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ABSTRACT

The flow of two phases, gas and liquid, has been
studied in horizontal tubes of capillary diameter. The flow has
been primarily studied in the regime where the gas flows as long
bubbles separated from the wall of the tube by a liquid film and
from each other by slugs of liquid. In this regime the pressure
drop, density and, to a certain extent, the thickness of the
liquid film around a bubble have been correlated. The conditions
under which the long bubble flow can exist and under which the -
correlations are valid have been determined. Of special interest
is that the correlations should be valid in a zero gravity field.
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1. INTRODUCTION

The study of two phase flow is assuming a greater and greater importance
in the technologies of heat transfer and fluid mechanics, Unfortunately, there
is no simple way to analyze or correlate ali types of two phase flow problems,
A large amount of effort must be expended on categorizing each type of flow
problem and analyzing and correlating the significant parameters of each type.
This work categorizes one type of flow problem and analyzes and cerrelates

the significant parameters of it,

As the titie would indicate, the problem to be studied here concerns two
phase flow in tubes of capillary diameter, More specifically, the problem is con-
cerned with flows which have long, somewhat symmetrical gas bubbles separated
from the wall of the tube with a liquid film and separated from each other with
liquid slugs. The flow geometryor flow regime described occurs quite often in
capillary tubes, Because of its similarity to the slug flow regime in large tubes.
and because of the small tube diameters, the flow regime is called capillary slug
flow, To give an idea of the order of magnitude of the size of the systems dealt
with here, it can be said that the work concerns tubes in the order of one milli-

rnetiér in diameter and velocities up to around ten feet per second,
' {

The problem first came up in the study of boiling in small tubes for high
intensity magnets, It was thought that the two phase flow in these tubes could be
analyzed in alsimpler manner than the common two phase flow problem in larger
tubes, Capillary slug flow was not necessarily the only flow regime observed in
these tubes, but study of this flow regime was thought to be a good place to start
the problem, Other places where capillary slug flow may occur is in refrigerators
and possibty in spacecraft boilers and condensers. The latter use stems from the
idea tkat in capillary tubes the effects of gravity should be negligible on earth and

cor;‘elations for therm should be valid at zero gravity,

Some work has been done on the problem of capillary slug flow, In generai,
the ‘previous work falls into two groups, One group has measured pressure drop
or film thickness at very low Reynolds Numbers where the inertia forces are very
small, Their observations were made using glass tubes where the bubbles were
observed to exist, The other group has measured pressure drop and over-all

mixture density at higher Reynolds Numbers, They did not observe or at least
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did not report whether the bubbles actually existed, Of the former group, there
are Fairbrother and Stubbs6+ F. Bretherton4, G. 1. Taylor 9, Marchessault and
Maz;on14 and Goldsmith and Mason7. Of the latter group, there are Lockhart and
Martinelli!3, G. P. Marcy'®, and H. A. Whitesel’?. These groups have obtained

satisfactory answers to the problem of film thickness at very low Reynolds Numbers.

They have not obtained satisfactory answers to film thickness or over-all density
at higher Reynolds Numbers (inertia not negligible compared to viscosity), Nor

have they obtained satisfactory answers to pressure drop at any Reynolds Numbers.

In most of the previcus work the flow was studied with horizontal tubes, In
this work the flows are horizontal also. The flow regime should properly be called
capillary slug flow in horizontal tubes. Where there is no chance of confusion, the

flow may simply be called slug flow.

The pressure drop, density and film thickness are studied for a certain
type of hotizontal capillary slug flow. The existence of this type of flow (flow
regime study) is studied also. The type of flow is one where the surface tension
forces are large compared to the gravity forces and the liquid viscosity and density
are large compared to the gas viscosity and density. The flow is studied with gas
and liquid rather than vapor and liquid, Compressiblie effects are ignored to a

large extent as is heat addition,

+Superscript numbers are referred to in the Bibliography.
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2, ANALYSIS OF FLOW

2,1, Flow Model
Several questions come to mind for a flow model. The prime question is

whether the slug flow regime is stable, That is, do the bubbles tend to stay dis-

crete or do they tend to agglomerate. If the bubbles tend to agglomerate, an

analytical flow model becomes quite difficuit.

To determine whether bubbles and slugs of various lengths tend to 'agglo-
merate a preliminary test apparatus was constructed. This apparatus showed
that long bubbles do not tend to agglomerate. The bubbles appeared to stay at
constant length and travel at the same velocity as others in the tube., There
were some variations in bubble velocities but they were small compared to the
total velocities, If a small bubble {1-2 diameters) occurred, there would be
agglomeration of the long bubbles behind the small bubble until the small bubble

agglomerated also} then no further agglomeration would take place.,

These ei’clperiments indicate that a model without agglomeration would be a
reasonable one for slug flow, The problem is still quite difficult because of the
infinite number of possible combinations of bubble and slug lengths, The problem
is considerably simplified if a model is taken for analysis and experiment which
has all the bubbles of one length and all the sluge of another. All the bubbles
travel at the same velocity and remain constant in length as they flow through
the tiibe. The model can be viewed from two viewpoints. If one looks at the
whole tube, one sees a group of bubbles and slugs all of the same length with o
all thegbubbles traveling at the same velocity. This picture is steady in time.

On the other hand, one may stand on a point in the tube and watch bubbles and
slugs go by. Each bubble and slug passing the point has the same length as the
others before and after it and each bubble has the same velocity. The bubble
and slug lengths and bubble velocity do not change as they go down the tube,

This model would appear to be a reasonable one if the end effects can be neg-
lected. In long tubes this seems a reasonable assumption, Initial experiments
indicated that this type of flow is also possible and therefore the flow is analyzed
in this manner. Itis explained where required how to extend the results of this

type of analysis toé the case where bubbles and slugs are not uniform.
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The uniform bubble and slug length model is as shown in Fig, 2, In
addition to uniform bubble and slug lengths, several more requirements are

made on the model,

The first requirement is that the gas and liquid are both incompressible.
The second requirement is that the liquid to gas density and viscosity ratios are

much greater than one, That is:

Py
= >>1 (1)

B
L > (2)
Mg

The first requirement restricts us to relatively small pressure drops. The
second requirement restricts us very little as this is most often the case with
liquid-gas systems, It does simplify the problem considerably because it causes

the bubbles to be constant pressure volumes imbedded in the liquid.

2.2, Dimensional Analysis '

A complete analysis of the flow might appear possible from the geometry
of the model, However, it turns out to be very difficult, if indeed not impossible,
An analysis has been made for film thicknees by Brel:he:rton4 in the case of non- -
inertial flbw, To go beyond this to the case where inertial forces are important,
then to the point where the flow is turbulent, would require an inordir;ate amount
of work. For this reason, a dimensional analysis is performed to determine what

parameters are required to determine the flow,

The Navier-Stokes equations will yield the proper dimensionless groups for
the liquid, They can be several different combinations, but two which are common

are the Froude Number and the Reynolds Number:

N =  —— (3)




where V is some characteristic velocity and L is some characteristic length,

The boundary conditions at the gas-liquid interface will yield one addi-
tional dimensionless group which must be given in terms of the surface tension
and other forces. This can be derived either using the Pi theorem or by ex-
amining the differential equations of the liquid at the interface, One combination

which turns out to be particularly useful is:

T
n= A (5)

Pltrl'o

The "\Itility of \ is that it is not dependent on any velocity, It is a property of

a given system. Thus controlling this parameter is quite simple.

The dimensionless groups above contain an arbitrary velocity and an
arbitrary length, The arbitrary length is chosen to be r_, the tube radius,
because of simplicity, The choice of velocity is not quite so easy to make,
As will be seen later, the average velocity Ug of the liquid in a slug is very
simple and characteristic, but on the other hand, the bubble velocity UB is
characteriatic also. The bubble velocity in fact turns out to correlate the

data in the simplest manner so it is used.

*.’In addition to the parau.eters (3), (4), and (5) something must be said
of the geometry to completely specify the flow, The only geometric variables
we have are the bubble and slug lengths, These two in the dimensionless forms
(LB/ro) and (Ls/ro) together with parameters (3), (4), and (5) specify the geo-
metry exactly. In doing so, they also specify the flow completely.

~ Since the shapes of the bubbles are now specified, the volume flow rates of
liquid and gas are specified also. It can be seen that the process could have been
reversed. The gas and liquid flow rate ratio could have been specified plus inlet
conditions to give certain size bubbles, This latter technique is more difficult
in this case and is not used; however, it proves a useful way of specifying a flow
later on,
-5 -




This method of dimensional analysis using the differential equations
and some physical insight has been used because it gives an appreciation of
where each parameter comes from, It could have been done equally well by

simply taking all the parameters involved and using the Pi theorem,

2,3, Reduction of Parameters

Parameters {3), (4), and (5) plus (LB/ro) and (LS/ro) specify a system
as shown in Fig., 2 under a great number of possible conditions, If some of the
possible conditions can be eliminated, some of the five parameters can be elim-

inated,

One condition which can be eliminated is the effect of the gravitational
forces. It would seem reasonable that one of the conditions for the capillary
slug flow regime to exist is that the gravitational forces are small compared
to the surface tension forces, We have no direct measure of this ratio of forces
in parameters (3), (4), and (5). They can be combined to obtain this ratio of -
forces, however, The parameter f\, the ratio of gravitational forces to surface

tension forces, is obtained from (3), (4), and (5) as:

2

n - (©)

o

If this parameter is sufficiently small, the effect of gravity on the curvature
of the bubble should be small.

" Gravity may affect the flow in another way, It may cause the bubble to

rige to the top of the tube, This depends on the viscous and inertial forces also,

The complete solution of the shape of the bubble depends on the interactions
of all these forces, To make the problem tractable let us assume that if S\ is
sufficiently small, then the bubble will be symmetrical about the centerline of
the tube and the effect of gravity can be completely neglected, This is a major
requirement and a priori we have no real reason to assume that it is valid,

The ways in which this assumption may be checked are discussed in Sec, 2.9,

Since the gravity forces are neglected, the Froude Number need no longer
be specified, We can go one step further than this in the elimination of para-

meters. To do this we make use of some experimental observations,
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Under the condition of amalln— , bubbles have been found to exist as long
cylindrical bubbles with little axial curvature except at the nose and tail, This

observation allows us to eliminate the bubble length as a parameter to a large

extent,

The lack of curvature in the bubbles means that the bubbles have a constant

radius rye The pressure in the liquid film can then be written as:

P;=Pg - — (7
B
Py is a constant so p, must be a constant also, Therefore, there is no pressure
drop in the liquid film, This leads to the conclusion that there is no flow in the
liquid film, If there is no flow In the liquid film, it must be laid down at the
nose of the bubble and then stay at that thickness until the tail of the bubble comes
past, The observation of a constant bubble radius appears consistent with a '

bubble nose continually laying down a film of some given thickness.

Since there is no pressure drop along the cylindrical portion of the bubble,
r the length of the bubble must have no effect on the pressure drop associated with

one bubble and slug. It would of course affect the pressure gradient, The film

thickness is also not affected by the bubble length, It should make no difference
to the nose of the bubble how long the cylindrical section is since the nose effec-
tively sees orly the film immediately adjacent to it and that portion is always

standing still,

~ These arguments show that only three parameters are required to correlate

pressuré drop and film thickness. They are:

p, U, r
- 1 B'o
Np, = ——— (8)

(9}

(10)




A fourth parameter (LB/ro) must still be considered necessary for complete

specification of the flow,

2,4, Continuity Relationships
Several relationships exist which simplify the method of attack. Two of

these are derived here for later use,

The first relationship is one to determine the average velocity of the
liquid in a slug. To do this we take a flow model as shown on Fig, 3. The
flow is a slug flow with no restrictions except that the two phases must be
incompressible, This flow is not necessarily capillary slug {low but may be.
The gas and liquid may come together in some arbitrary manner. A control
volume is drawn around the pipe as shown by the dotted line, It intersects the

gas and liquid inlet lines prior to the point where the two phases mix.

The mass continuity relationships may be written for the two phases as

follows:

d
Q - = — 11
glPg = Qg2g dt(VSC-V- Pg) ()
Qo - Qr,” (’lf',,c v. ) {12)

From the fact that the control volume remains constant, we may say:

d _ d
= View ™ " gV geuv. 2

&

Equations (11), (12) and (13) can be combined to get:

Q

2t Q= Q1+, (14)

gl

The location of the exit from the control voluine is arbitrary, Therefore,
equation {14) states that the total volume flow at any point in the tube is equal
to the sum of the inlet volume flow rates, This is not surprising, but the next
step yields an interesting result, If the exit from the control volume is located
across 2 slug, then ng is equal to zero, Then le is equal to the sum of the
inllet gas and liquid flow rates le and Q 11° .This should be 8o for all slugs.
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Therefore, at any given time the volume flow rate of liquid in all slugs is

the same and is given by the relation:

Q= Q, +Q, t15)

The average liquid velocity in a slug is defined as the volume flow rate of

liquid divided by the tube cross-sectional area. Thus we can say that:

Q. +0Q
y - &t "4 (16)
2
nr
o
It is sh'lawn in Sec, 2.7 that if UB is constant in time under the conditions
of Secs, 2, 1,' 2.2, and 2, 3, then US is constant in time also, This means that
(le + Q”) must remain constant in time, The inlet flow rates may vary but
their sum must remain constant, It can be shown that no matter what the
bubble-siug spacing may be, if the sum (le + Q[l) is constant in time, it is
equal to the sum of the average gas and liquid flow rates Q,+ Qg' Thus we
can say:
Q,+Q
u.= -1 B (17)

S 2
Tr

o
This will in general be the velocity called slug velocity. Notice that this is

not the velocity at which a slug is seen moving. The slug will move along at
the velgcity of the bubbles Ugpe US

slug as seen by an observer standing on the tube.

is the average velocity of the liquid in a

The second relationship involves the liquid in the slug also, It is a re-
lationship for the amount of liquid which will pass a fixed point in the tube during
the time that one bubble and one slug go by. To derive this relationship use will
be made of the flow model of Fig. 2, The restrictions of Secs, 2.1, 2,2, and 2,3
must hold in this particular case, If we stand at a point where at time zero the

tail of a bubble passes by, we see fluid flowing past at the rate (Us nroz). This

-9.




flow lasts for a period of time approximately equal to (LS/UB). The flow
of liquid stops when the bubble comes by, Thus we can write an equation
for the volume of liquid going past our fixed point during the time it takee

for one bubble and one slug to go past as:

L

‘v. = U. r 2 __.._§_ (18)

S S o U

B
This can be rearranged to give:

V, U L .
_S5 . _5 S (19)
1rr03 UB 1.o

This relation'proves to be useful later on., It is a measure of slug length and

is cong{ideraﬁ‘ly easier to measure than slug length,

2,5, Pressure Drop

The total pressure drop in a system can be given in terms of the pressure
drop associated with each bubble and slug. This pressure drop per bubble and
s].uﬁ is more convenient than pressure gradient, The pressure drop per bubble
and slug should be independent of bubble length for a constant pressure bubble,

whereas the pressure gradient should not,

According to the preceding sections of this chapter the pressure drop per
- bubble and slug may be correlated as a functicn of NRe' A and (Vs/rrro3). An
exact analytical solution is not available or very possible but some fairly simple

analysisibeycond the dimensional analysis is helpful to see how to plot the data,

It is reasonable that when the flow is slow enough to give a low value of
NRe’ there is a portion of the flow in a slug which is fully developed laminar
flow, The ends of the bubbles may cause some effects on the slugs. At low
NRe the end effects should not extend into the slugs very far, As long as the
end effects do not go far enough into the slugs to disrupt the fully developed
laminar flow, the end effects should be completely independent of slug length,
Thus we could write the pressure drop in a bubble and elug as a linear com-

bination of two terma:
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w, U\ [ L
ap = |- LS55 +x (20)

r r
o .

where the first term on the right is the laminar flow pressure drop and K is

the end effect, Equation (19) can be used to rearrange equation (20) to?

g\’
AP . S,k (21)
p'l UB 1rr03
r
[»)

K is not the same in both equation (20) and (21), of course, It simply represents
end effects of some kind, The K may be a function of Npe and \, but by defini-

. 3
tion not of (Ls/ro) or ('\)'S/wro ).

