant 

temperature while dissipating 1200 W.  The branch temperature will represent the case 

temperatures of each IGBT device in that branch. 

A temperature curve versus average forward current is extrapolated for each 

branch of resistors and bulk refrigerant temperature as shown in Figure 4.5.  The results 

from the plots are shown in Table 4.2, where the inverter dissipating 1200 W of loss, the 

center, right, left, and bulk temperatures are 107˚C, 75.5˚C, 60.0˚C, and 40.8˚C 

respectively.  Finite analysis would be needed to determine the junction temperatures of 

each IGBT because the heat distribution is non-uniform among the resistor arrangement. 

 

 

Table 4.2. Extrapolated thin-film resistor results 

 

  Branch Temperature (°C) 

Iavg (A) Ptotal (W) Center  Right  Left  Bulk  

0.0 0 0.0 0.0 0.0 0.0 

10.0 165 17.8 13.1 14.5 10.0 

20.0 659 61.5 43.9 38.4 26.3 

27.0 1201 107.1 75.5 60.0 40.8 

30.0 1483 130.5 91.6 70.5 47.9 

34.0 1905 165.2 115.6 85.6 58.0 
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Figure 4.5. Extrapolated temperature versus average forward current curves 
   (a) Center branch (b) Right branch (c) Left branch (d) Bulk refrigerant  
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An inverter loss of 1200 W is in agreement with the maximum cooling capacity of 

9320 W specified for the automotive air conditioner based upon communications with 

General Motors, the air conditioner manufacturer [15].  This cooling capacity of 9320 W 

is well above the 1200 W needed to cool the mock inverter and is viewed as a baseline 

for typical A/C cooling capabilities. 

 

4.3 Active IGBT Junction Cooling Simulation 

Experimental results from sections 3.2.2 and 4.2 demonstrate that the removal of 

heat energy from the generating area is the limiting factor for large forward current 

capabilities in PE devices.  Using the IGBT in chapter 3 as an example, the junction to 

case thermal resistance is 2.1 Ω, which translates into a significant difference in 

temperature between the case and the junction.  Presented in this section is theoretically 

removing the case from the junction, and simulating actively cooling the IGBT junction 

layer. 

The case is a special polymer-resin based plastic to physically shield the IGBT 

junction from impact and contaminates damage.  The case is engineered to be thermally 

conductive; however, the metallic backing plate performs the majority of the heat 

transfer.  However, the backing plate is unable to provide enough heat dissipation at large 

current levels, and an example of which is shown in section 3.2.2 where the IGBT failed 

at 10 A of forward current but the case temperature was 5˚C.  The case is physically 

unable to be removed from the actual Si below, as the case is a cast-in-place design with 

the gate, collector, and emitter pins embedded in the plastic.  Theoretically separating the 
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case from the junction will be explored where the junction layer will be exposed to the 

ambient.  Also, the gate, collector, and emitter pins shall be accessible, and a possible 

special coating applied only to shield the Si from contaminates.  The special coating is 

estimated to be a few millionths of an inch applied to the surfaces of the junction layer, 

and it shall have a thermal resistance of 0.5 Ω, similar to thermal grease, which is applied 

between a PE device and a heat sink to provide even thermal conductivity. The thermal 

resistance value was taken from the data sheet for the IGBT found in Appendix I. 

 

4.3.1  Single IGBT Simulation 

The junction layer temperature Tj of a single exposed junction IGBT is simulated 

and compared to a cased IGBT.  The IGBTs are operating under the same switching 

frequency, duty cycle, and refrigerant temperature to minimize error.  The simulation 

incorporates the steady state thermal circuit model of the IGBT and cooling system 

described earlier in chapter 2. 

The thermal circuit model is shown in Figure 2.1.  Equation 2.3 describes the 

junction temperature as a function of the thermal resistance between the junction and 

ambient, ambient temperature, and average power dissipated by the IGBT.  From the 

results of the IGBT experiment in section 3.2.2, Figure 4.6 displays the average power 

dissipated for the average forward currents of 6, 7, 8, and 9 A.  Using quadratic 

approximation, the average power dissipated follows (4.2). 

