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Abstract. We discuss a few new motion deblurring problems that are
significant to kernel estimation and non-blind deconvolution. We found
that strong edges do not always profit kernel estimation, but instead
under certain circumstance degrade it. This finding leads to a new metric
to measure the usefulness of image edges in motion deblurring and a
gradient selection process to mitigate their possible adverse effect. We
also propose an efficient and high-quality kernel estimation method based
on using the spatial prior and the iterative support detection (ISD) kernel
refinement, which avoids hard threshold of the kernel elements to enforce
sparsity. We employ the TV-ℓ1 deconvolution model, solved with a new
variable substitution scheme to robustly suppress noise.

1 Introduction

Motion deblurring was hotly discussed in the computer vision and graphics com-
munity due to its involvement of many challenges in problem formulation, reg-
ularization, and optimization. Notable progress has been made lately [1–6]. The
blur process caused by camera shake is generally modeled as a latent image
convolved with a blur point-spread-function (a.k.a. kernel).

The success of recent single-image methods partly stems from the use of var-
ious sparse priors, for either the latent images or motion blur kernels [1, 3, 6].
It was found that without these constraints, iterative kernel estimation is easily
stuck in local minima and possibly results in a dense kernel and many visual ar-
tifacts in the restored image. However, minimizing a non-convex energy function
with the kernel-sparsity prior is usually costly.

Another group of methods seek high efficiency and resort to explicitly detect-
ing salient image structures. They use the Gaussian kernel priors [4, 5, 7] instead
of the sparse ones. These approaches greatly shorten the computation time; but
the Gaussian priors sometimes issue in noisy or dense kernel estimates, which
need to be post-processed by threshold-like operations.

Despite the efficiency and accuracy issues, another critical motion deblurring
problem that was not known yet is on how image structure influences kernel
estimation. Our intriguing finding is that salient edges do not always help kernel
refinement, but instead in some commonly encountered circumstances greatly
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increase the estimation ambiguity. We will analyze this problem and propose an
automatic gradient selection algorithm to exclude the detrimental structures.

Our method also makes several other contributions. 1) First, we propose a
novel two-phase kernel estimation algorithm to separate computationally expen-
sive non-convex optimization from quick kernel initialization, giving rise to an
efficient and robust kernel estimation process. 2) We introduce a new spatial
prior to preserve sharp edges in quick latent image restoration. 3) In the kernel
refinement stage, we employ the Iterative Support Detection (ISD) algorithm,
which is a powerful numerical scheme through iterative support detection, to
adaptively enforce the sparsity constraint and properly preserve large-value el-
ements. Soft-threshold-like effect is achieved in this step. 4) Finally, to restore
the latent image, we employ a TV-ℓ1 objective function that is robust to noise
and develop an efficient solver based on half-quadratic splitting.

We applied our method to challenging examples, where many images are
blurred with very large PSFs (spanning up to 100 pixels in width or height)
due to camera shake. Our “robust deblurring” project website is put online1,
which includes the motion deblurring executable and image data.

1.1 Related Work

Shift-invariant motion blur can be modeled as image convolution with a PSF.
We briefly review the blind and non-blind deconvolution methods.

Blind Deconvolution. Early work on blind image deconvolution focuses on es-
timating small-size blur kernels. For example, You and Kaveh [8] proposed a
variational framework to estimate small Gaussian kernels. Chan and Wong [9]
applied the Total Variation regularizers to both kernels and images. Another
group of methods [10–12] did not compute the blur kernels, but studied the
reversion of a diffusion process.