The range of validity of equation (21) and the function K must both be deter-
minedsby experiment, Outside the range of equation (21) no simple analysis is
available, There we can only use the dimensional analysis to guide the experi-
ments, This is still not too bad, The three variables NRe' X, and (’\fs/nro3)
should not be difficult to vary independently.

Correlations based on (‘lfs/-trroB)' and derived from uniform bubble and slug
lengths should apply to the case of nenuniform bubblie and slug lengths provided

that the film thicknesses of all bubbles in a tube are approximately constant..

2,6, Density of Mixture

The ratio of the volume of gas to the volume of liquid in a tube is not

necessarily the ratio of the gas flow rate to the liquid flow rate, Therefore
densitf, which is determined from the ratio of gas to liquid in a tube, is
difficult to calculate in general. In a slug flow, however, we have a simple

means of determining density,

To show how density may be determined, we once again take the flow

model of Fig. 2. The average density of one bubble and one slug can be defined

2 ( ;
Py E"'o (Ls"LB)' VB] teg Vp 22)

> 7
1'I’l'o (LS+LB).

as:

p=

where VB is the bubble volume, This can be reduced to:
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V. (P -p )
B
PEp, + — g ! (23)
LESR (LS + LB)
The volume of gas in each bubble can be stated as:
Q (L. + Ly)
_ g 'S B
Vg = ——————— (24)
Un
Equations (23) and (24) can be combined with Equation (17) to give:
Q U
S
P=p - (91 - pg) g (25)
Qg + Qt Uy
This é'éiuatior,l‘ is exact and depends only on continuity relationships and the
definition of average density, If we make the restriction that (p! /pg)>> 1,
then equation (25) reduces to:
Q U
pep | 1- |=E 5 (26)
Qg +Q,/\ Uy

This equation gives the average density over any integral number of bubbles,

A quite similar equation for density was derived by Griffith and Wallis,
They deyeloped density in terms of velocity differences instead of velocity ratio,

Equation (26) can be extended to the case where the bubbles and slugs are
not of uniform length, The only requirements are that all the bubbles have the
same velocity and that the flow rates of gas and liquid do not fluctuate sharply,
By the latter it is meant that in the time it takes for a bubble to pass through the
tube, the flow coming out the end of the tube should average out to the average
gas and liquid flow rates, The analysis for density is performed using the model
of Fig. 4, Ignoring gas density, the average density in L, should be:
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p= 2 (27)

=1 Bi (28)

From the restriction that the flow rates do not vary sharply from the average
it can be said that:

Vv, |2 (29)

Equations (28), (29) and (17) can be combined to give:

Q U
1- |—B S (30)

Qg + QI Ug

— -

g o]

It ia seen that equation (30) is exactly the same as (26)

The density over a whole tube should not be significantly different from
the density over an integral number of bubbles. This is especially true when

the numpber of bubbles in a tube is large.

From equations (26) and (30) it is seen that to correlate density we need
only correlate (US/UB) In the flow model of uniform bubble and slug lengths this
can only be a parameter of Npe’ A, (Vs/wr ) and (LB/r ). It is shown in the
next section that the independence of film thickness on bubble length also implies
independence of (US/UB) on bubble length, Thus (LB/rO) can be disregarded as
a parameter, The model of uniform bubbles and slugs was chosen because bubble
velocxty and thus (US/UB) were thought to be independent of slug length or
(‘Vs/m' . We cannot entirely disregard (V, /1rr 3 in correlating (US/UB) but

its effects should be small,
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2,7, Film Thickness
The film thickness is related to the bubble and slug velocities by the
relationship:

[6)
.__§.=l-m (31)
U

w

where m is the fraction of the cross-sectional area of the tube covered with

liquid, For a concentric bubble m is given by:

2
m=1-|— (32)

where s is the bubble radius, This relationship results from continuity and
the lack of flow in the liquid film., The volume flow at a cross-section inter -
secting.a bubble is equated to the volume flow at a cross-section intersecting

a slug as follows:

2 2 ‘
UB(I - m) LESRE US wr (33)

From (33) equation (31) follows,

Equation (31) implies that if film thickness is not affected by bubble
lengch, neither is the ratio of slug to bubble velocity,

If the bubble length stays constant, then the film thickness as measured
by (1 - m) must remain constant, Thus the modei of constant bubble length

and constant bubble velocity implies constant Us.

2,8, Effect of Gas Viscosity

The analysis for the most part has had one restriction on the viscosity
of the gas which is that the viscosity ratio (K, M g) must be much greater than
one, It has not yet been established, however, how a finite gas viscosity will

effect the analysis,
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We now have eufficient information on what to correlate to obtain
pressure drop, density and film thickness in the absence of gas viscosity,
A way of determining the effects of gas viscosity is to assume a reasonable
flow pattern for the gas and see how it affects the various parameters., In

essence, this is a perturbation from the zero gas viscosity model,

A model which we can choose for the gas flow is that it flows as a fully
developed laminar flow, This causes a problem at the bubble ends but that is
ignored, If we further assume that the gas liquid interface has no slip, that is
gas and liquid travel at one velocity at the interface, and the liquid in the film
is traveling in fully developed laminar flow also, we have a tractable flow model.
That is, we have a fully developed,viecous, annular flow, An analysis under
these assumptions is performed in detail in Appendix B, The result of thig
analysis is a relationship between film thickness, viscosity ratio and the local
gas and liquid flow rates. This relationghip is combined with continuity re-
lationships in Appendix C to obtain:

Ug 16
— = (1 -m) |1+ m (34)
UB (1 - m) 1+ _3 (1 - m)

m “g m /|

This should be a first order approximation to the film thickness around a bubble,
Notice that when (p.l/pg) gets very large, equation (34) becomes identical with
equation (31), Equation (34) is plotted on Fig, C2 with (1 - m) plotted versus
(US/U ) using (p.l/p. ) as a parameter, It can be seen that for values of

(p.l/p. <5 the difference between (US/UB) and {1 - m) as determined by
equation (31) may become significant when (US/UB)< 0. 80,

This flow model also allows us to make an approximation for the pressure
drop within a bubble, The pressure drop with this flow model is the laminar flow
pressure drop in the gas or liquid, They are the same as is shown in Appendix B,

This pressure drop can be calculated roughly from the equation:

8Uply Py (35)

2
B

]

AP

r
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The small velocity of the liquid is ignored in this approximation although the
film thickness is accounted for, This pressure drop is not intended to be an
accurate one but it should give the correct order of magnitude of any bubble
pressure drop,

The effects of gas viscoeity as given in equations (34) and (35) are small
but can be troublesome., They are sufficiently large to cause some doubt whether
to correlate (1 - m) or (US/UB) while ignoring (p.l/p.g). This must be done both
ways to determine which is better, if indeed either will work, The bubble pres-
sure‘drop is to be subtracted from the total pressure drop before correlation,
This should be permissible provided that it is a small fraction of the pressure

drop.

2,9, Gravitational Effects
In Sects, 2.3 through 2,8 of this chapter it was assumed that the flow is

free of gravitational effects provided that the parameter 1 is small, Obviously,
this must be an oversimplified way to neglect gravity, In this section the effects
of gravity are studied with no gas viscosity, To begin with, we specify a system
with the parameters:

p U r
NRe = _1_2-_0_ ' (36)
o
p, gr 2
o =+4-=° | (37)
o
. 2
A= 4 (38)
P,
* L
_B ' (39)
rO
L
S (40)
b
[o]

The system is the same as the system described in Sec, 2,1 of this chapter,
The five parameters are equivalent to the parameters derived in Sec, 2.2, The
only difference is that S\ is substituted for NFr- Algo, it is assumed that ﬂ
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is small, We now use the same technique as that used to study the effecte
of gas viscosity, We assume that SU is truly zero and the flow is free of

gravity. The flow is symmetric about the axis of the tube, This allows us
to use all the concepts derived in Secs, 2.3, 2.4, 2,5, 2,6, and 2,7,

Let us now increase the force of gravity to the point where it no longer
allows a perfectly symmetrical flow, There are two things which are likely to
happen, One is that the shape of the bubble loses its symmetry., The second
is that the bubble rises to the top in some way.

When these things happen the film thickness no longer is governed by
the thickness at the nose, However, there should still be very little axial
flow in the filmm, Thus equation (31} should still be valid, since m is the

fraction of the cross-sectional area of the tube covered with liquid,

The value of (Ug/Up) or (1 - m) should become a function of fL as well

as X, NRe' and possibly ?\fs/trro3). The parameters, US/UB or (1 - m), should
still be determined at the nose of the bubbles, Thus one check of gravitational
effects is to see if (US/UB) or (1 - m) changes with N , all other parameters
being constant, This gives an indication whether the bubble shape at the nose

is being affected by gravity.

Behind the nose of the bubble the liquid film may drain or the bubble rise,
whichever viewpoint is convenient, If we ignore the axial surface tension forces
we can look at the drainage as 2 two-dimensional, unsteady flow problem, Since
the liquid film is very thin in general and should flow slowly, we assume that it
ﬂov"}s non-inertially, That is, viscosity is the primary force preventing drainage,
The Navier-Stokes equations with no inertial terms should then govern the flow
in the filth, ‘The boundary condition at the wall is zero velocity and the boundary
condition at the gas interface is zero shear stress, Under these conditions, the
magnitude of the forces tending to distort the shape of the bubble from a circular
shape is governed by the gravitational forces, Thus iffl is small, though
not zero, the bubble in two dimensions should tend to stay a circle, The rise
time of a two-dimensional bubble from the center of the tube to the top can then
be calculated. This calculation is carried out in detail in Appendix A, The
calculation of the true rise time is tedious because it must be done numerically,
A good approximation is achieved for the rise time by assuming that the bubble

rises at the velocity it has when it is concentric with the tube, The time avail-
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able for a bubble to rise is the time it takes for a bubble to pass a point in
the tube, The analysis combines the parameters governing the rise velocity
with the time available for bubble rise. to give a parameter T which can be
used to determine the extent of bubble rise,

L.p, gT
v = BY 1 o (41)

U]3 L]

This parameter plus the concentricity of the bubble at the nose and (1 ~ m) com-

pletely determine the amount of bubble rise,

Assuming a bubble which is concentric at the nose, the value of T at
which the bubble tail will touch the top of the tube is plotted as a function of
(1 = m) on Fig, A3, This value of T is calculated from the assumption that
the .rise velogity is the velocity at which the bubble initfally begins to rise

as Indicated above,

The manner in which this drainage effects the flow in the slugs is un-
certain, but general statements may be made. It should make the flow there
non-symmetric also, Once again this may show up in a change in (US/UB).
Another way this may affect the flow is that it may affect the pressure drop

in the slugs.
1.

2,10, Flow Regime

Any flow in a horizontal tube which fits the description given in the intro-
duction should properly be called a horizontal capillary slug flow, This would
be (.)f liftle value to us, however, because the only flow which is studied here is
a horizontal capillary slug ilow with certain restrictions, These restrictions
are' therefore; included as part of the specifications for the horizontal capillary

slug flow, Initially these reatrictions are made as:
1. p > 1
p,/pg™
2. 1
iy /g >>

3, SL ‘is very small.

Thé results of the experiments combined with the analyses should yield a better
limit for (p.l/pg). The limit for (pl/pg) has not been discussed, but because of
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the very, very large ratio for most liquids and gases, it is felt that any
lower limit is exceeded in most cases, The third requirement has only been
postulated, The effects of variation in L must be atudied experimentally and

its results included in the flow regime specifications,

The discussion above has been concerned with the problem of whether a
given long bubble flow is one which has been studied here. There is another
possibility and that is that the above specifications may be met but the flow
may still not be a long bubble flow, The existence or non-existence of a long
bubble flow in this case must be determined by the four parameters of Sec. 2.3,
Npor M (LB/ro) and (Ls/ro), or an equivalent set, The exact determination
of flow regime changes is closely linked to the results of the experiments, so
further discussion of flow regime boundaries is halted until the results of the

experiment are discussed,

2,11, Results of Analysis

The an’a}lytical results of this chapter show that if gravity and gas viscosity
may be ignored, the pressure drop, density and film thickness may be corre-
lated as a fuf;ction of Ngpe? A and (lfs/wro3). They can be correlated using measgure-
ments of pressure drop per bubble and slug, slug velocity, bubble velocity and
W/ ).

o

The effects of viscosity and gravity can be approximated with simple
analyses. The results of these analyses can ve used to check the reasonability
of Ithe assumption of no gravitational forces or gas viscosity, The effect of gas
viscosity on film thickness is checked by equation (34). The effect of gas viscosity
on pressure drop is calculated from equation (35). The gas viscosity does not
affect de:;sity except that it may affect (US/UB). The gravitational forces are
checked by observing the effect of SL on (US/UB) or (1 - m) and pressure drop,.
Also the bubble rise analysis checks film thickness changes due to gravity,

Unfortunately, the two effects, gas viscosity and gravity, cannot be
separated well in a practical experiment, It was hcoped that the experimental

results would show some means of separation,
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3. EXPERIMENTAL TECHNIQUES AND MEASUREMENTS

3.1, Required iMeasurements and Methods of Measurement

The analyses of Chapter 2 show what measurements are required to corre-
late pressure drop, density and film thickness in the absence of a gravity field
and gas viscosity. They are the pressure drop per bubble and slug, bubble
velocity, slug velocity and (‘V'S/m'oz). In addition to these measurements the
bubble length is also required to check the effect of gas viscosity on pressure

drop and the effect of gravity on bubble rise,.

The measuremente are made on a system similar to the model for

)

analysis, This is, of course, the only way where a single value of ('\fs/mr0

and (LB/ro) has any meaning,

The pressure drop is measured over a large number of bubbles over a
given length of tube. The bubble length and the bubble and siug length are
measured. Thus the number of bubbles and slugs in a test section are known,

and the pressure drop per bubble and slug can be found directly,

The bubble velocity is found from this same measurement of bubble and slug
length and a measurement of bubble frequency. The slug velocity is found from

medsurement of the gas and liquid flow rates and the use of equation (17).

The equipment to make these measurements and the whole experimental

test system are explained in the next section.