32
2

1 aiaiaP avgavg ++=     (4.2) 

where: P = Average power dissipated, 
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Figure 4.6. Average power dissipated versus forward current 

 iavg = Average forward current, 

a1 = 0.58545, 

a2 = 0.63624, 

a3= 0.071967. 

Thermal resistance for junction to case, Rj-c, and junction to thin-coating, Rj-co, 

were determined in section 4.3.  The case to R134a, Rc-r, was determined from results in 

section 3.2.2 and thermal circuit analysis.  The temperature of the IGBT case, Tc, is equal 

to 3.0°C, temperature of the refrigerant, Tr, is equal to 1.5°C, and the total average power 

dissipated by the IGBT is equal to 25.5 W, therefore, Ω=
−

=− 0588.0
total

rc
rc

P

TT
R .  The 

thermal models to be simulated are shown in Figure 4.7.   
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Figure 4.7. Thermal model (a) IGBT with case (b) IGBT with exposed junction  

 

 

 

The simulation will hold constant the switching frequency and duty cycle while 

varying the total average power dissipated and forward current.  The simulation results 

are shown in Figure 4.8, which show that as forward current increases, the junction 

temperature increases for both IGBTs.  The manufacturer determined the maximum 

temperature to be 125°C.  The IGBT with the attached case experiences a maximum 

junction temperature at 8.5 A; however, the exposed junction IGBT reaches 17.5 A 

before meeting the maximum junction temperature.  At 17.5 A, the junction temperature 

of the IGBT with a case was estimated to be 423°C by simulation.    

HEVs would be an ideal application for an inverter built from exposed junction 

IGBTs because the inverter would be smaller, lighter, and more reliable than present 

designs.  Smaller, lighter inverters because the IGBTs they will not have a bulky case.  

The IGBTs have a greater current capability; therefore, they will not have to be overrated. 
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Figure 4.8. Junction temperature versus forward current 

4.4 Summary 

In this chapter, PEs were shown to be used in an inverter to control the electric 

motor in an HEV.  These PE devices have losses in the form of heat energy associated 

with switch operation.  The average power dissipated by an inverter was estimated to be 

1200 W.  To experimentally model the inverter, six thin-film resistors were used to study 

the cooling effects on PEs and capacity of the automotive A/C system.  The results of the 

experiment demonstrate that the A/C system is capable of cooling the resistors up to 605 

W, where the thin-film resistors began to fail due to the high current.  However, the 

experimental data was extrapolated to determine the branch resistor and bulk refrigerant 

temperatures at 1200 W.  And then, an active IGBT junction cooling technique was 

introduced, where the case is removed, and the junction is directly cooled by the R134a 
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refrigerant.  The simulation results show that an IGBT with the attached case experiences 

a maximum temperature of 125˚C at 8.5 A; however, the exposed junction IGBT reaches 

17.5 A before meeting the maximum junction temperature.  This technique maximizes 

the effectiveness of the R134a cooling system and the forward current capability of the 

PE device. 
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Chapter 5 

 

CONCLUSION AND FUTURE WORK 

5.1  Conclusion 

 Summarizing the contributions of this research endeavor, the chief motivation of 

this work was based on finding an alternative to conventional power electronics cooling 

methods for hybrid-electric vehicle applications.  PEs are vital to the operation and 

performance of HEVs because they provide the interface between the energy sources and 

the traction drive motor.  As with any “real” system, PE devices have losses in the form 

of heat energy during normal switching operation, which has the ability to damage or 

destroy the device.  Thus, to maintain reliability of the PE system, the heat energy 

produced must be removed.  Present HEV cooling methods provide adequate cooling 

effects, but lack sufficient junction temperature control to maintain long-term reliability.   

 The technique described in this thesis incorporates R134a refrigerant and the on 

board air conditioning system to keep PE devices in a reliable range of temperatures.  