Lately, impressive progress has been made in estimating a complex motion
blur PSF from a single image [1, 3, 6]. The success arises in part from the
employment of sparse priors and the multi-scale framework. Fergus et al. [1] used
a zero-mean Mixture of Gaussian to fit the heavy-tailed natural image prior. A
variational Bayesian framework was employed. Shan et al. [3] also exploited the
sparse priors for both the latent image and blur kernel. Deblurring is achieved
through an alternating-minimization scheme. Cai et al. [6] introduced a framelet
and curvelet system to obtain the sparse representation for kernels and images.
Levin et al. [13] showed that common MAP methods involving estimating both
the image and kernel likely fail because they favor the trivial solution. Special
attention such as edge re-weighting is probably the remedy. It is notable that
using sparse priors usually result in non-convex objective functions, encumbering
efficient optimization.

Another group of methods [4, 5, 7] do not use sparse priors, but instead employ
an explicit edge prediction step for the PSF estimation. Specifically, Joshi et

al. [4] predicted sharp edges by first locating step edges and then propagating

1 http://www.cse.cuhk.edu.hk/~leojia/projects/robust_deblur/index.html
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the local intensity extrema towards the edge. This method was used to handle
complex PSFs with a multi-scale scheme [7]. Cho and Lee [5] adopted bilateral
filtering together with shock filtering to predict sharp edges. These methods
impose simple Gaussian priors, which avail to construct quick solvers. These
priors however cannot capture the sparse nature of the PSF and image structures,
which occasionally make the estimates noisy and dense.

Non-blind deconvolution. Given a known blur PSF, the process of restoring an
unblurred image is referred to as non-blind deconvolution. Early work such as
Richardson-Lucy (RL) or Weiner filtering is known as sensitive to noise. Yuan et

al. [14] proposed a progressive multi-scale refinement scheme based on an edge-
preserving bilateral Richardson-Lucy (BRL) method. Total Variation regularizer
(also referred to as Laplacian prior) [9], heavy-tailed natural image priors [1, 3]
and Hyper-Laplacian priors [15–18] were also extensively studied.

To suppress noise, Bar et al. [19] used the ℓ1 fidelity term together with
a Mumford-Shah regularizer to reject impulse noise. Joshi et al. [20] incorpo-
rated a local two-color prior to suppress noise. These methods used the iterative
re-weighted least square to solve the nonlinear optimization problem, which in-
evitably involves intensive computation. In this paper, we developed a fast TV-ℓ1

deconvolution method based on half-quadratic splitting [16, 18], to efficiently re-
ject outliers and preserve structures.

2 Two-Phase Sparse Kernel Estimation

By convention, the blur process is modeled as

B = I ⊗ k + ε,

where I is the latent image, k is the blur kernel, ε is the image noise, ⊗ denotes
convolution and B is the observed blur image. In this section, we introduce a two-
phase method for PSF estimation. The first stage aims to efficiently compute a
coarse version of the kernel without enforcing much sparsity. In the second phase,
although non-convex optimization is employed, with the initial kernel estimate
propagated from stage one, no significant computation is required to produce
the final result.

2.1 Phase One: Kernel Initialization

In the first step, we estimate the blur kernel in a multi-scale setting. High effi-
ciency can be yielded as we use the Gaussian priors where closed-form solutions
exist. The algorithm is sketched in Alg. 1. with three main steps – that is, sharp
edge construction, kernel estimation, and coarse image restoration.

In the first place, like other motion deblurring methods, we filter the im-
age and predict salient edges to guide the kernel initialization. We use Gaussian
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Algorithm 1. Kernel Initialization

INPUT: Blur image B and an all-zero kernel (size h × h)
Build an image pyramid with level index {1, 2, · · · , n}.
for l = 1 to n do

Compute gradient confidence r for all pixels (Eq. (2)).
for i = 1 to m (m is the number of iterations) do

(a) Select edges ∇Is for kernel estimation based on confidence r (Eq. (4)).
(b) Estimate kernel with the Gaussian prior (Eq. (6)).
(c) Estimate the latent image Il with the spatial prior (Eq. (8)), and update
τs ← τs/1.1, τr ← τr/1.1.

end for

Upscale image Il+1 ← Il ↑.
end for

OUTPUT: Kernel estimate k0 and sharp edge gradient map ∇Is

(a) (b)