3.2, Experimental Apparatus

An apparatus was constructed to create a uniform bubble and slug flow
and to measure the various parameters, A schematic outline of the apparatus
is shown in Fig, 5. It is a once through system designed to make all measure-
ments ;imulté.neously.

' The liquid reservoir is a pressurized container (a pressure cooker) which

holds a polyethylene container of liquid, The reservoir is pressurized by the
same gas supply which is used to supply gas to the test section. The connections
areisufficiently interchangeable so that the liquid can be saturated with gas before

a test run, The liquid goes from the reservoir to the bubbler,

The bubbler is a device to bring the gas and liquid together in such a way

that uniform bubbles and slugs are formed. It consists of a conical section of
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plexiglas, through which the liquid is introduced, and a piece of stainless
steel hypodermic tubing, through which the gas is introduced, The -conical
section tapers gradually from around a half inch diameter to the diameter

of the test section or slightly larger. The hypodermic tubing is placed along
the axis of the conical section and can be moved along the axis. The tubing
is approximately one sixteenth of an inch in diameter. The bubble and slug
lengths may be varied by varying the position of the hypodermic tubing and its
size, The gas and liquid flow rates are regulated with needle valves located
as close as possible to the bubbler, This is essential to obtaining a well re-
gulated flow, The bubbler was tried in both a vertical and horizontal position,
It worked both ways but it was found that at higher velocities there was great
difficulty in turning the bubbles back to the horizontal direction, Therefore,
the horizontal position was judged to be the best all around position, although

some data was taken with a vertical orientation at low velocities,

Frém the bubbler the two phases flow through a calming section of at
least 500 diarheters in length, This serves to both saturate the liquid and gas
with gas and liquid respectively and to eliminate entrance effects on the test
section, The'flow goes from the calming section directly into the test section,
The test section may be the same tube as the calming section or it may be
another piece of tubing of about the same diameter which is connected to the
calming section with a special fitting, The division of the test section from
the calming section is a pressure tap. The pressure tap may go right into
the tubing or may go into the special fitting, This special fitting is a piece
of pl‘exiglas with a hole in it of the test section diameter, The fitting allows
both the cglming section and the test section to be lined up with it so that the
flow'sees little change in diameter,

The tubing for the test section and the calming section is precision bore
'bord,silica_te éhss tubing with a diameter tolerance of + 0,.0003 inches, The
tubing in the test section was calibrated by measuring liquid flow rate through
it and measuring pressure drop. This gives an over-all average radius of the
tubing, In all but two of the cases, the test section diameters fell within the
tolerances when calibrated this way., The two cases where they did not were

not sufficiently far off to cause any problems. The calibrated radii were used

in célcula.tions.
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From the test section the flow goes to a gas liquid separator., From
the separator the gas and liquid go to separate metering systems. Both

metering systems are capillary tubing laminar flow meters,

Four gas metering tubes are connected through a manifold to the gas
liquid separator. They are ordinary capillary tubing of the order of one half
to one millimeter in diameter and one meter in length, The different tube
sizes and possible combinations of tubes allow a considerable range of flows,
The pressure drop for the tubes is measured with a manometer also connected
to the manifold, The connecting tubes and the manifold are of sufficient dia-
meter so that very little pressure drop occurs in them, The tubes are suffic-
iently long and the velocities sufficiently low so that entrance effects in the
tubes are negligible, The maximum pressure drop allowed through the tubes
is about 20 centimeters of water. This keeps the compressible effects small,
For isothermal flow in the tubes the compressibility is less than two per cent
witl{‘a:gressull"e drop of 20 centimeters of water, This small amount of com-
pressibility, however, is accounted for by taking the measured flow rate to be
the volume flow rate at the average pressure of the tube entrance and exit
(atmospheric); The temperature of the gas is taken to be the temperature of
the liquid, This is usually within one degree. Centrigrade of ambient tem-

perature in the experiments, so it should be valid,

The tubes were calibrated with air saturated with water vapor, The
viscosity of the saturated air was calculated from the formula of Wilke18
for a binary mixture, This formula gives a viscosity for saturated air of
about two per cent less than the viscosity of dry air, Then, since the formula
should ggve only an approximate answer, the calibration was checked with
water in two tubes., This showed that the viscosity as determined by the
formula of Wilke gives about the same calibration for the tubes as does water,
The calibrations with air saturated with water were then accepted as true,
Then each possible combination of liquid vapor and gas was checked in the
tubes. The viscosity of each mixture was determined at saturation conditions,
It was found that mixtures of nitrogen and heavy hydrocarbon vapors (heptane,
octane) have a much greater decrease in viscosity than air does with water,
The order of magnitude is properly predicted by the formula of Wilke, but

for flow measurement purposes, it was considered necessary to measure

the viscosity of the mixtures at each temperature where it was used.
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This technique of measuring viscosity by measuring the flow rate and
pressure drop should give a value of viscosity which,when used in the reverse
procedure (from pressure drop and viscosity calculate flow rate ), should give

a result as accurate as the initial flow rate measguring method, The original

flow measuring method, or the calibration technique, should be accurate to

about two per cent,

This fneasured gas flow rate is unfortunately not necessarily the value of
Qg in the test section, A small but finite amount of compressibility must be
taken into account in the test section., This is done by assuming that the average
gas flow rate in the test section is the flow rate if the gae were at a pressure
which is the average of the inlet and outlet bressure. Assuming that this is

isothermal flow, we can say:

.t

v P ,
2 _ 1 (42)
Vi Py

where 1 represents conditions at the average pressure (as determined above)
in the test section and 2 represents conditions at the average pressure in the
meter tube,. Now the ratio (vz/vl) should also be equal to the ratio of gas
volume flow rates, (QgZ/le)' Therefore, we can write:

Q p .
g2 _ 1 (43)
le Py

.
ng is measured and so are P; and Py. Therefore, we can calculate le.
In this case only le and ng are not the instantaneous flow rates as given

elsewhere, but are the average flow rates at 1 and 2,

Some objection might be raised at this point because all analyses were
made for incompressible flow, The only defense for the actions here is that
some compressible effects are inevitable, In this case, they never go over
twen’l‘y per cent, The corrections, therefore, are never more than ten per
cent, In a case where the effects are this large, too large to ignore but still
not excessive, an averaging procedure for the flow rate appears to be a reason-
able wz'ly to handle it, It is known that somewhere in the tube. the results ob-

tained are true,
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The liquid flow goes from the separator, past a thermometer then to
a manifold. From the manifold the liquid can be made to flow in one, two,
or three tubes, Each of these tubes is of a different size in diameter and
length. These tubes each have a manometer system to measure pressure

drop across them., Entrance effects are made negligible in these tubes by

having long calming sections or low flow velocities. Care is always taken

to agsure laminar flow in these tubes,

As in the case of gas tubes, these tubes were calibrated for each liquid,
These calibrations showed that the viscosities and densities of the liquids tested
were not quite those reported in the literature, The differences were con-
sidered big encugh to take into account for flow measuring purposes but not

enough for other uses,

The accuracy of the liquid metering system is not as great as that for
the gasimetering system., The reason for this is that the liquid viscosities

in general are much more sensitive to temperature than are gas viscosities,

The worst offender is water, At 25°C its viscosity changes 2.5 per cent per
degree C, Tl;e liquid temperature is measured just ahead of the manifold to
+ 0, 1°C with :;1 thermometer, The ambient temperature is measured to this
accluracy alsé. As long as there is a difference between liquid and ambient
temperature not much greater than 1°C, there should be an error due to
temperature of less than 2,5 per cent, This is true in most cases in the
experiments and the worst case is where the difference is about 1,5°C. In
addition to this error, there is still the possible error in calibration flow
meaaur%ment"of about one per cent, Thus the total error can be in the

order of three or four per cent,

! These two flow meters were used in most of the experiments, In
some of the early experiments, the flow was collected and timed, The gas
was collected by displacement of liquid in a volumetric burette and the liquid
was collected in a graduated cylinder, Also in some of the low liquid flow
rate experiments the liquid was.collected and timed while the gas was metered
through the gas tubes, These techniques of méasuring the flow give as good
or better answers than the flow meter tubes, for they are the same techniques

used to calibrate the meter tubes,

- 24 -




The pressure at the entrance to the test section is measured by a
manometer leading from the tube at that point. For low pressure drop only
one leg of the manometer is used, For high pressure drops three legs are |
used. The second two legs are separateci from the first leg with a column
of air, The firet leg is, of course, always filled with the test fluid, The
second and third legs are filled with that or some other suitable fluid, The
pressure at the end of the test section is obtained from the manometer on the
separator., It is the same manometer used tc measure pressure drop for gas

flow,

The bubble and slug lengths are measured with a Polaroid camera and
a strobe light, The flow is photographed and the bubble and slug lengths are
measured from a meter stick which is located next to the test section, Sample
photographs of slug flow are shown in Fig., 6. By measuring the over-all length
of a number of bubbles and slugs, one can obtain a fairly accurate (about + 2'per
cent)'value of the average bubble plus slug length. The bubble frequency is mea-

sured with a strobotac,

The camera also allows a2 good visual study and record of the flow regime,

It shows the type of flow quite well.

3.3. Experimental Procedure

A standard procedure was adopted for taking experimental data, Small
deviations were occasionally made from this procedure but no great deviations

were found in the results,

The liquid reservoir is saturated with the gas by bubbling gas into the
reservgir through the liquid outlet line, This is done at atmospheric pressure,
After the liquid is saturated with gas, the connections are switched to that
shown on Fig. 5. Care is taken to assure that the gas pressurizing the reser-

voir remains essentially pure while switching connections,

The reservoir is then pressurized to some pressure between two and ten
psig. The li‘quid valve on the bubbler is then opened and all the liquid meter
tubes and manometers are filled. The liquid meter tubes are then closed off,
All valves on the gas metering system are closed also at this time and the test
section manometer is filled with liquid to a level above the expected pressure
drop. The test section manometer is then closed off, A preselected bubble

and slug length and bubble frequency are set to flow through the bubbler,and the
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proper meter tubes are opened. When equilibrium is reached in flow rates,
bubble and slug length, and bubble frequency, the test section manometer is
opened, The overcharging of the manometer assures that no gas flows into
the manometer, When this manometer comes to equilibrium,all the data is

taken,
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4, EXPERIMENTAL RESULTS

4.1, Discussion of Experiments

The experiments described in Chapter 3 were run with various sized tubes
and various liquids and gases. The experiments were run at ambient temperatur
which rarged from 20°C to 30°C. The bulk of the experiments were run at close
to 25°C, 4 brief summary of the various combinations of liquids and gases used
is given below in Table A, Normal heptane and normal octane were used in the

experiments, References to heptane and octane in the text refer to these fluids,

TABLE A
Number Liquid  Gas  Tube Radius (nominal)
1 Water Air 0.0514 cm
e Water Nitrogen 0.0514 cm
3 Water Air 0.0795 cm
4 ' Water Nitrogen 0.0795 cm
5 ;N-Heptane Nitrogen 0.0514 cm
6 N-Heptane Nitrogen 0.0795 cm
7 N-Heptane Helium 0.0514 cm
8 ‘N-Octane Nitrogen 0.0514 cm

The bulk of the data was taken with the first six of the possible com-
binations. The reason for this is that heptane and water have the same value
of X foF a given radius tube, This is in spite of the fact that Py My and ¢ are
each different in the two liquids, This made the data plotting much simpler,
For a given sized tube the data for the two liquids could be plotted versus NR
with only one parameter, ('lfS/‘nr .

By using two different sized tubes, \ was varied to a certain extent,
After the correlations were well established the last two systems were tested,
Helium was tested with heptane to test the effect of gas densgity on one flow
regime boundary, The octane-nitrogen system was tested to show the effect

of varying \ further,
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These systems had different values of (p.l n )and L . The vaiue of
(p.l/y. ) was varied between approximately 25 and 50 The value of fL was
kept small enough so that with zero velocity the bubbles were distorted very
little. For this to occur, fL must be small compared to one. L was kept
smaller than 0,22, '

The results of the experiments are first discussed under the assumption
that (p.!/p. ) and SL do not affect the flow, After that the effects of (p. /p. )

and §L are discussed,

4,2, Pressure Drop
The analysis of Chapter 2 states that at low N.. we should be able to state

the pressure drop per bubble and slug as:

AP . 8V Lk (44)
Ky Ug Tr1_03

r

0

where K represents some end effects. These end effects may be functions of

A\ and Np , but not of ('U./'rrr ). Initially, the data for different values of A

were plotted on separate graphs with the coordinates (AP/p.I B/r ) and (1%/1rr .
NRe was indicated as a parameter on these plots, It was found that at 0<NRe< 270
the plots for the different values of A\ fell on the same straight line, Thus the

data were all plotted on one graph, This is shown on Fig. 7., The values of \

and the other experimental conditions for Fig, 7 as well as the rest of the data
are shown in Appendix D, A line with a slope equal to 8 and intersecting the
(AP/p. UB/r ) axis at 45 fits the data quite well, This means that the equation
(44) is reasonably valid and the end effect is a constant. Equation (44) can then

be writfen:

s\ :
| AP . S 445 (45)
p}z UB T 3
(o]
ro

This equation is valid in the range of Npe? 0<NRe< 270, This range of Npe
is called Region I,

It appeared that for a certain range of N > 270 the form of equation (44)

should still be valid, The end effect term would have to be changed, of course,
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The end effect was experimentally determined using the different values of \
as before and varying NRe' This value of K was plotted on separate graphs
for each value of A as a function of NRe" Once again, these plots showed no

! dependence on A, The data showed t}_ié.t K could be approximated as:

r

‘ p, U T

. K=0163 -4 B¢ (46)
By

fo_r a range of NRe’ 270<NRe< 630, This range of NRe is called Region II,
In Region II the equation {44) takes the form:

‘:' 81\, p. U,
| k AP | 5 +o0.163 LB o (47)
-k "I'IUB T 3 o’
, o
r
o

By multiplying both sides of equation (47) by (p.!UB/ro), one would see that
the end effect term is an inertial pressure drop. The data showing the validity
of equation (47) is shown on Figs. 8, 9, and 10. As can be seen on these

figures, equation (47) is reasonably valid,

At a value of Np of 630 the value of K as a function of Np = suddenly drops
and then rises again gradually, The data begins to spread as a function of
(Us/m'OB). Thus the value of K becomes a function of ('\fs/'rrro3), and its basic
meaning is destroyed or at least as a tool it becomes of little worth, Therefore,
the range of NRe> 630 must be correlated by more complex means. This range
of NR% is called Region III. It was expected that since A did not affect the pres-
sure drop correlations in the lower NRe regions, it would not affect pressure
drop in Region III, Thus (aP/k Up/r,) was plotted as a function of Ny, with
(Us/vro3) as a parameter. The data and all the experimental conditions for
Region III are shown plotted on Fig, 11, It can be seen by inspection that the
data does appear independent of A in Region III also., As before, a simple
equation can be written for the pressure drop in this region, It is:

p,Uq T
AP - 80+40.02 + 0,011 Vs £ B o (48)

o
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However, this equation cannot be as well explained physically as equations (45)
and (47) were explained in Chapter 2, For this reason, it appears that it should
not be used outside the range of variables tested. The correlations may change
in character completely outside the tested range whereas it is reasonable that
in Regions I and II the correlations should be valid outside the range of test

variables,

Region III does not necessarily extend to infinite N There is a very

Re*
definite boundary on NRe’ As velocities go up, the tails of the bubbles begin
to break up into small bubbles., This is a flow regime transition. Generally,
in the experiments here all the transitions occurred at a value of N of

Re
around 2000,

This is not the criterion of transition,but it explains why all the data cuts

off at around that N The data shown is all in slug flow,

Re*

The correlations for pressure drop are all obtained from data for pure
liquid systems, That is, the liquids in the systems are pure compounds, It
was found that systems which are not pure have entirely dxfferent results for

pressure drop.