Proven by experimentation, R134a has no damaging effects on the normal operation for 

300 days on a submerged IGBT, gate controller card, and snubber circuits.  The IGBT 

circuit was operated in an air cooled and R134a environment where the voltage and 

current waveforms were compared.  Results indicate R134a induces no additional delay 

or switching losses for the IGBT circuit.  The automotive air conditioner system provided 

a constant case temperature of 4.2°C.   
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 The automotive air conditioner system was shown to have more than adequate 

cooling capacity to cool a six-IGBT inverter.  Based on FreedomCAR specifications, 

normal operation of the inverter IGBTs will dissipate 600 W of heat energy.  The thin-

film resistor experiment proved that the automotive air conditioning could keep the 

junction temperature well below the 125°C target.   

In addition, experimental data discussed in this thesis proved that the thermal 

resistance of the case limits a PE device’s ability to remove heat energy from the junction 

layer.   A simulated comparson of an IGBT with a case attached and an exposed junction 

IGBT was performed using experimental results.  The results from the simulation 

indicate the exposed junction IGBT technique would benefit by reducing the junction 

temperature, increasing forward current ratings, and increase reliability of the device.  

Manufacturers of the IGBT would benefit by reducing time of production, materials, and 

cost by producing exposed junction IGBTs.  

 

5.2  Future Work 

 
First, future work suggestion begins with R134a refrigerant.  The refrigerant was 

not intended for cooling power electronics; therefore the actual dielectric properties are 

not known.  Voltage breakdown characteristics and a multi-year soak study would give a 

greater insight to the feasibility of cooling PEs. 

Next, study of the effects of enhanced surfaces materials and flow impingement to 

assist in the heat transfer process.  Enhanced surfaces such as metallic plates with small 

(< 0.001 in) ridges scored across the surface.  The enhanced surface should assist with the 

 65



formation and departure of bubbles on the surface, which should increase the efficiency 

of the heat transfer of the submerged system.  Flow impingement could increase the heat 

transfer by direct liquid jetting to the heat source.  Flow impingement would ensure a 

fresh supply of liquid was in contact with the heat surface. 

This thesis only considered steady state conditions, no thermal transients. 

Additional study of the thermal transients would help refine thermal model.  Thermal 

transients are treated as impedances in the circuit diagram rather than pure resistance in 

the steady state model.  While this is a good approximation, the thermal transients are in 

fact the temperature relation of one surface change due to a change in temperature from 

another surface.  Thermal transients could give greater detail on the junction temperature 

as disturbances occur in the circuit. 

Last, investigate further the exposed junction IGBT.  Simulation has shown that 

exposing the junction to the cooling surface greatly reduces the junction temperature.  

Actual experimental data would verify the solution and provide additional insight into 

methods of heat removal using refrigerant.   
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Appendix II 

List of Equipment 

 

1. International Rectifier, Insulated Gate Bipolar Transistor, Model No. 
IRGBC20UD2 

 
2. Dell Latitude D600 notebook computer 
 
3. National Instruments DAQCard 1200, 8 inputs, 2 outputs, 100 kS/s, 12 bit 

Multifunction I/O  
 
4. Yokogawa PZ4000 Power Analyzer, DC 2 MHz, 5 MS/s 
 
5. Xantrex DC Power Supply XPR 600-10, 600 V, 10 A 
 
6. Agilent 33250A Function Generator 
 
7. Power Designs, Inc. DC Power Supply, 20.0 V, 1.0 A 
 
8. Dale NH-250 Power Resistor, 250 W, 40 Ω and 80 Ω 
 
9. Vishay Electro-Films, Inc. 10 Ω, Thin-Film Resistors  
 
10. Thermistor Model No. 44008 
 
11. R134a Refrigerant, Dupont 
 
12. 2003 Buick Park Avenue Air Conditioning System comprised of the compressor, 

evaporator, condenser, and control system 
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Appendix III 

 Early in the experimentation phase, a need for an automated means to record 

temperatures quickly arose.  Thermistors, notebook computer, national instruments data 

acquisition card, and LabView software were the equipment available.  A LabView 

program was written to sample the 8 eight theristor temperatures, store the samples in a 

spreadsheet format, display the instantaneous temperatures, and plot a histogram of the 

temperatures.  The user panel is shown in Figure A.1.   

 

 

 

 

Figure A.1. Temperature recorder program user interface 
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