Fig. 1. Ambiguity in motion deblurring. Two latent signals (green dashed lines) in (a)
and (b) are blurred (shown in blue) with the same Gaussian kernel. In (a), the blurred
signal is not total-variation preserving, making the kernel estimation ambiguous. In
fact, the red curve is more likely the latent signal than the green one in a common
optimization process. The bottom orange lines indicate the input kernel width.

filtering to pre-smooth the image and then solve the following shock filtering
PDE problem [10] to construct significant step edges:

∂I/∂t = −sign(∆I)‖∇I‖, I0 = Gσ ⊗ Iinput, (1)

where ∇I = (Ix, Iy)
′ and ∆I = I2xIxx + 2IxIyIxy + I2yIyy are the first- and second-

order spatial derivatives respectively. I0 denotes the Gaussian smoothed input
image, which serves as an initial input for iteratively updating ∂I/∂t.

Selective Edge Map for Kernel Estimation. Insignificant edges make PSF
estimation vulnerable to noise, as discussed in [3–5, 13]. We however observe a
different connection between image edges and the quality of kernel estimation –
that is, salient edges do not always improve kernel estimation; on the contrary, if
the scale of an object is smaller than that of the blur kernel, the edge information

could damage kernel estimation.

We give an example in Figure 1. Two step signals (the green dashed lines) in
(a) and (b) are blurred with a large PSF. The observed blur signals are shown
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(a) Blurred input (b) Fergus [1]et al. (c) Shan [3]et al. (d) mapr

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Image structure influence in kernel estimation. (a) Blurred image. (b) Result of
Fergus et al. [1]. (c) Result of Shan et al. [3]. (d) r map (by Eq. (2)). (e)-(g) ∇Is maps,
visualized using Poisson reconstruction, in the 1st, 2nd and 7th iterations without
considering r. (h) Deblurring result not using the r map. (i)-(k) ∇Is maps computed
according to Eq. (4). (l) Our final result. The blur PSF is of size 45×45.

in blue. Because the left signal is horizontally narrow, the blur process lowers
its height in (a), yielding ambiguity in the latent signal restoration. Specifically,
motion blur methods imposing sparse priors on the gradient map of the latent
image [1, 3] will favor the red dashed line in computing the unblurred signal
because this version presents smaller gradient magnitudes. Moreover, the red
signal preserves the total variation better than the green one. So it is also a
more appropriate solution for the group of methods using sharp edge prediction
(including shock filtering and the method of [4]). This example shows that if
image structure magnitude significantly changes after blur, the corresponding
edge information could mistake kernel estimation.

In comparison, the larger-scale object shown in Figure 1(b) can yield sta-
ble kernel estimation because it is wider than the kernel, preserving the total
variation of the latent signal along its edges.

Figure 2 shows an image example. The blurred input (shown in (a)) contains
rich edge information along many small-scale objects. The results of Fergus et
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al. [1] (b) and Shan et al. [3] (c) are computed by extensively hand-tuning pa-
rameters. However, the correct kernel estimate still cannot be found, primarily
due to the aforementioned small structure problem.

We propose a new criterion for selecting informative edges for kernel estima-
tion. The new metric to measure the usefulness of gradients is defined as

r(x) =
‖∑

y∈Nh(x) ∇B(y)‖
∑

y∈Nh(x) ‖∇B(y)‖ + 0.5
, (2)

where B denotes the blurred image and Nh(x) is a h × h window centered
at pixel x. 0.5 is to prevent producing a large r in flat regions. The signed
∇B(y) for narrow objects (spikes) will mostly cancel out in ‖∑

y∈Nh(x) ∇B(y)‖.
∑

y∈Nh(x) ‖∇B(y)‖ is the sum of the absolute gradient magnitudes in Nh(x),
which estimates how strong the image structure is in the window. A small r
implies that either spikes or a flat region is involved, which causes neutralizing
many gradient components. Figure 2(d) shows the computed r map.