The question of importance is what is a pure compound. A pure compound
is defined here as one which has the viscosity, density and surface tension of a
pure compound as reported in the literature, Of these the greate'st importance
is the surfacé tension. It is the property most easily disturbed by impurities,

and of common liquids water is the liquid most easily disturbed.

It was found that when new Tygon tubing (cleaned with detergent and rinsed)
was used in the liquid inlet lines, the surface tension of the water decreased by
about nine per cent. This decrease affected the pressure drop quite strongly

as can Be seen in Fig, 12 for data taken in Region I,

This result is surprising since everywhere else the pressure drop is
independent of surface tension (as shown by independence from \), It is attri-
buted to the nature of surface tension when it is decreased by a small amount
of contaminant, When water is contaminated with small amounts of alcohol, it
is known that the surface tension is a function of the time which a surface has
existed. It is likely that this contaminant, though its exact nature was not in-

vestigated, is of the same nature, If this is so, the surface near the nose of
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a bubble essentjally sees a higher surface tension than the surface at the
tail. This would cause shear stregaes in the liquid film and some pressure

drop.

Because of the infinite number of possible contaminants and degrees of
contamination this problem was investigated no further, Care was taken after
this phenomenon became known to meagure a sufficient number of surface tensions

to insure pure liquids.

The effect of gas viscosity on the pressure drop was corrected for by
using equation (35). This equation gecounts for gas viscosity and bubble length
in one step. The corrections were made only on Figs, 7 throughv 11, The
corrections were of suca a small nature that it was not felt to be worthwhile
to make them on Fig. 12, The resultas of that figure would not be changed by
such a correction, Further discussions and justification of this correction

are given in Sec. 4.4 of this chapter.
ey

Bubble lengths varied quite strongly in the data for Regions I and II,
Little systematic work was performed in varying bubble length but a random
distribution did occyr, As the data shows, no differences were found due to

bubble length once the minor effectg of gas viscosity had been accounted for,

4. 3. Velocity Ratio
'I'he velocity ratio (US/ ) should he a function of Np_, X, and possibly

/m: ) according to the analyeus of Chapter 2, It turns out, however, that
a d1f£orent parameter is more suitable for plotting velocity ratio, This para-

meter is gbtained by combining N and A, Itis:

»
Ve = (49)

There is no loss of generality in plotting data asg a function of ¥and X as
opposed to Npe and A\,

The gystems with \ equal to approximately 2.1 x 107°, which include
water-air, water-nitrogen, heptane-nitrogen, and heptane-helium in a tube
of 90,0514 centimeters nominal radius, have their velocity ratio data plotted
on Fig. 13, The plot is of (US/UB) versus ¥. The value of ('US/:rr ) should
be a parameter on this plot, hut the data all appear to fall on one line without
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inclusion of this parameter. The scatter which is present can be explained

as experimental scatter for the most part. In one region, however, the
scatter does appear to be systematic with (Us/wro3). That is the area where
the data breaks away from a straight line at ¥ = 19 x 10_3 to the point where it
reaches a constant value at ¥ = 51 x 10"3. In this region the data have a sys-
tematic increase ig (US/UB) with decreasing (\fs/nros), The differences are
not so large that the exact nature of the variation can be determined. In fact,
the data appear to have little greater spfead than the random scatter at higher
and lower ¥, Since the spread is so small, it is not considered of great
importance, and the data in the region of sys.ematic variation is approximated

with one line as it is elsewhere,

The data with \ equal to approximately 1.5 x 10-5, which again include
water-air, water-nitrogen and heptane-nitrogen systems, but in a larger dia~
meter tube, are shown in Fig. 14, The same arguments apply to Fig. 14 as
applied to Fig. 13 except that the region where (U /U is systematically
dependent on (V' ,/171' ) is shifted to the left.

The data for an octane-nitrogen system with A equal to approximately
3.4 x 10" in a tube of 0. 0514 centimeter radius is shown on Fig. 15, As
can be seen, this data takes the same general shape as the data on Figs. 13

3

and 14, The region where there is a systematic variation with (Us/wrro ) is

also present,

The best fit lines of the data of Figs. 13, 14, and 15 are shown together
on Fig. 16. In addition, the empirical relation for (US/UB) obtained by Fair-
brother and St:ubbts6 is shown, Their relation, though not stated in these terms,
corresponds to a very high value of A\, Thus we have a limiting value of all the
curves.4 Another plot, taken from Fig. 16, is shown on Fig. 17, It is a some-

what more useful relation at times,., It is a plot of (US/UB) versus (p.zUS/o-).

At low wall the curves except the high X\ curve appear linear with ¥,
This region corresponds roughly to Regions I and II of the pressure drop
correlations. There is then a general breaking away from the linear relations,
and eventually the curves achieve a minimum and return to approximately 0, 84,
It should be of interest to point out that though some of the data shown on Figs.
13, 14, and 15 are in the bubbly slug flow regime as described in the pressure

drop section, the value of (US/UB) remains at the constant value.
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The most pertinent questions about the behavior of these curves are
why do they go through a minimum, and why do they approach a constant
value, The latter question is discussed first, and from that a possible

explanation of the former is given,

Nicklin et aIIZOund similar results when working with slug flow in
larger vertical tubes, They found that they could write the equation for
bubble velocity as:

Up = rUg+0. 354/ 2gr, (50)

where T is a constant equal to 1.2 when the Reynolds Number based on liquid
properties, US and pipe diameter is greater than 8,000, The second term on
the right is the Taylor bubble rise velocity. That is the velocity which a bubble
draining a tube of liquid covered at the top would attain if the liquid were in

poter{'tf{al flow.

Nicklin and his associates explained the value of I" equal to 1,2 very
simply. Their explanation is that the bubble travels at the Taylor bubble
rise velocity plus the velocity that the bubble sees at the nose of the bubble.
Us
turbulent profile is approximately 1.2 US. There the bubble nose would see
a velocity of 1,2 US'

is the average velocity in a slug, but the velocity at the centerline in a

In the absence of a gravity field this explanation would say that the

bubble would travel at slug centerline velocity or:

N
U
S .1 .0.83 (51)
Uy 1.2

In the case of a horizontal capillary tube, there should be no gravity
effects on the bubble velocity. If the explanation that the bubbles then try to
flow at slug centerline velocity is true, then the velocity ratio should be as

in equation (51), provided that the slugs are in turbulent flow,
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The values of NRe

for all the curves, They are, however, always greater than 1700, This

at which (US/UB) becomes a constant is not the same

corresponds to a Reynolcfé Number as defined by Nicklin of about 2900, This
Reynolds Number is rather borderline to say that the slug is in turbulent flow,
but it is quite possible that it ie. The constant value of (US/UB) of 0,84 com-
pares favorably with Nicklin. These facts indicate that it is quite likely that
the bubbles are traveling at centerline velocity and the slug is in turbulent
flow. This is especially so since at greatly increased ¥ where the Reynolds
Number is lafge enough to insure turbulent flow, the value of (US/UB) is

still around 0, 84 in all the data,

The tendency of the bubble to travel at slug centerline velocity might
be expected to explain the total behavior of the (US/UB) curves, At low velo-
cities the slug is in laminar flow so the slug centerline velocity is twice the
average slug velocity. If the argument in turbulent flow were valid in laminar
flow, the value of (US/UB) would then be 0.5 for low velocities, This is not so
by experiment; therefore, there must be more to the explanation. Bretherton4
found that he could predict the value of (US/UB) at very low values of ¥ by con-
sidering only the flow in the region where the film tapers to a constant thickness.
Only viscous and surface tension forces were considered in his argument, His
solution is not too dissimilar from the empirical Fairbrother-Stubbs relation,
From his results one might argue that the viscous and surface tension forces
tend to decrease (US/UB) with increasing velocity and that they tend to act
near the film. One can hypothesize that (US/UB) is controlled by these forces
near the film at low velocities and is controlled by the inertial forces near the
centerline at high velocities. This would explain the shape of the curves. . As
velocify is increased inertial forces tend to cause (US/UB) to break away from
a curve where it is controlled by viscous forces. Eventually the inertial forces
get large enough to cause (US/UB) to be controlled entirely by the centerline
velocity. This is where (US/UB) achieves a value of 0, 84.

The shapes of the curves indicate that one can interpolate for intermediate
values of A\, The limiting case for \ very large can be considered as the Fair-
brother-Stubbs curve. As \ increases beyond 3.4 x 10-5, the curves will get
more and more like the very large \ curve but should still break away and re-
turn to 0.84, As \ increases the minimum point for (US/UB) should occur at

higher values of ¢ . This interpretation is gained from the general shape of
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the experimental curves and from the explanation for the shape of the curves,
On the other extreme, as A\ approaches zero, it would appear that the (US/UB)
curve does not necessarily go to a minimum but simply comes down to a value

of 0,84. A limit might be that (US/UB) is everywhere equal to 0, 84,

4,4, Effects of Gas Viscosity and Graviiy

One effect of gas viscosity has already been mentioned in the pressure

drop discussion. The data for pressure drop have incorporated in them a
correction for gas viscosity. This correction subtracts out the pressure drop
within a bubble, The correcticn is based on equation (35) for a cylindrical
bubble with a laminar flow velocity profiie., This correction should be rea-
sonably valid when the viscosity ratio is large and the film thin so that the
film velocity is low and the bubble is somewhat symmetrical. Further, it
should only be used as a small correction term for the pressure drop over
one bubble and slug. The minimum value of (p.z/p.g) of about 25 and the min-
imum value of (US/UB) of about 0, 77 would appear to meet the requirements
for viscosity ratio and film thickness, Equation (35) gives corrections of the
order of less than five per cent of the total pressure drop, which should satisfy
the requirement for a small correction. It is concluded that this correction
should correctly take care of the pressure drop in a bubble and eliminate any

consideration of it in correlating pressure drop.

The other effects of gravity and gas viscosity on the data for pressure
drop and velocity ratio can be studied with the use of three parameters, (p.l /p.g),
fL, and 7 . Only the first two should be required to study velocity ratio,
but all three are required for pressure drop. These effects are best studied
from §he data of Figs. 13 and 14, '

On each of these "figufes, \ is a constant, but the values of SL and
(l"'l /p.g) are not, however, The data on each figure fall on one line regardless
of whether (P'I /p.g) and fL are different, It appears that (US/UB) is free of
gas viscosity and gravitational effects for this data. It is possible, of course,
that the effects of (u, /p.g) just cancel the effects of SL, but this appears unlikely

for two curves over large values of ¥ .

The freedom from gravitational effects indicates that the bubbles are
centered, at least at the nose of a bubble, Behind the nose of a bubble the
liquid drains as a function of T, The values of T for the data of Figs. 13 and
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14 ranged from a value where it would be expected that a bubble is still
symmetric at the tail to a value where more than twice enough time for a
bubble to rise to the top had been allowed. This effect would not be ex-
pected to be noticed in the velocity ratio because that should be determined
near the noseyeven with the possible side effects of gravity and gas viscosity,
It may show up in the pressure drop, however, As was seen in the pressure
drop discussion, all of the pressure drop data, some of which was taken
simultaneously with the data corresponding to that on Figs. 13 and 14, is well
correlated without consideration of v, The values of .n- , (p.Jz /p.g), and even
A are not required for that either, It is concluded that other than the minor
correction for bubble pressure drop, all the pressure drop data is independent

of gravity and gas viscosity.

The symmetry of the bubble near the nose should also mean that the
film thickness near the nose can be calculated from equations (C5) and (32),
The mdependence of (US/U ) from gas viscosity means that film thickness
calculated from equations (C5) and (32) is not free of gas viscosity. The differ-
ence between (US/UB) and (1 - m) is as high as about 10 per cent for the data
of Figs., 13 and 14, The lack of symmetxry which may exist near the tail of the
bubble prohibits the calculation of film thickness there. Nevertheless, the
value of (I - m) should not have been much different near the tail because the

gas viscosity should not have caused much flow in the liquid film,

Until now it has been shown that all the pressure drop data and the
velocity ratio data for Figs. 13 and 14 are free of gravitational and gas vis-
cosity effects., In addition, the noses of the bubbles in the data for Figs. 13
and 14 are probably symmetrical whereas the tails may not be, The next set

of data’to be discussed is the data for Fig. 15.

The data for Fig. 15 can also be argued to be free of gravitational and
gas viscosity effects, First of all, the pressure drop data for it correlates
with the other pressure drops where gravitational and gas viscosity effects
were ignored, Secondly, Sl is equal to 0,085, which is less than the value of
SU for some of the data of Figs. 12 and 14, Lastly, the curve of (US/UB) ap-
pears to be a reasonable interpolation between the curves for A = 2,1 x 10°
from Fig. 14 and \ very large., The X\ very large curve has been shown to be
symmetrical by others, and ie concluded to ve free of gravitational effects.

It should be free of gas viscosity etfects also.
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The conclusions are that the data plotted on Figs. 7 through 15 are free
of gravitational and gas viscosity effects although some of the parameters of

the flow, such as film thickness, may not be.

The above description is taken to be a description of the type of hori-
zontal two phase slug flow studied here, Rather than the flow model analyzed
in Secs. 2.1 through 2.7 of Chapter 2 which is entirely free of gravity and gas
viscosity, a flow is taken for which only the pressure drop and velocity ratie
are necessarily free of gravitational effects., The density, because it comes
from continuity and velocity ratios, is also free of gravity and gas viscosity,
The film thickness unfortunately is not. The film just behind the nose is
assumed to be symmetrical because of the independence of (US/UB) from
gravity, Therefore, just behind the nose of the bubble the film thickness should
be calculatable from equations (C5) or (31) and (32). If the value of T is small
corhpared to compleie bubble rise time, the drainage should not be great and
the film thickness near the tail should be much the same as near the nose,
Othé;wise the film thickness cannot be calculated because the analysis of
Appendix A for the bubble rise is only valid for zero gas viscosity and gives
only a criterion for the order of magnitude of the rise time. The only thing which
may be calculated to some extent is {1 - m), It should notbe too different from

the value at the nose because of the low velocities in the film in most cases.

It should be pointed out that the flow regime description includes a zero
gravity field, That is, the flow need not be entirely free of gravity, but it may
be.

For the data to be of value, the conditions under which the data can be
appliegd must be specified. This is, of course, a part of the flow regime speci~
fication, Clearly, it must be possible to make fU somewhat iarger than the
maximum value tested and (p.l/p.g) somewhat smaller than the minimum values
tested and still have the same results, The maximum and minimum values of
SL and (PI /p.g) will of course depend on the other parameters also, Since a
complete parametric study would be impossible, it is assumed that the maxi-
mum value of A and the minimum value of (p-l /p.g) tested here can be used as
limits, Therefore, as one boundary we take JL < 0.22 and as another,

(P'I/P'g) > 25. The data was, of course, all taken for(p‘e /pg) >> 1, and this

criterion must apply also,

-37a




4.5, Flow Regime

The previous section described the geometry of a horizontal capillary

slug flow in detail, The flow is assumed to be possible where:

p
£ >1 (52)
Pg
Mg
— > 25 (53)
o
L << o0.22 (54)

Any horizontal slug flow which meets these requirements is considered to be

of the type of horizontal capillary slug flow discussed here. The characteristics
of this flow are that the effects of gas viscosity and density and of gravity can be
ignored for velocity ratio and pressure drop. The film thickness anywhere ex-
cept near the nose of the bubble is not determined for this regime except in
certain circumstances. This is because the nose of the bubble is concentric,

but the rest of the bubble need not be,

When the conditions (52), (53), and (54) are met, there are still several

types of flow which may exist in a tube. These are discussed next,

The experiments showed the existence of two slug flow boundaries. One
is predicted by analysis with some experimentally determined parameters, and
the othler is determined completely empirically. The {firstis a tx-ans/ition to an
annular flow, The second is a transition to a flow where the tails of the bubbles
begin to break up into many small bubbles. This is called a bubbly slug flow,

They are discussed in this order.

The slug flow regime should be bounded in the region of very low liquid
to gas flow ratios by a transition to annular flow, This transition is the point
where bubbles get so long and the slugs so short or few that the slugs carry
very little liquid. To demonstrate how this transition comes about, one can
look at it from two viewpoints. One can look at an annular flow and see what
is required to make it into a slug flow or one can look at a slug flow and see

what is required to make it into an annular flow, Since we are interested here
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in the transition to an annular flow, we will take the latter viewpoint.

Consider a steady, incompressible, slug flow in a tube at some arbitrary
QI and Qg with uniform bubble and slug lengths and no gravitational effects., By
steady it is meant that Ug and Uy 2re constant in time. Now let the gas flow be
increased and the liquid flow be decreased so that the sum of the two remain

constant, That is, U, remains constant, This causes the bubble to slug length

ratio to increase, Ifsthe sum of the bubble and slug length are kept at some
reasonably small value, the bubbies eventually begin to touch each other, then
coalesce into longer bubbles, At the point where the slugs disappear, there
should be no liquid flow other than that which occurs in the liquid film due to

shear forces, This can be called the transition to annular flow,

At the tll"ansition point the film thickness is still related to a bubble vel-
ocity and a slug velocity. This relation is given by equation (C5). The gas-

liquid flow ratio should be given by the equation for annular flow, equation (B14),

I (Qg/le) becomes greater than the value which it has at the transition
point, the film thickness will decrease as could be seen by inspection of equation
(B14), It can be shown that if for any reason a slug should occur in a flow where
the film is thinner than at transition, the slug would disappear after moving

some distance down the tube.

Annular flow may not occur when (Qg/QI) is less than the value at trans-
ition, If it did, the film would have to be thicker than it is at the transition des-
cribed above, If such a flow should somehow occur and a slug should somehow
be formed in it, the slug would leave a film at the thickness of transition and
the slug would grow in length, It has been shown by theory and experiment1
that if an annular film such slug formation does occur, Thus an annular flow

with (Qg/Qg) less than at transition would degenerate to a slug flow,

The arguments for a boundary between slug and annular flow have been
made without consideration of gravity, As might be expected from the analysis
for gravitational effects, the long bubbles which become annular flow should
drain considerably to form a stratified flow, This drainage is ignored in the
analysis and is shown not to change (Qg/Q.l) at the boundary to a great degree

in the experimental results,
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The boundary is sufficiently well specified to calculate its location.
As is indicated from the arguments for a transition, specification of (Q /Q )
and the inlet conditions to the tube might be a better way to describe the
geometry of the flow than bubble and slug length, In addition to these speci-
fications, three other parameters are required in the absence of gravity to
completely specify a flow, These are taken here to be (p U /o-), u.t /p. ), and
M. These five parameters should describe any flow W1th1n the 11m1tat10ns made
on gravity., One of these appears to be unimportant for this flow boundary. That

is the inlet condition, Therefore, we need specify only four parameters to spec-

ify the boundary, It is understood, of course, that from previous arguments

(p.l/p.g) should be much greater than one.

As indicated above, equations (C5) and (B14) can be used to calculate the

location of the transition, They are repeated here as:

US i 16
L _= (1 - m) 1+ m (55)
U (1-m) 2+ _ﬁ_ (1-m)
i m }Lg m
Re . amy(,, M “‘m)\) (56)
QI 16 m |.».g m |

One furgher relationship which is needed is the experimental relationship for

(US/UB). It can be stated in functional form as:

kU
S .f | LS (57)
U ('3

Equations (55), (56), and (57) are three equations in six unknowns, If we specify
two of the parameters, solutions of the equations can be plotted on two dimensions,
It is convenient to specify the parameters \ and (pz/p.g). Then we can plot

(}L‘ Us/o') versus (1/1 + Qg/Ql) or e‘quivalently_(Qz /Qg + Ql) for the solution to

- 40 ~




(55), (56), and (57). This has been done for \ equal to 1,5 x 1072 and

(p.l /p.g) equal to 25 and 50, The solution is plotted on Figs, 18 and 19,

Experiments were performed to test the validity of this flow boundary,
The conditions were those which are shown inFigs. 18 and 19, Water and
nitrogen and heptane and nitrogen were tested in tubes of 0. 0795 centimeters
nominal radius, The flow was observed visually and with a camera. S8lug
flow was said to exist if a slug would occasionally pass through. If not, the
flow was considered annular. The photographs showed that when slugs became
very far apart and when annular flow existed the effects of gravity were quite
strong. The annular flow became somewhat of a stratified flow. Also small
waves occurred on the surface of the film, Even with these disturbances the
data for annular flow and slug flow fell approximately as would be expected from
the analysis. The data for these experiments are shown on Figs. 18 and 19,
The scatter of the data is not bad when one considers all the side effects which
cccurred, These experimental results lead to the conclusion that an annular
or stratified annular flow boundary does.exist to slug flow and it can be reasonably

well predicted.

The other boundary to slug flow appears to be a break up of the tails of
the bubbles. Experiments show that the tails of the bubbles in slug flow begin
to break up at some critical bubble velocity. This flow with small bubbles at
the tails of the larger bubbles is called bubbly slug flow. When the velocity is
increased much further than the critical velocity, the tiny bubbles fill the slug
and begin to deform the large bubbles behind therh. This eventually degenerates
into a bubbly or frothy flow when the velocity is increased to a sufficient degree,
The order of magnitude where frothy or bubbly flow occurs is around twice the
criticat velocity. The primary concern here is the transition to a bubbly slug

flow, The others are important but they constitute another problem,

The break up of a slug flow to bubbly slug flow appears to be a phenomenon
where the surface tension forces at the tail of a bubble are overcome by a com-
bination of inertia forces and viscous forces., For this reason it was thought
possible to correlate the data for transition with only three parameters at the
maximum, These parameters should include the three forces inveolved and the
geometry of a slug, The bubble length, gas viscosity and gravity were thought
to be unimportant, The parameters chosen were a Weber Number, NRe’ and

('\fs/wr°3). The Weber Number is defined as:
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p, U, r
2B "o
NWeb= - (58)
a

A set of experiments was carried out to determine the boundary. The
experimental procedure was just as for slug flow except that the photographs
of the bubbles were taken from a closer position. The break up to bubbly
slug flow was determined from the photographs. A photograph of a bubbly
slug flow is shown on Fig., 6. The experimental data are indicated on Fig,
20,

The plot of Fig, 20 does not have ('lfs/wro3) as a parameter as would
be indicated from the previous discussions. In one system, Test 71, the
effect of (‘U'S/m'o3) on the boundary was tested, It was found that there is
very little effect. Therefore the plot was made without taking ('U:S/wro?’) into

account,

The data indicates that the plot takes the proper parameters into account,
The data for water and nitrogen and heptane and nitrogen in a 0,0795 centimeter
nominal radius tube, which have quite different values of L and (pz /p.g), show
little dependence on them for transition, The bubble length was randomly

varied in these experiments and again appeared to have little significance.

According to at least one theory, the density of the gas should be a
factor in the break up to b\ibbly or frothy flow, Since the bubbly slug flow
appears to be a transition between slug and bubbly or frothy flow, it might
be suspected that gas density is important. For this reason, a test, Test 72,
was rqh to determine the effects of a much lighter gas (helium)., The transi-
tion ogcurred in much the same place as for the data with a heavier gas (nitrogen).
This verified that it is correct to ignore gas density in determining the bubbly

slug flow boundary.

The boundary of Fig. 20 is not a sharp one. This is not too surprising
since the transition might be expected to go according to a stability criterion,
It definitely does not appear to be a pure Weber Number effect, A line that
passes through the middle of the transition region is one which is given by:

+5

(Np) x (Ny 1) = 2.8 x 10 (59)
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Equation (59) should be used only in the range of A shown on Fig, 20,

There is no reason to believe that it applies outside of that range.

Equation (56) represents a flow regime boundary., However, it is not
in a very convenient form, It would be preferable if it were given in terms
of the parameters for the annular flow boundary; then they could all be placed

on one flow map. This is easily done, for we can say for the boundary:

3

Web) = ¥~ _2.8x10t° (60)

(N, ) x (N .
A
Thus given a value of N\, we can find ¥ for transition and therefore (US/UB)
and (i US/U.,)' There is no dependence on (QJZ/Qg + Qﬂ)for this transition. A
plot of this boundary for X = 1,5 x 107° is given on Fig. 21 along with the
annular flow boundary where (p.l/p.g) = 50.

On Fig. 21 the different regimes of flow are indicated. The boundary

between annular and bubbly slug flow should be about as shown but its upper

limit is unknown. This figure indicates only the possibility of slug flow. The

actual existence of slug flow can only be determined from the inlet conditions.,
A flow regime map such as Fig. 21 completely specifies the boundaries for a

type of horizontal capillary slug flow when used in conjunction with (52), (53)

and (54).

4,6, Application of Results

In a typical two phase flow problem the following information is available:
-

Magnitude of gravity field, g.

Orientation of tube from vertical, ©.

Tube size, X, L.

Flow rate of liquid and gas, Qg- and Qg'
» P

U\»&-:.»N»—-

Liquid and gas properties, p

, , and o,
M l-'-g

£" "8 1

In this section it is shown what answers are available from this work to a

problem specified as above, and how those answers are obtained.

| The first question to be answered is whether horizontal capillary slug
flow exists or not, If this question is not answered affirmatively, little else
can be gained from this work, The parameters to be calculated and the re-
A quirements on some of them for horizontal capillary slug flow to be possible

are as foilows:
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i. 9 =90°

2,

m,fy > 25

3. », /pg>>l

4, L = plgroz/o' < 0.22
2

e M=y /plno

6. )J.IUS/o'

.Q/Q,+ Q

If the first four requirements are met, a flow regime map may be drawn from

the values of (2) and (5). The flow regime map is drawn as shown in Sec. 4.5

of this chapter on a plot of pararneters (6) and (7). Then if the values of (6)
and (7) fall within the region of slug flow on the flow map, horizontal capillary
slug flow may exist, Actuzal slug flow depends on inlet conditions, but for the
sake of discussion it is assumed that under these conditions slug flow does
exist. The validity of the flow map depends to a large extent on the value of

A\. If it is greatly different from the values tested here, the boundary is not
likely to be valid, The more sensitive boundary in this respect is the boundary
to bubbly slug flow. .'

If slug fiow does exist, there are several properties of the flow which
can be calculated, The most accurate calculation which can be made is density.
The depsity may be calculated from (US/UB) and the flow rates Q‘ and Qg"
The vatue of (US/UB} is found from the value of (i Us/cr) and Fig. 17. These

calculations for density are valid if Q, and Qg are uniformly distributed in

time.

The pressure drop can be calculated if the distribution of bubble and slug

lengths is known. If this is not known, only an approximation can be made., To

g see what the pressure drop can vary over, we examine the possible variations
E in slug length, It can be shown that the ratio of the sum of all the bubble lengths

in a tube to the sum of all the slug lengths is approximately equal to the ratio of

Conribacid e

gas to liquid flow rates, if the flow is somewhat uniform in time, This is the

same restriction as for the density. Now this means that for given flow rates

the sum of the slug lengths remains constant. The pressure drop correlations
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all have a term which is linear with (Us/wro3) or equivalently (LS/ro)" This
part of the pressure drop is fixed for a given flow. The end effects of the
bubbles and other terms which are not dependent on slug length all act per slug.
Thus the fewer the buﬁbles and slugs, the lower the total pressure drop, An
arbitrary minimum number of bubbles and slugs may be set at one bubble and
slug per tube length, This gives a minimum pressure drop, This is notas
useful as a maximum pressure drop but it can be considered as one limit,

An alternate procedure would be to expsrimentally correlate bubble and slug

lengths for a given process such as boiling or condensing.

The film thickness near the aose of the bubble may be calculated near
the noses of the bubbles from equatilons,(3l) or (C5) and (32). If the value of
another parameter T is not too large as judged from Fig. A3, this should also

be the film thickness near the tail,

Even if 7 is large enough to cause a large amount of drainage, the value

of (l=m) as determined at the nose should still be about the same at the tail.
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4.7. Comparison with Other Correlations

The work here allows one to predict the horizontal capillary slug flow
regime and to calculate pressure drop, density and film thickness under cer-
tain restrictions. Of these, pressure drop, density, and to some extent film

thickness can be compared with other correlations.

The pressure drop is compared to the work of Lockrart and Martineuil3.
The difference in approaches to the problem makes it difficult to compare, in
general, but Regions I and II of the pressure drop correlations can be compared
with some ease. The flow is assumed to be of uniform bubble and slug length

for the comparison,

Regions I and II fall within the Lockhart-Martinelli regime of viscous-
viscous flow. If the gas and the liquid were flowing in the tube independently,
the flow would be laminar. One method of using the Lockhart-Martinelli corre-

lations is to use the definition:

AP 2 AP
% ¢£vv B (61)
A O
T, T,
TP 4

where the (AP/a x/ro)£ is the pressure gradient for the liquid flowing alone.
The f\.‘anticmd)iVv is characteristic of viscous-viscous flow and in turn is corre-
lated as a function of another parameter X. TFor viscous-viscous flow, X is

defined as:
Q, n
x= 4+ 1% (62)

N g g

The pressure drop in Region 11 is given 'by:

p,Ug T
..éf:g_y_.? + 0,163 2B o (63)
b, Up ar My
: (o)
r
o]

where the pressure drop is over a length (LS + LB). The average pressure

gradient should be:
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= (64)

Let us compare the Lockhart-Martinelli pressure gradient with that of equation
(64) by using the ratio of the two. ‘Call this ratio Z.