We then rule out pixels belonging to small r-value windows using a mask

M = H(r − τr), (3)

where H(·) is the Heaviside step function, outputting zeros for negative values
and ones otherwise. τr is a threshold. The final selected edges for kernel estima-
tion are determined as

∇Is = ∇Ĩ · H(M‖∇Ĩ‖2 − τs), (4)

where Ĩ denotes the shock filtered image and τs is a threshold of the gradient
magnitude. Eq. (4) excludes part of the gradients, depending jointly on the
magnitude ‖∇Ĩ‖2 and the prior mask M. This selection process reduces ambiguity
in the following kernel estimation.

Figures 2(e)-(g) and (i)-(k) illustrate the computed ∇Is maps in different it-
erations without and with the edge selection operation. The comparison shows
that including more edges do not necessarily benefit kernel estimation. Opti-
mization could be misled especially in the first a few iterations. So an image
edge selection process is vital to reduce the confusion.

To allow for inferring subtle structures during kernel refinement, we decrease
the values of τr and τs in iterations (divided by 1.1 in each pass), to include more
and more edges. So the maps in (g) and (k) contain similar amount of edges.
But the quality notably differs. The method to compute the final results shown
in (h) and (l) is detailed further below.

Fast Kernel Estimation. With the critical edge selection, initial kernel es-
timation can be accomplished quickly. We define the objective function with a
Gaussian regularizer as

E(k) = ‖∇Is ⊗ k −∇B‖2 + γ‖k‖2, (5)
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(a) Blurred input (b) ∇Is map (c) Gaussian prior (d) Our spatial prior

Fig. 3. Comparison of results using the sparse ‖∇I‖2 and spatial ‖∇I −∇Is‖2 priors.
The spatial prior makes the result in (d) preserve more sharp edges.

where γ is a weight. Based on the Parseval’s theorem, we perform FFTs on all
variables and set the derivative w.r.t. k to zero. The closed-form solution is given
by

k = F−1

(

F(∂xIs)F(∂xB) + F(∂yIs)F(∂yB)

F(∂xIs)2 + F(∂yIs)2 + γ

)

, (6)

where F(·) and F−1(·) denote the FFT and inverse FFT respectively. F(·) is
the complex conjugate operator.

Coarse Image Estimation with a Spatial Prior We use the predicted sharp
edge gradient ∇Is as a spatial prior to guide the recovery of a coarse version of
the latent image. The objective function is

E(I) = ‖I ⊗ k − B‖2 + λ‖∇I −∇Is‖2, (7)

where the new spatial prior ‖∇I−∇Is‖2 does not blindly enforce small gradients
near strong edges and thus allows for a sharp recovery even with the Gaussian
regularizer. The closed-form solution exists. With a few algebraic operations in
the frequency domain, we obtain

I = F−1

(

F(k)F(B) + λ(F(∂x)F(Isx) + F(∂y)F(Isy))

F(k)F(k) + λ(F(∂x)F(∂x) + F(∂y)F(∂y))

)

. (8)

Figure 3 compares the deconvolution results using the spatial and Gaussian
priors respectively (the latter is usually written as ‖∇I‖2). The regularization
weight λ = 2e−3. The image shown in Figure 3(d) contains well preserved sharp
edges.

2.2 Phase Two: ISD-Based Kernel Refinement

To obtain sparse PSFs, previous methods [1, 3, 5, 21] apply hard or hysteresis
thresholding to the kernel estimates. These operations however ignore the inher-
ent blur structure, possibly degrading the kernel quality. One example is shown
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(a) (b) (c)

g. t. [1] [3]

S k
s

k
0

S S1 2 3

Fig. 4. Sparse Kernel Refinement. (a) A blurred image [13]. (b) Kernels. The top row
shows respectively the ground truth kernel, the kernel estimates of Fergus et al. [1],
Shan et al. [3], and of our method in phase one. ks in the bottom row is our final result
after kernel refinement. S1-S3 show the iteratively detected support regions by the ISD
method. (c) Our restored image using ks.

in Figure 4(b), where only keeping the large-value elements apparently cannot
preserve the subtle structure of the motion PSF.