2 AP
: tlw <
D —
1‘0
1
Z = ", (65)
8 p U, 7T B U
S.,o0.163 L 2.0 £ B
3 B r
LESN ] o
I..S+I..B

Equation (65) can be simplified by use of the following relationships:

81k, Q
AP | _ 2 ™2 (66)
x 3
A LN
o
1
for laxminar flow,
V. U
_QI = S B (67)
Lg+ Ly
Equations (66) and (67) can be combined to get:
g, YU
AP . £ 5B (68)
x 3 (L + L )
Ar—- LS S B
o/, -

Equation (68) can be gubstituted into equation (65) to get:
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Z = (69)
1+ 0,163 P, U %

Hy

SVS
3
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(0]

Equation (70) could have been written for Region I as:

(70)

8V g

The results of equation (69) are shown on Fig. 22. The value of (pl/p. ) is

set at 50 and (p U /p. ) is set at 450, Z is plotted versus ("U‘S/-rrro } with
(Q /Q yas a parameter. The ratio of the two is never very much greater than
one, The ratio is one at fairly low values of (\f/rrr 3 ). Notice that the lower
value of (QI/Q ) crosses the value of one at a lower value of ('lfé/n'ro3). It is

reasonable that ('Ué/wro?’) is smaller for lower (Ql/Qg)'

# The data and correlations for the Lockhart-Martinelli work are supposed
to apply to flows other than slug flows. Yet if a reasonable approximation is
made for the surface tension of their liquids, their data fall in the region of
possible slug flow, It is quite likely that their flows were not true slug flows,
but were of many small bubbles, This would imply short slugs. Therefore,

the matching of the two correlations at low ('lfs/wr°3) is reasonable,

The density can also be compared to the work of Lockhart and Martinelli,
Their parameter to measure density is the fraction of the total volume which is
gas, This is called Rg, It can be shown that Rg can be stated in terms of the

parameters used in the present work to be:
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Rg (71)

This is quite different from the correlation of Lockhart and Martinelli. Their
correlation showed Rg to be a function of X only, X is a function of (Q /Q )
and (P'l /p. ) as shown before., If we assume a value of (Hl /p. ), say 50, we can
plot Rg from equation (72) versus X, (US/U } must be a parameter on this
plot. This plot is shown on Fig. 23 with a value of (US/UB) of 1,0 and 0,5,
The Lockhart-Martinelli correlation for Rg is also shown on this figure, The
comparison is reasonably good for values of X less than 6.5, but it is not good
at all beyond this, The high value of Rg from Lockhart-Martinelli at X greater
than 6.5 would imply that the density is less than that which would occur if the
gas-liquid ratio in the tube were equal to the gas liquid flow ratio, This type
of flow is difficult to conceive, ' '

The film thickness of Fairbrother and Stu.bbs6 is assumed to cause a limit-
ing value on (US/UB). The shape of the curve of (US/UB) based on the Fairbrother-
Stubbs film thickness is not too dissimilar to the curves measured here, Their
curve appeares to make a reasonable limiting valve, This is no real comparison,

of course, but it does show that there ie no conflict of results,
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5. SUMMARY AND CONCLUSIONS

When two phases flow in tubes of small diameter, quite often the gas
flows as long bubbles separated from the wall by a film of liquid and separated
from each other by slugs of liquid. Because of the small diameter of the tubes
and the similarity to other flows called slug flows, this type of flow is called
capillary slug flow, Capillary slug flow has been studied when it flows in a

horizontal tube,

Pressure drop, density and, to a certain extent, film thickness have
been correlated for a type of horizontal capillary slug flow, The conditions
under which the flow exists and the correlations are valid have been defined,

A horizontal slug flow satisfies the conditions of the definition if:
1, > 1
P /oy

2, p-l/p-g > 25

3 r2
* Pe¥o Jo <0.22

Under these conditions the flow regime is still not necesgsarily a éapillary

slug flow. Depending on the gas and liquid flow rate, the fiow may flow in

other regimes. The regimes bounding capillary slug flow are annular flow
for low liquid to gas flow ratios and bubbly slug flow for high throughput

velocities.

Zero gravity flow can be included in the flow regime. In fact, this is
+

the only case in which the film thickness may be calculated to any degree,

The effect of impurities in the liquid was studied to a small extent,

It was found that the pressure drop is greatly changed by impurities,

The correlations developed here have been compared to other works,
No significant differences were found which would indicate that this work is
in great error, If anything, the comparison shows the reasons why other

correlations work and why they do not,
The conclusions reached are as follows:
1. Given a horizontal two phase flow system, the existence of a capillary

slug flow where the correlations aud analyses here are valid can be determined,
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2, If the flow does exist, the pressure drop, density, and, to a certain
extent, film thickness can be accurately determined when the slug and bubble
lengths are known, If these are not known, good approximations may be made
for density and poasibly film thickness, but only a lower limit can be placed on

pressure drop.
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NOMENCLATURE

acceleration of gravity REEEE
arbiirary function or constant
arbitrary length

length of slug

length of bubble

total length

fraction of tube cross-section covered with liquid film

Froude Number

Reynolds Number

Weber Number

pressure

pressure in a bubble

pressure defined by equation (A4)
pressure in a liquid film

pressure in gas core of annular {low
pressure in liquid at surface of bubble
pressure drop across one bubble and slug

pressure drop within a bubble

Lockhart-Martinelli two phase pressure gradient

pressure gradient for liquid flowing alone

average volume flow rate of gas

average volume flow rate of liquid
instantaneous gas flow rate at 1
instantaneous liquid flow rate at 1
instantaneous flow rate in a slug

radial polar coordinate from center of tube
radius to gas liquid interface in annular flow
radius of bubtle

radius to liquid element in liquid film

radius to gas element in gas core

polar coordinate to inner surface of bubble
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radius of tube

polar coordinate centered on bubble
polar coordinate to surface of bubble from center
of bubble (equals rB)

fraction of total volume which is gas
time

bubble velocity

velocity of liquid in slug

specific volume at 1

arbitrary velocity

velocity of liquid-gas interface
velocity in liquid film

velocity in gas core of annular flow
velocity in radial direction

velocity in tangential direction

mean velocity in tangential direction
volume of gas in control volume
volume of liquid in control volume
volume of gas in a bubble

volume of gas in bubble i

volume of liquid flowing per bubble and slug

distance along axis of tube

Lockhart-Martinelli parameter

distance of bubble rise

ratio of Lockhart-Martinelli pressure gradient to gradient
of correlation developed here

cperator del

arbitrary function in equation (50)

Lockhart-Martinelili parameter for viscous-viascous flow
angle in polar coordinates measured at center of tube
angle in polar coordinates measured at center of bubble
dimensionless parameter (i, ;JB/a')

dimensionless parameter (i) /o 1%
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g dimensionless parameter (plgroz/o'\

Py density of liquid

Pg density of gas

K, viscosity of liquid

p.g viscosity of gas

o surface tension

e | angle of tube from vertical

T dimensionless parameter (LBplgro/UB}LI)
4
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APPENDIX A

Drainage Around a Bubble

As a bubble passes through a horizontal tube, it leaves a thin film of
liquid on the wall, This film of liquid should drain to the bottom of the tube
given sufficient time, The object of this appendix is to determine to what
extent the film drains. An equivalent point of view is to determine how
fast the bubble rises,

To get a measure of the drainage some assumptions must be made about

the flow, These assumptions are listed below:

1. The viscosity ratio (p,l/p.g) is very large so that the gas viscosity

can be ignored in every respect,

2, The bubble is long and cylindrical enough that the arguments in

Chapter 2 for zero axial flow are valid,

3. The bubble can be treated in only two dimensions, The surface
tension effects in the axial direction are small as are any other

coupling forces in the axial direction,
4, The liquid film is thin with respec. to tube radius.

5. The bubble retains its cylindrical shape as it rises, This
is reasonable when the ratio of gravity to surface tension

forces is large,

6. The flow in the film is entirely tangential and all derivatives
of velocity with respect to space and time are small compared
to the derivative of tangential velocity with respect to the radial

direction, Also the flow is non-inertial,

These assumptions allow us to look at a bubble at one point in the tube
from the time a bubble nose goes by to the time the tail comes by. The liquid
at that point drains or the bubble rises as a two-dimensional, time-dependent,

non-inertial, viscous flow, A model for such a flow is given in Fig.(Al).

In Fig. (Al) the primed quantities are taken with respect to a coordinate
system moving with the bubble center and the unprimed quantities are with
respect to a fixed coordinate system., The subscripti represents conditions

at the interface,
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The continuity equation can be written for the model as:

r v d .
v = S‘ ° ._Q_r_ = m gy (A1)
$m (r_ - ) (r, - 7;) dt

where V m is the average velocity in the tangential direction at the angle

¢ at some arbitrary time.

The Navier-Stokes equations for the liquid in the film are:

2
av a8V v 8V v
S S T + 2 - 4
ot or r 8¢ r
ap B v av
-. 1 d , .._"vzvr- T2 T (A2)
Py Br Py r r? B¢
av v v V.V
Vo + v ¢+ ¢ ¢y T
ot ar r 8¢ r
%
ap [ eV v
R Loty + 2 T % (A3)
where
2 2
9 1 i 2
vz= —_— _.2. +  — —_—
or’ Tor 2 84)2
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The term Py is defined by the relation:

p=K-plgrcoe¢+pd (A4)

where K is some constant and p is the actual pressure in the liquid. It is
the difference between the actual pressure at a point and the pressure which

would be there if there had been no motion,

The boundary conditions on (A2) and (A3) are:

at T =1, shear stresses equal zero
(A5)
at $=0, m, V,, V, =0
2
w ' Pg guwr;
p;T; cos $'dd' = -
2
0
Assumption (6) allows equations (A2) and (A3) to be modified as:
9p 8V
4. A, ¢ (A5)
9 3¢
. r 5
* r
8p - v 8V v
4. ¢, 1 _ ¢ . ¢ (A7)
8 arz T 8d rZ

Assumption (4) allows any curvature effect to be eliminated, This gives us:

op oV
—2 ey P (A8)
84 2
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8p
49 _y (A9)
or

Equation (A9) implies that py is independent of r and thus de/8¢ is also,

Therefore, we can integrate equation (A8) with respect to r, The boundary

condition 6f zero shear stress at the bubble interface can be stated as:

v

20 ap r=x (A10)
or

With this boundary condition the integrated result of (A8) is:

ap v
A Z| =, _¢ (A11)
8¢ T, or

Equation(All) can again be integrated with the boundary condition:

Vy=0 at =z . (a12)
The result is:
dp T r
"i_@ 2 |tn 2 -1]- X2 |n L -1 =-by Y, (A13)
9 T, Ty T, T
& L -

Equétion (A13) can be substituted into (Al) to get:

r.2 op r r
1 d Im 2)[=2-][1- i r_o
M, (ro - ri) 9¢ T, r; 2 r,
L
-:&1-.1_22_+_3.=ﬂ dy (Al4)
T, 4 4 [z, ri\ dt
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Equation (A 14) can be rearranged to give:

. - d
9 H, sind =
8¢ I To\[ o 1 Yo To 1 %o 3
s In 2\|—1 = —}- — [l o —| + —
r 1\ T 2 r T, 4 r, 4
Equation (A15) can now be integrated with respect to ¢:
. d
5 *, sind __.dy dé
B : (A16)
d ro\ To 1 %o o 1 Yo 3
riln-—-— l-"o —} = — 1 -— 2} + =
ri} T. 2 r T, 4 r, 4
i i i i

The pressure p, of the boundary conditions can be written in terms of the

/ primed parameters and K, To do this, use is made of the geometric re-

lationship:
y+1'i'coeuj>'=ri cos ¢ ' (A17)
Equation (A17) is substituted into equation (A4) to get:
pi=K-p1 g (y+ri‘cos¢')+pd (A18)

)
Then the boundary conditions (A5) on p, can be written:

2
w pgg’ﬂ‘ri'
K-p,gly+r,'cosd') +py| r;' cos¢p'd¢p'=~- —2—— (A19)
. : 1 i d i 2
0
Equation (A19) can be reduced to:
T T ri'
. f - -
S Pq T;' cosd' do'= " (p, pg) g (A20)

0
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Equation (Al6) and (A20) can be combined to obtain a relation for dy/dt.

2
wr. ! (91‘pg)g
2
By
dY_ T ¢ .
_—= sin¢ d
dt S S‘ ¢ dé ri'cos¢'d¢’
Ey 1 I r 1 r 3
0 Or.ln_f_o l-——_o_ .-_._01..__0 + =
1 o, 2 r, T, 4 r, 4
il\Ti i i i

f

(A21)

dy/dt is the rise velocity of a bubble. It can be non-dimensionalized as

follows:
y
d —
Yo _ 1
P, " P r [ b sing dé -
al_4 € grt] 2 _Z.S‘ « cosd do'
°) ' = o 1 Yo 1 o\, 3 T
My i 70 (b o\i-1 e\ 1.1 ef,3 i
T, 2 r, 4 r, 4 r
i i i o
(A22)

Equation {22) has no apparent closed form solution, The integrals of (A22)

may be evaluated numerically from the geometric relationships:

2
r, /r.' 2
2= X cosd+ \_1_ - (J_ sin’$ (A23)
r T r \1‘
(s (o] o] [e]
* 'smand —
T U L) + cosd!
' -1 To ri!
$ = cot (A24)
sing'
— -

The integrals are dependent on (y/r ) and (r;'/r ) and give a dimensionless
rise velocity as a function of these two parameters., The rise path of a bubble
can be calculated in a stepwise manner from the dimensionless velocities.
The rise path of a bubble has been calculated for the case of (ri'/ro) = 0.80
assuming that the bubble is initially centered. Notice that r,'is equivalent

to ry in the text, Thus the plot can be said to be for (1 - m) = 0,64, This
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solution is shown on Fig. A2, The path was calculated on a {y/ro) increment
of 0.05. The path was also calculated using only the initial rise velocity. It
can be seen that not too bad an estimate is gained for the rise time using
only this one step. The form of equation (A22) is much simplified for the
case where the bubble is centered, for then ¢ = ¢'and ry =1, ', Equation

(A22) becomes:

T 'y T \ r,'
aly Lol o) (oL el 3 A
T, _ ri' 2 ri' 4 ri'/ 4 r
5P A e (A25)
d —£—-—-——§ gr,t 2 _Z. S. g sing' do' | cosd' do'
) i "o Vo

The integrals in (A25) are easily integrated and (A25) becomes:

aly m olli1-2 oo 1.l 2o} 42 L

T ri' 2 ri' 4 rl' 4 r

2 = (A26)
Py, ~P r
d—‘!—-—-—ggrot o

k, r.'

Using equation (A26) for the rise velocity of a bubtle, the paths of bubbles
at various values of (ri'/ro) were calculated assuming théy started at the

center, They too are shown on Fig. A2,

4 The time available for a bubble to rise is equal to (Lg/Ug). Define

a dimensionless time T as:

L Py -~ P,) BT
Lotm (P Pglen (a27)

Up Py

This should be a measure of the bubble drainage. The value which it
has when the tail of a bubble just reaches the top is calculated from
equation (A26), This is plotted as a function of (1 - m) on Fig., A3,
Note that Pg is ignored in the coordinates of A2 and A3. This is in

keeping with the assumptions (pI/pg) >>> 1 in the text,
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Notice that this method of calculation should indicate shorter rise
times than a more thorough solution. It is not proposed as a good solution
to bubble drainage rate but only as a means of determining if the effects of
drainage may be significant, Also in the actual case the system would be

complicated with the gas viscosity effects,
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APPENDIX B

Flow in an Annular Liquid Film

Take an annular liquid film as in Fig. Bl, Make the assumptions that:

1, The gas and liquid are in laminar incompressible flow.

2. There is no slip at the liquid-gas boundary,

l 3. The flow is entirely axial.

# 4. The flow is axisymmetric, or free of gravitational effects.
5, The annulus radius r, is constant with x.

6. The interface is stable (no waves).

If the gas were inviscid, there would be no ghear on the interface.
The finite viscosity of the gas does create a finite shear stress, however,
This shear stress can be considered to cause the liquid to flow, The amoun

of this flow is to be calculated here under the assumptions given above.

The pressure gradient in the liquid is the same as the pressure grad-
ient in the gas at a given x, There are two reasons for this. The first is
that assumption 3 allows pressure gradients only in the axial direction, Th
second is that the pressure in the gas and liquid at tre interface at a given
is given by:

o
Pe-Pp,= = — Bl
f g (B1)

r
a

The subscript f refers to the film and the subscript g refers to the gas core

Since r, is a constant, we can say:

dp dp dp
f. 8= __ (B2)
dx- dx dx
The laminar flow equation for flow in tubes gives us:
v -v = L [é (r 2 _r Z) (B3)
g a ay dx g a
-4
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(B4)

a
= 2 5
Qg (S nrg Vg drg (B5)
rO
Ql = g Z‘l‘n‘f Vf drf (B6)
T
a

Equation (B3) and (B4) can be substituted into (B5) and (B6) respectively

to get: _
Q= |V, r % - 81_ %xﬁ.) r * (B7)
Bg |
. ' 2
Q,-- 2% o) (ro’--ra’- (B8)
o o)

A special case of equation (B4) is when r, =1 . In this case, we can

write equation (B4) as:

1 d 2 2 '
v,= — r,o -1, (B9)
4p.l dx

*
The term (dp/dx) can be eliminated in (B7) and (B8) by use of (B9).

Equations (B7) and(B8) can then be written:

2
T8 r
Q=wv,etf1s L B T2 (10)
g 2 M L 2.2
g o "a
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2 2
Q‘ = 8wV, (ro -ra]

(B11)
Equations (B10) and Bl1l) can be ecombined to get
2 4
Q r 1) r
g8 . 1 __a + 1 a 5 (B12)
Q 8 L2z .2 16 p (rz_rz)
o a o a
We can use a definition of m of:
raz
m=1- = (B13)
2
r
o

it is seen that thie m is 23tacliy the same as used in the text when rp was

used., In this canse r, and ry are equivalant, Using the definition (B13),
equation (B12) can be simplified to:

P |

Eg___l_ﬂ_‘__?‘_)_[:z+__f tl_wnﬂ] B14)
T 16

Q,

m N m

4
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APPENDIX C

Relationship of Film Thickness to Velocity Ratio

In this Appendix the cross-sectional area of liquid around a bubble
is calculated, The flow is as in Fig, Cl. The analysis is based on the
assumptions that the analysis of Appendix B is valid away from the bubble
nose and tail, In this analysis the terms Qll' le, and ry are substituted
for QI' Qg' and r, respectively in the analysis of Appendix B. m then has
the same meaning as it does in the text with the restriction that this value of

m is valid only for a symmetric film,

The continuity equation tells us that for a steady bubble velocity and
steady slug velocity:

QS=Q“+Qg1=QI+Qg (C1)
Q
U, = - (C2)
S 2
11'1'0
Q
U, = 8l (C3)

Eqyations (Cl), (C2), (C3) can be combined to give:

Q
S - 1-m) |1+ 2L (C4)

le

Equation (B14) can be substituted into (C4) to get:

Ue B 16 7]
—=2 = (l-m)| 1+ (C5)
U (L-m)f,, Fo (1-m)

B » LI
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It can be seen that equation (C5) reduces to the value as given by equation

(31) in the text if (|J1 /pg) is very large. This is some confirmation of the
validity of the results, The relationship (C5) has been calculated ior

(i, /p.g) equal to 25 and 50, The resultant plot is shown on Fig. C2.
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Test
28
30
31
33
34
37
38
39
42
4%
44
45
46
47
48
49
50
51
52

53 &

54
55
56
57
58
59
60
62
64
65

Data Conditions for Figures 7 through 15

Liquid
Water
Water
Water
Water
Water
N-Heptane
N-Heptane
N-Heptane
Water
Water
Water
Water
N-Heptane
N-Heptane
Water
Water
Water
Water
Water
Water
Wa;ter
Water
Water
Water
Water
Water
Water
N-Heptane
N-Heptane
N-Heptane

Gas
Air
Air
Air

Air

Air

APPENDIX D

Tube
radius
cm

0,0513
0.0513
0,0520
0, 0520
0,0513
0, 0513
0.0513
0.0513
0.0513
0,0513
0,0513
0.0513
0.0513
0,0513
0.0793
0.0793
0.0793
0,0793
0,0793
0,0793
0,0793
0.0793
0.0793
0. 0802
0. 0802
0.0516
0,0516
0.0516
0.0802
0, 0802

x x 10*2

2,0-2,1
2,0
2,0-2,1
2,0-2,1
2,0-2.4
2.2-2,3
2,2
2.3
2,1-2,2
2,0-2,2
2,1-2,3
2,0-2,1
2.1
2.1
1.5
1.4
1,3-1.5
1.,5-1.6
1,4-1,6
1,3-1.4
1.4
1.4-1,6
1.5
1.4
1,3-1.4
2,2-2,5
2.3
2,3
1.5
1.5

- T4 -

(g /i)
48-49
47-48
48
48-49
47-53
24-25
24
25
48-50
48-49
49-50
48-49
24
24
51
49
47-50
51-52
49-52
48
49
52-55
52-53
52-53
51-52
51-56
53
25
25
25

N
0.036

0.036
0.037
0.037
0.036
0.090
0,090
€. 090
0.036
0.036
0.036
0.036
0,091
0.091
0,085
0.085
0.085
0.085
0.085
0. 085
0.085
0.085
0,085
0,088
0,088
0.036
0.036
0.090
0,22

0,22




66
67
69
70
71
72
73
74

N-Heptane
N-Heptane
Water
Watex
N-Heptane
N-Heptane
N-Heptane
N-Octane

0.0802
0.0802
0.0802
0.0802
0.0516
0.0516
0.0516
0.0516

1.5
1.5
1,7
1.3
2,1
2,1-2.2
2.1
3,4

- 75 -

26
25-26
58
49-50
23-24
23-24
23
29-30

0,22

0.22

0.087

0.088

0.091
0.091-0,092
0,092

0.085



10.

11,

12,

13,
14,
15,
16,
17,
18,

19.

APPENDIX E

Figures

Capillary Slug Flow

Uniform Bubble and Slug Length Model of Capillary Slug
Flow
Model for Continuity Equation

Model for Density with Non-Uniform Lg and LB

Schematic Diagram of Experimental Apparatus

Photographs of Flow

Pressure Drop Correlation for 0<NRe < 270, Region I
Pressure Drop Correlation for 270<NRe < 630, Region II
Pressure Drop Correlation for 270<NRe < 630, Region II
Pressure Drop Correlation for 270 << Npe < 630, Region II
Pressure Drop Correlation for 630 < NRe < Transition to
Bubbly Slug Elow, Region III

Pressure Drop Data with Water Contaminated with Tygon in

Region I

Velocity Ratio Data for A= 2,1 x 107

Velocity Ratio Data for A= 1,5 x 107>
5

Velocity Ratio Data for A = 3,4 x 10~
Veiocity Ratio Correlation

Vé'locity Ratio as a Function of (i, US/o-)
Flow Boundary, Slug to Annular Flow

Flow Boundary, Slug to Annular Flow

- 76 -




20,
21,

22,

Flow Boundary, Slug to Bubbly Slug Flow
Flow Regime Map

Comparison of Lockhart-Martinelli Pressure Drop to This
Corzrelation
Comparison of Void Volume to Lockhart and Martinelli

- 17 -
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SLUG FLOW

BUBBLY SLUG FLOW

PHOTOGRAPHS OF FLOW

FIGURE 6 ;
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APPENDIX F

Data
r0 = .0513 cm
Liquid - Water
Gas - Air
AP
Test  Temp  Q % Up iy (Ys, (1) REdfHe
o¢ cc/ééc cc/sec  cm/sec mr.3
ro o) cm
28-2 26.4 .199 .095 37.3 654 62.7 1.7 Slug
-3 25.8 .129 134 34.0 376 28.6 1.7 "
=4 25.4 .085 .055 17.8 601 42,1 1.6 "
30-3 26.8 .168 127 37.8 725 73.3 3.1 "
-6 26.4 .086 .105 26.5 526 41.6 3.0 "
-7 26.4 094 075 21.6 763 66 6 3.0 n
ro = .,0520 cnm
Liquid - Water
Gas - Air
31-4 25.7 .120 201 41.5 955 101.7 9.6 Slug
=7 26.0 .050 .096 17.9 925 79.2 8.4 "
-8 26.2 .085 .118 26.1 1072 109.0 8.0 "
33-1 26.4 .136 . 197 LR .2 1075 116.0 9.4 "
-3 26.0 .101 171 33.8 938 97.6 9.2 "
-5 25.5 .069 .097 20.6 550 38.1 2.9 "
34~2 26.9 42 .132 35.7 427 33.2 3.7 "
-3 24.2 .034 .169 25.7 204 5.8 1.7 "
-/ 24.1 047 .200 31.9 165 5.3 1.3 n
-6 24.8 051 164 26.7 212 7.1 1.3 "
-10 23.7 .052 240 37.8 154 5.3 1.4 n
=11 22.6 .016 .078 11.8 274 5.0 1.4 "
. r = .0513
Liquid - N-Heptane
Gas - Nitrogen
37-1 23.1 . 154 121 34.8 314 32.6 1.4 Slug
) 23.1 .118 .106 29.0 252 25.9 . 1.3 "
-3 23.1 .092 .080 21. 257 26.9 1.3 "
=4 24.0 067 ,059 15.7 247 26.8 1.2 "
-5 24.9 .202 .152 47.9 326 32.3 1.4 n
38-1 26.1 .237 .219 62.5 318 29.5 1.7 "
-2 26.1 .199 .173 49.7 308 29.9 1.6 "
-3 26.1 .155 ,150 40.3 263 26.3 1.5 n
39-1 23.0 .161 124 36.9 314 33.0 1.4 n
"2 23-1 1140 -095 30.5 331# 36-5 1-4 "
"3 2302 0111 9075 23- 318 35-2 103 "




Test

45-1

Temp
oC

25,
25.
24.
25.
25.
25.
26.
25.
26.
26.
26.
26.
25.
R5.
25.
26.
26,
26.

WOHNHFOWOUOHNOOOXROI™FHOJWM

N
o
.

NN
o ON O
WVt O

26.

24.6
24.9
25.2
25.3
25.3
25.6
24.0
24-5
25.0
25.7
25.8
26.0
26.0
26.3

Q
cc/séc

072
.058
.040
.068
111
.104
+110
.052

CW147

<126

115

.061
.163
.166
.087
.229
.215
-207
.08,
154
0277
222
244,
0138
.167
.192
.196
.226
.183
261
121
.138
.265
217
.178
119
245
146

APPENDIX F (continued)

%

ce/sec

.106
124
<147
.063
.078
.120
.108
.206
. 100
171
211
.261
.107
172
.289
.131
.203
<211
450
.327
249
<371
.188.
e411
.251
273
-340
.300
460
<147
442
236
.104
403
537
530
335
516

r, = .0513

Liquid - Water

Gas - Air

Ug (

cm/sec

AEEWLVWLDNDEND DN
OCOJONIIWOW N
WO RO WU NW O

~3 =) O3\ B s ()
\OO-(-\P-'\--H-\O\\];-EL\
VRO~ RNNDOBO

630
360
279
177
484
232

18.8
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VOOFR IO OVIVVNRIOPVON IO WHWORNW-TIODW O BWN N T

WERWRWHRFNRENDS N R R R WND NN LDWW
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Flow
Regime



Temp
°c

26,
26.
26.
26,
26.
26.
27.
_27.
27.
27.
27.
27.
27.
27.
27.
27.
27.
27.
7.
27.

NI I IV~ 0000 RRI®N

N
U
OO0V VDOV N

Q
cc/g;c

. 325
«293

239

.219
244
.167
222
226
.192
136
.138
.089
.110
074
111
.151
.149
.083
c042
\115

184
.313
.379
456
.161
422
.480
172
.365
451
159
126

APPENDIX F (continued)

ro = ,0513

Liquid ~ N-Heptane
Gas - Nitrogen

%

cc/sec

»116
.149
.201
.267
.096
.158
.139
.102
.108
.146
.102
.113
.054
.104
.248
.120
.086
.069°
.109
.069

.163
.386
.290
<460
116
.879
«545
<747
<454
349
778
NyA

( AP
Up Ky U
cm/sec r,
62.0 660
63.2 410
62.5 315
70.0 184
45.0 655
L4 .6 223
48.4 392
43.7 520
41.0 - 44,7
38.4 244
32.1 293
26.4 213
21.3 413
23.2 191
48.6 180
36.2 308
30.8 380
19.5 262
19.2 105
4.2 342
r, = 0793 cm
Liquid - Water
Gas - Air
18.2 222
37.8 178
35.6 251
49.4 225
14.3 256
75.0 168
57.2 201
50.0 107
bl.2 174
43.2 227
51.2 121
4LB.0° 91
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APPENDIX F (continued)

r, = .0793 cm
Liquid - Water
Gas - Alr
. . ()
Test Temp Qy g B e Vg ('lrS) (LB) Flow
oC ce/sec  ce/sec  cm/sec r, nr°3 om Regime
4,9-8 25.0 .196 .804 57.9 117 Lid 1.8 Slug
-9 25.0 .152 724 4L6.4 92 3.3 1.4 "
50-1 24.1 067" .560 34.0 81 3.0 2.1 n
-3 24.5 .098 .865 52.5 86 <27 2.0 "
A 25.0 074 441 26.4, 72 2.8 1.4 n
-5 26.8 .107 575 36.0 87 3.2 1.5 "
-6 26.8 .101 JA14 26.8 84 3.9 1.3 "
=7 26.8 .055 .307 12,0 77 3.1 1.4 "
-9 26.7 .388 <353 38.7 198 16.6 1.2 "
-10 26.8 .198 245 22.6 160 12.6 1.3 M
-11 26.8 445 460 49.1 193 14.6 1.3 AL
51-1 23.0 . 325 1.36 100.5 143 5.7 2.3 "
-2 23.7 471 1.70 132.4 213 8.9 3.1 "
-3 23.2 .580 2.70 198.0 241 7.3 3.3 "
52=1 23.0 .068 .796 46.4 63 1.1 1.1 "
-2 23.2 .032 . 397 22.6 60 1.7 1.8 "
~3 23.5 .038 .568 32.7 61 1.7 2.2 n
A 24.2 177 1.36 88.0 107 2.6 1.9 "
-5 24.3 161 1.35 87.5 114 3.1 2.4 "
-6 25.6 .317 .215 28.1 261 23.5 1.3 "
-7 25.7 041 .302 13.0 65 1.7 1.1 "
53-1 26.4 .681 1.53 134.2 245 10.8 2.4 "
=2 26.5 .718 1.20 115.0 255 i32.0 2.1 "
=3 26.5 806 .699 87.4 260 18.4 . . 1.5 n
=4 26.5 .735 A 88.6 253 16.6. 1.6 "
=5 25.9 439 .596 56.8 195 13.7 1.6 "
-6 25.7 634 .937 - 91.1 232 14.5 2.0 n
541 25.4 409 677 60.1 190 12.3 1.8 n
-2 25.5 .288 371 34.9 177 15.0 1.6 n
-3 25.5 .283 .265 28,4 202 18.5 1.4 "
r, = .0793 cm
Liquid - Water
Gas - Nitrogen
55-1 24.5 615 3.38 237 351 10.4 5.5 "
-2 24.3 677 3.50 253 363 10.3 5.2 "
3 24.5 AT5 3.33 230 351 10.1 6.8 "