We solve this problem using an iterative support detection (ISD) method that
can ensure the deblurring quality while removing noise. The idea is to iteratively
secure the PSF elements with large values by relaxing the regularization penalty.
So these elements will not be significantly affected by regularization in the next-
round kernel refinement. This strategy was shown in [22] capable of correcting
imperfect estimates and converging quickly.

ISD is an iterative method. At the beginning of each iteration, previously
estimated kernel ki is used to form a partial support; that is, large-value elements
are put into a set Si+1 and all others belong to the set Si+1. Si+1 is constructed
as

Si+1 ← {j : ki
j > ǫs}, (9)

where j indexes the elements in ki and ǫs is a positive number, evolving in
iterations, to form the partial support. We configure ǫs by applying the “first
significant jump” rule [22]. Briefly speaking, we sort all elements in ki in an
ascending order w.r.t. their values and compute the differences d0, d1 · · · between
each two nearby elements. Then we exam these differences sequentially starting
from the head d0 and search for the first element, dj for example, that satisfies
dj > ‖ki‖∞/(2h · i), where h is the kernel width and ‖ki‖∞ returns the largest
value in ki. We then assign the kernel value in position j to ǫs. More details are
presented in [22]. Examples of the detected support are shown in the bottom row
of Figure 4(b). The elements within each S will be less penalized in optimization,
resulting in an adaptive kernel refinement process.

We then minimize

E(k) =
1

2
‖∇Is ⊗ k −∇B‖2 + γ

∑

j∈Si+1

|kj | (10)
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Algorithm 2. ISD-based Kernel Refinement

INPUT: Initial kernel k0, ∇B, and ∇Is (output of Algorithm 1)
Initialize the partial support S0 on k0 (Eq. (9)).
repeat

Solve for ki by minimizing Eq. (10).
Update S (Eq. (9)).
i ← i + 1.

until
‖k

i+1−k
i‖

‖ki‖
≤ ǫk (ǫk = 1e−3 empirically)

OUTPUT: Kernel estimate ks

for PSF refinement. The difference between this function and those used in [3, 6]
is on the definition of the regularization terms. Thresholding applies softly in our
function through adaptive regularization, which allows the energy to concentrate
on significant values and thus automatically maintains PSF sparsity, faithful to
the deblurring process. The algorithm is outlined in Alg. 2..

To minimize Eq. (10) with the partial support, we employed the iterative
reweighed least square (IRLS) method. By writing convolution as matrix mul-
tiplication, the latent image I, kernel k, and blur input B are correspondingly
expressed as matrix A, vector Vk, and vector VB. Eq. (10) is then minimized by
iteratively solving linear equations w.r.t. Vk. In the t-th pass, the corresponding
linear equation is expressed as

[AT A + γdiag(VS̄Ψ−1)]V t
k = AT VB, (11)

where AT denotes the transposed version of A and VS̄ is the vector form of S. Ψ
is defined as Ψ = max(‖V t−1

k ‖1, 1e−5), which is the weight related to the kernel
estimate from the previous iteration. diag(·) produces a diagonal matrix from
the input vector. Eq. (11) can be solved by the conjugate gradient method in
each pass (we alternatively apply the matrix division operation in Matlab). As
PSFs have small size compared to images, the computation is very fast.

Our final kernel result ks is shown in Figure 4(b). It maintains many small-
value elements; meanwhile, the structure is appropriately sparse. Optimization
in this phase converges in only a few iterations. Figure 4(c) shows our restored
image using the computed PSF. It contains correctly reconstructed textures and
small edges, verifying the quality of the kernel estimate.