-100-




APPENDIX F (continued)
r = 0793 cm
Liquid -~ Water
Gas - Nitrogen

(—22)

Test Temp Qg Qg Up Ky Up (;lﬁg) (LB) Flow
oC cc/sec cc/sec cm/sec r, mro cm Regime

554 23.1 .555 2.75 199 226 6.4 3.1 Slug
=5 23.1 .620 2.23 171 218 6.8 2.4 "
-6 23.1 632 2.03 159 210 7.0 2.2 "
=7 23.1 664 1.61 139 192 7.3 1.8 n
-8 23.2 .596 3.25 229 247 7.0 3.6 "
-9 23.2 .603 473 60 215 15.8 1.1 "
-10 22.6 .818 1.90 169 303 12.3 2.9 "
=11 22.8 .563 2.20 165 200 6.2 R.4 "
-12 22.0 .568 1.20 104 143 4.6 1.0 n
-13 22.0 715 1.06 108 184 9.3 1.4 "

=14 22,0 .735 .927 99 208 12.8 1.6 "
=15 2.2 400 1.24 96 127 4.6 1.4 "
=16 22.3 «392 1.20 95 157 7.2 2.0 n

56~1 24.0 1.076 1.41 159 340 16.6 2.4 n
-2 24.1 979 1.05 126 297 16.9 1.9 "
-3 24.2 517 3.95 260 313 7.8 5.6 "
=4 4.3 440 4.40 282 318 7.5 7.0 n
-5 24.3 482 4.52 291 323 T4 6.4 "

r = .0802 cm
Liquid - Water
Gas - Nitrogen

57-1 24.0 1.38 1.92 209 391 15.1 2.3 n
-2 24.0 1.36 1.76 198 385 15.3 2.2 "
5233 45 .935 78.9 135 4.9 1.0 "
-6 23.3 416 1.34 104 133 4.3 1.4 "
-7 24,0 1.02 1.76 172 339 13.5 2.5 "
-8 24.3 »710 3.95 281 413 10.4 5.8 "
-9 24.0 1.27 1.52 169 274 10.2 1.3 "

58-1 24.5 1.88 1.59 211 406 15.8 1.4 n
-2 24.6  1.36 3.16 272 421 11..7 2.8 n
-3 24L.7 1.81 1.83 224 389 14.0 1.6 n
-4 25.5 .946 4L.26 - 310 417 9.5 4.2 "
-5 25.5 967 4.71 337 464 10.0 4.8 "

-101-




22.0

L] *

SRV VI U VIR NI VIR R VSR VR LR VIR LR SEXE VR S S S SIS X
§n§»§nz~c~¢~:~:~c\f\c~¢~¢~\u\uzu A:A>AJA>AJAJA>A>AJR3
PO NNAIWVWE VMO OVORRRN O

cc?éec

" ,206
.19/
.225
458
<472
.600
.695
.395
451
521
<443
314
324
.267
337
.273
.291
.239
.238
.168
359
.365
-334
<249
.527
«543
481
516
470
-390
o427
<411
.315
.260
314
.299
.282
«243
o241
.116
.328
<254
252

APPENDIX F (continued)

r, = .0516 cm

Liquid -~ Water
Gas - Nitrogen

Ja\y

( )
cc/sec cm/sec T, Trg cm
478 9.8 254 23.8 3.3
259 59.1 184 16.1 1.2
.690 134 176 10.5 2.1
.900 221 350 18.8 2.8
1.08 245 353 16.6 2.7
.718 215 385 23.3 2.1
.500 194 428 31.3 1.7
1.02 216 268 12.3 2.2
1.09 248 357 18.0 3.2
732 199 367 23.6 2.4
.810 201 337 20.4 2.7
1.35 257 341 15.2 4.6
«945 198 313 18.0 3.7
.617 129 243 20.1 3.0
1.14 221 217 8.5 1.9
1.57 275 273 10.2 3.9
.990 193 206 9.3 2.1
1.11 199 197 8.4 2.6
.625 125 165 9.7 1.6
.730 128 153 8.4 2.3
1.25 246 247 9.7 2.3
.840 174 142 5.6 .9
.810 168 143 5.7 .9
.650 128 125 5.5 .9
.792 207 344 19.3 2.2
JTR7 207 348 20.7 2.1
.508 146 259 13.8 1.3
6G7 171 258 14.7 1.3
.700 180 324 20.3 2.0
.739 173 287 13.0 2.3
<545 144 323 26.5 2.2
.538 140 274 20.7 1.8
«555 124 238 17.9 2.0
.687 141 177 9.9 1.7
435 105 195 12.8 1.1
WA 110 190 12.1 1.2
.288 76 210 16.2 1.0
497 101 194 12.1 1.5
.293 71 230 20.1 1.4
<346 60 133 8.5 1.4
332 . 91 189 13.3 .8
.398 89 257 21.3 2.0
428 9 194 13.5 1.4
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APPENDIX F (continued)
r = .0516 cm
Liquid - N-Heptene
Gas -~ Nitrogen

AP
( ) , (Lg)
Test Temp Q, Qg Ug te Up ('Lfg) B Flow
c ce/sec  cc/sec cm/sec ro LA cm Regime

62-1 23.1 .565 450 163 335 16.1 1.0 Slug
-2 25.1 345 .702 160 266 10.0 1.5 "

-3 23.1 <499 .332 135 320 17.9 1.0 "
-4 23.1 .291 .656 142 239 9.3 1.4 "
-5 23.2 416 .336 122 283 15.6 1.0 n
-6 23.2 <227 o543 115 1856 7.6 1.2 n
-7 23.2 310 323 98 232 13.9 1.0 n
-8 23.3 165 475 97 163 7.2 1.4 "
r, = .0802 cm
Liquid -~ N-Heptane
Gasg - Nitrogen

64-1 23.5 1.22 .978 133 315 11.7 1.1 "
-2 23.4 .687 1.32 120 R46 6.9 1.4 n
-3 23.4 .828 .780 99 243 9.8 1.0 n
-4 23.4 367 1.45 109 213 6.6 2.7 w
-5 23.5 .678 646 81.0 243 11.2 1.2 n
-6 23.8 287 1.11 82.0 172 5.8 - 2.2 "
-7 23.7 .538 451 54.5 197 10.8 .8 "
-8 23.7 239 .808 60.4 143 5.4 1.9 n
-9 23.8 .360 379 40.6 181 11.5 1.2 "
-10 23.8 .133 574 39.6 126 L5 1.8 "

65-1 22.2 1.98 3.41 307 531 9.0 1.5 Bubbly Slug
=2 22.4 1.43 3.04 255 478 8.7 1.7 Bubbly Slug
-3 22.3 1.49 2.29 222 402 8.9 1.4  Bubbly Slug
=4 22.7 1.03 2.11 184 337 7.6 1.6 Slug
-5 4 22.6 1.24 2.12 196 385 8.7 1.5 Bubbly Slug
-6 22.5 1.24 1.48 161 328 9.3 1.2 Slug
-7 22.5 1,23 1.16 - 143 301 9.5 1.0 Slug

66-4 1.6 2.63 3.37 345 543 9.7 1.3 Bubbly Slug
-5 21.6 2.33 3.53 339 558 9.4 1.5 Bubbly Slug

67-1 20.9 .182 3.99 — - —— — Slug
-2 21.1 .020 5.12 - —— _— — Annular
-3 21.4 112 411 ——— — ——— — Slug
-4 21.5 .010 2.96 , — — e ——— Annular
-5 21.7 .133 2.35 — -— —_— -— Slug
-6 21.9 011 2.37 —_— —_— —— —_— Annular
-7 21.6 L0B4  2.15 —— — aeee === Slug
-3 21.9 .016 1.76 — _— — -— Annular
-9 21.5 055 1.70 - —_— — — Slug
-10 21.8 0070  1.34 — -— —~—— —— Annular
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APPENDIX F (continued)
r_ = ,0802
)
Liquid ~ N-Heptane
Gas - Nitrogen
AP 1
Test Temp Q. Qg Ug (“1 UB) (;f‘%) (LB) Flow
oC ce/sec ce/sec cm/sec T To cm Regime
67-11 21.8 .053 875 —— —_— - Slug
=12 21.7 .0023 .888 —— — Annular
=14  21.4 .0010 934 —_— -— Annular
-15 21.6 .0035 .726 —— — Slug
~16 21.7 .0012 <499 — ———— Slug
=17 22.C .00037 .500 —— —_— Annular
-18  21.6 02, 3.69 ——— - === ===  Annuler
r = ,0802
o
Liquid - Water
Gas - Nitrogen
L
69-2 20.3 1,10 4.02 295 360 9.7 3.3 Slug
-3 20.2 1.33 5.20 379 497 10.3 4.0 Bubbly Slug
A 20.4 1.35 L.26 330 469 11.3 3.5 Bubbly Slug
-5 20.4 1.40 4.02 326 462 11.8 3.3  Bubbly Slug
-6 20.4 1.40 4.05 315 461 11.9 3.3  Bubbly Slug
70-1  26.3 060 T 4.07 ——— — e eem=  Slug
2 26.4 .034 4.10 ——— —— m—e= === Annular
-3 26.5 .090 2.17 — —— mmmm  me——  Slug
-4 26.7 014 1.95 ——— — —— ——— Annular
-5 26.7 .039 1.62 —— — —— -  Slug
-6 26.7 .010 1.46 —_—— ——— —_— —_— Annular
-7 26.8 .0052 .8, — _— ————  —m=  Slug
-8 26.9 .0022 .82 — ——— mmmm mmmm Slug
9 426.6 .054 2.56 _— — ——  ——  Slug
-10 26.6 .020 2.23 —— —— ——— ——— Annular
-11  26.6 .012 1.32 —_ — e Slug
-12 26.6 .011 1.33 — —— ——— ——— Annular
r = .0516 cm
Liquid - N-Heptane
Gas ~ Nitrogen
71-1 27.4 .983 1.54 354 653 16.0 1.6 Bubbly Slug
2 27.1 1.18 1.09 308 570 17.1 1.0  Bubbly Slug
-3 27.4 . 729 1.04 248 394 12.7 1.2 Slug
-4 27.3 .895 1.09 278 44 T 14.1 1.1 Bubbly Slug
-5 27.6 .892 1.03 271 456 14.5 1.1 Slug

~104-




Test

26.5
26.5
26.6
26.6
7.8
28.0
27.3
27.5
27.7
7.9

28.1
28.2

4.5
245
24.3

cc/sec

.723
.580
.508
629
.600
.331
326
1.09

.988
970
773
618
.201
1156
311
.181
171
147

345
149
0181
415

418
«252
-363

r = .0516
Liquid - N-Heptane
Gas - Nitrogen
e
% e
ce/sec cm/sec M4 B mr,
To
.963 243 400 12.2
1.06 231 351 11.4
1.20 237 373 11.9
1.52 303 520 12.6
1.20 254 394 12.0
1.60 280 ——— 14.5
1.27 233 —— 15.9
692 251 461 17.3
r, = .0516 cm
Liquid - N-Heptane
Gas - Helium
1.11 300 592 18.1
841 261 517 18.4
.834 235 432 16.1
1.13 251 420 13.5
.368 80.2 145 7.0
259 55.6 133 7.3
323 93.5 196 11.3
.335 71.6 152 7.6
259 58.8 159 9.2
.180 43.0 219 18.0
r = .0516 cm
Liquid ~ N-Heptane
Gas - Nitrogen
.943 196 - 17.4
1.24 207 —-— 11.4
r, = .0516 cm '
Liquid - N-Octane
Gag - Nitrogen
.318 113 225 lé.l
.. 4,06 106 158 8.5
.281 95.3 203 14.5
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(Lg)

cm

O
QO OO @\

N e
- -

l—]
W X0 01N

Wb W
N0 =3\

s
o -0

Flow
Regime

Slug
Slug
Slug
Bubbly Slug
Slug
Bubbly Slug
Slug
Bubbly Slug

Bubbly Slug
Slug
Slug
Slug
Slug
Slug
Slug
Slug
Slug
Slug

Slug
Slug
Slug
Slug

Slug
Slug
Slug



APPENDIX F (continued)
r = .0516 cm
0

Liquid - N-Octane
Gas - Nitrogen

4P VS (L)
Test Temp Qg QG UB (u‘ UB) ( 3) LB RFliw
: oc cc/sec cc/sec cm/sec = mr, cm egime
o

T4-1, 24.5 .346 .214 79.0 206 16.1 .7 Slug
=5 24.7 . 100 415 72.9 119 6.0 1.6 Slug
-6 24.8 «253 165 56.5 181 14.0 .6 Slug
=7 24.7 .885 <147 326 458 13.6 1.5 Bubbly Slug
-9 4.4 121 062 23.0 —— 34.2 e Slug
=10 24.5 .112 .131 30.8 - 24.5 —— Slug
-11 24.1 880 1.48 334 490 15.0 1.7 Bubbly Slug
=13 24.3 .390 .935 265 417 16.4 1.2 Slug
-14 4.4 JA94 .790 191 272 J1.7 1.4 Slug
-15 4.4 .503 .512 155 248 12.6 .9 Slug
-16 24.1 .826 1.48 336 483 14.8 1.8 Bubbly Slug
=17 24.3 .800 1.33 304 430 14.7 1.7 Slug
-18 PIAA .945 . 700 231 368 | 18,1 1.0 Slug
220 24.7 745 AT 184 304 16.3 .8 Slug
21 24.3 787 1.53 328 479 14.2 1.8 Bubbly Slug
=22 2L.4 .904 1.16 296 446 16.3 1.4 Bubbly Slug
-23  24.5 .780 1.22 289 405 14.8 1.5 Slug
=24 24, .828 1.19 289 428 15.4 1.6 Slug
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