3 Fast TV-ℓ1 Deconvolution

Assuming the data fitting costs following a Gaussian distribution is not a good
way to go in many cases. It possibly makes results vulnerable to outliers, as
demonstrated in many literatures. To achieve high robustness, we propose a
TV-ℓ1 model in deconvolution, which is written as

E(I) = ‖I ⊗ k − B‖ + λ‖∇I‖. (12)
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Algorithm 3. Robust Deconvolution

INPUT: Blurred image B and the estimated kernel ks

Edge taping in Matlab
I ← B, β ← β0.
repeat

Solve for v using Eq. (18)
θ ← θ0

repeat

Solve for w using Eq. (17)
Solve for I in the frequency domain using Eq. (15)
θ ← θ/2

until θ < θmin

β ← β/2
until β < βmin

OUTPUT: Deblurred image I

It contains non-linear penalties for both the data and regularization terms. We
propose solving it using an efficient alternating minimization method, based on
a half-quadratic splitting for ℓ1 minimization [16, 18].

For each pixel, we introduce a variable v to equal the measure I ⊗ k − B. We
also denote by w = (wx, wy) image gradients in two directions. The use of these
auxiliary variables leads to a modified objective function

E(I, w, v) =
1

2β
‖I ⊗ k − B − v‖2 +

1

2θ
‖∇I − w‖2

2 + ‖v‖ + λ‖w‖, (13)

where the first two terms are used to ensure the similarity between the measures
and the corresponding auxiliary variables. When β → 0 and θ → 0, the solution
of Eq. (13) approaches that of Eq. (12).

With the adjusted formulation, Eq. (13) can now be solved by an efficient
Alternating Minimization (AM) method, where the solver iterates among solving
I, w, and v independently by fixing other variables. w and v are initialized to
zeros.

In each iteration, we first compute I given the initial or estimated w and v by
minimizing

E(I; w, v) = ‖I ⊗ k − B − v‖2 +
β

θ
‖∇I − w‖2

2. (14)

Eq. (14) is equivalent to Eq. (13) after removing constants. As a quadratic func-
tion, Eq. (14) bears a closed form solution in minimization according to the
Parseval’s theorem after the Fourier transform. The optimal I is written as

F(I) =
F(k)F(B + v) + β/θ(F(∂x)F(wx) + F(∂y)F(wy))

F(k)F(k) + β/θ(F(∂x)F(∂x) + F(∂y)F(∂y))
. (15)

The notations are the same as those in Eq. (6).
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(a) Noisy input (b) [15] (c) [17] (d) Ours

Fig. 5. Deconvolution result comparison. The blurred images in the top and bottom
rows are with Gaussian and impulse noise respectively.

In solving for w and v given the I estimate, because w and v are not coupled
with each other in the objective function (they belong to different terms), their
optimization is independent. Two separate objective functions are thus yielded:

{

E(w; I) = 1
2‖w −∇I‖2

2 + θλ‖w‖2

E(v; I) = 1
2‖v − (I ⊗ k − B)‖2 + β‖v‖ (16)

Each objective function in Eq. (16) categorizes to a single-variable optimization
problem because the variables for different pixels are not spatially coupled. The
optimal solutions for all wxs can be derived according to the shrinkage formula:

wx =
∂xI

‖∇I‖2
max(‖∇I‖2 − θλ, 0). (17)

Here, isotropic TV regularizer is used – that is, ‖∇I‖2 =
√

(∂xI)2 + (∂yI)2. wy

can be computed similarly using the above method.
Computing v can be even simpler because it is an one-dimensional shrinkage:

v = sign(I ⊗ k − B)max(‖I ⊗ k − B‖ − β, 0), (18)

where β and θ are two small positive values to enforce the similarity between the
auxiliary variables and the respective terms. To further speed up the optimiza-
tion, we employ the warm-start scheme [3, 16]. It first sets large penalties (β and
θ in our algorithm) and gradually decreases them in iterations. The details are
shown in Alg. 3.. We empirically set β0 = 1, θ0 = λ−1, and βmin = θmin = 0.01.

Figure 5 shows examples where the blurred images are with Gaussian and
impulse noise respectively. The TV-ℓ1 model performs comparably to other state-
of-the-art deconvolution methods under the Gaussian noise. When significant
impulse-like sensor noise exists, it works even better. In terms of the computation
time, the methods of [15] and [17] spend 3 minutes and 1.5 seconds respectively
to produce the results in Figure 5 with the provided implementation while our
deconvolution algorithm, albeit using the highly non-linear function, uses 6s in
Matlab. All methods deconvolve three color channels independently.
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(a) Input (b) [1] (c) [3] (d) no M (e) with M

Fig. 6. Small objects such as the characters and thin frames are contained in the image.
They greatly increase the difficulty of motion deblurring. (d)-(e) show our results using
and not using the M map. The blur kernel is of size 51×51.

(a) Input (b) [1] (c) [3] (d) [5] (e) Ours

Fig. 7. Comparison of state-of-the-art deblurring methods

4 More Experimental Results

We experimented with several challenging examples where the images are blurred
with large kernels. Our method generally allows using the default or automati-
cally adapted parameter values. In the kernel estimation, we adaptively set the
initial values of τr and τs, using the method of [5]. Specifically, the directions of
image gradient are initially quantized into four groups. τs is set to guarantee that
at least 2

√
Pk pixels participate in kernel estimation in each group, where Pk is

the total number of pixels in kernel k. τr is similarly determined by allowing at
least 0.5

√
PIPk pixels to be selected in each group. PI is the total number of

pixels in the input image. In the coarse kernel estimation phase, we set λ = 2e−3

and γ = 10 to resist noise. In the kernel refinement, we set γ = 1. λ in the final
image deconvolution is set to 2e−2.

Our two-phase kernel estimation is efficient because we put the non-convex
optimization into the second phase. Our Matlab implementation spends about
25 seconds to estimate a 25×25 kernel from an 800×600 image with an Intel
Core2Quad CPU@2.40G. The coarse kernel estimation uses 12s in the multi-
scale framework while the kernel refinement spends 13s as it is performed only
in the finest image scale.

In Figure 6(a), we show an example that contains many small but structurally-
salient objects, such as the characters, which make high quality kernel estimation
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(a) (b) (c)

Fig. 8. One more example. (a) Blurred image. (b) Our result. (c) Close-ups.

very challenging. The results (shown in (b) and (c)) of two other methods contain
several visual artifacts due to imperfect kernel estimation. (d) shows our result
without performing edge selection. Compared to the image shown in (e), its
quality is lower, indicating the importance of incorporating the gradient mask
M in defining the objective function.

Figure 7 shows another example with comparisons with three other blind
deconvolution methods. The kernel estimates of Fergus et al.[1] and Shan et

al.[3] are seemingly too sparse, due to the final hard thresholding operation. The
restored image is therefore not very sharp. The deblurring result of Cho and Lee
[5] contains some noise. Our restored image using Alg. 3. is shown in (e). We have
also experimented with several other natural image examples. Figure 8 shows
one taken under dim light. More of them are included in our supplementary file
downloadable from the project website.

5 Concluding Remarks

We have presented a novel motion deblurring method and have made a number of
contributions. We observed that motion deblurring could fail when considerable
strong and yet narrow structures exist in the latent image and proposed an
effective mask computation algorithm to adaptively select useful edges for kernel
estimation. The ISD-based kernel refinement further improves the result quality
with adaptive regularization. The final deconvolution step uses a ℓ1 data term
that is robust to noise. It is solved with a new iterative optimization scheme. We
have extensively tested our algorithm, and found that it is able to deblur images
with very large blur kernels, thanks to the use of the selective edge map.
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