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Abstract: A sediment cloud release in stagnant ambient fluid occurs in many engineering 

applications. Examples include land reclamation and disposal of dredged materials. The detailed 

modeling of the distinct characteristics of both the solid and fluid phases of the sediment cloud is 

hitherto unavailable in the literature despite their importance in practice. In this paper, the two- 

phase mixing characteristics of the sediment cloud are investigated both experimentally and 

theoretically. Experiments were carried out to measure the transient depth penetration, and the 

lateral spread of the sediment cloud and its entrained fluid using the laser induced fluorescence 

technique, with a range of particle sizes frequently encountered in the field (modeled at laboratory 

scale). A two-phase model of the sediment cloud that provides detailed predictions of the mixing 

characteristics of the individual phases is also proposed. The entrained fluid characteristics are 

solved by an integral model accounting for the buoyancy loss (due to particle separation) in each 

time step. The flow field induced by the sediment cloud is approximated by a Hill's spherical 

vortex centered at the centroid and with the size of the entrained fluid. The particle equation of 

motion under the effect of the induced flow governs each computational particle. A random walk 

model using the hydrodynamic diffusion coefficient is used to account for the random fluctuation 

of particles in the dispersive regime. Overall, the model predictions of the two-phase mixing 

characteristics are in good agreement with the experimental data for a wide range of release 

conditions. 

Keywords: two-phase flows; particle clouds; thermals; sediment disposal; land reclamation; 

dredging 
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1 Introduction 

An instantaneous release of sediment into a fluid occurs in many engineering 

applications. During land reclamation, sand is commonly dumped into coastal 

waters to create land mass (Zhao et al. 2012). Coarser dredged materials such as 

rubble are also disposed in designated areas of lakes and coastal waters (Buhler 

and Papantoniou 1999); and fine sediment is used to cap confined aquatic disposal 

cells containing contaminated materials (Ruggaber 2000). For environmental 

impact assessment, as well as to plan for the disposal operations, it is necessary to 

predict the fate and transport of the sediment cloud. An issue which is related to 

the analysis of sediment clouds, but that receives little attention, is the fate and 

transport of the interstitial fluid. It can be of significant environmental importance 

- for example the transport of dissolved pollutants in the interstitial fluid is driven 

by the motion of the sediment cloud.  

 

Released sediment clouds typically set the surrounding ambient fluid into motion. 

Ambient fluid is drawn into the sediment cloud through turbulent entrainment, 

and the mixing characteristics such as the radius, and descent velocity of the cloud 

change as a result. The volume of entrained fluid grows and descends along with 

the sediment cloud forming a solid-fluid two-phase flow, the carrier and dispersed 

phase being the entrained fluid and the sediment particle respectively. The two-

phases separate when the fluid velocity decreases to the order of the settling 

velocity of particles comprising the cloud (Rahimipour and Wilkinson 1992). 

After the phase separation, the sediment cloud continues to descend at 

approximately the settling velocity of the individual particles, while the entrained 

fluid descends as a puff (Bush et al. 2003). 
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There have been many studies concerning the instantaneous release of sediment 

clouds. Rahimipour and Wilkinson (1992) suggested that the behavior of sediment 

clouds during their descent can be separated into three phases: (i) the initial 

acceleration phase - when the sediment cloud accelerates from rest to its 

maximum velocity; (ii) the self-preserving phase - when the cloud can be 

approximated as a spherical miscible thermal (Scorer 1957, Turner 1973) with 

buoyancy given by the particles; and finally (iii) the dispersive regime - when the 

cloud settles as a bowl shaped swarm with all particles moving almost vertically 

downwards. A cloud number was defined as the ratio of the particle settling 

velocity and the cloud characteristic velocity to study the behavior of the sediment 

cloud: 

1/2( )a

c s s

o

N w r
B  

Where ws is the particle settling velocity, rs is the half-width of the sediment 

cloud, ρa the ambient density, and Bo the sediment cloud initial buoyancy. When 

Nc<1 the sediment cloud is in the thermal regime, it then enters the dispersive 

regime when Nc>1. The delineation of the phases can alternatively be determined 

using a length scale analysis (Luketina and Wilkinson 1998). A similar length 

scale analysis for line sediment clouds was done by Noh and Fernando (1993). 

 

At present, most mathematical models for sediment clouds use the integral model 

approach, in which the sediment cloud is treated as an equivalent miscible thermal 

for analysis. Solving the conservation of mass, momentum, and buoyancy 

equations, together with the entrainment hypothesis (Morton et al. 1956) gives the 

essential bulk characteristics of the cloud. The flow pattern induced by a thermal 

was studied theoretically by Turner (1964) using an expanding Hill’s spherical 
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vortex. Buhler and Papantoniou (2001) developed separate integral equations for 

the self-preserving and dispersive regimes. The resulting growth and velocity 

relationships with the cloud penetration depth showed good agreement with their 

experimental data. Bush et al. (2003) developed an integral model to account for 

the effect of linear ambient stratification, and was able to predict the growth and 

velocity changes of a sediment cloud in the thermal regime. Recent studies 

focused on including the effects of initial release conditions to the sediment cloud 

development. Ruggaber (2000) considered the effect of moisture content, and 

found that the mixing characteristics of the cloud are insensitive to many 

conditions encountered in practice.  Zhao et al. (2012) included the effect of 

initial release height on the cloud development in the thermal regime through 

virtual origin corrections. While traditional integral models are able to give 

accurate solutions to the bulk characteristics of the sediment cloud in the thermal 

regime, they are in general not applicable in the dispersive regime, where changes 

in the cloud characteristics appear to be due to the random motion of individual 

particles (e.g. Ruggaber 2000) rather than turbulent entrainment. The 

characteristics of the entrained fluid are also not predicted. It is also difficult with 

existing models to simulate sediment clouds with multiple particle sizes, as are 

frequently encountered in practice. 

 

A number of computational fluid dynamics (CFD) studies revealed further details 

of sediment clouds. Li (1997) developed a CFD model that treated the discrete 

particles as a continuous density field, and used a mixing length model for 

turbulence closure. The turbulence coefficients were approximated by calibration 

with the previous experimental data of Scorer (1957). Li's results revealed the 

vortex motion (as in a vortex ring) for fine particles with small settling velocity. 
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Gu and Li (2004) developed an Eulerian-Lagrangian CFD model to study 

sediment clouds with multiple particle sizes. The motion of the fluid phase was 

computed by a two-equation turbulence model, while the motion of solid phase 

(particles) was computed by assuming the particle velocity to be the sum of a fluid 

random velocity and the particle settling velocity. The two-phases were coupled 

using the multiphase particle-in-cell method. The resulting cloud velocity and 

growth were in agreement with their experiments of multiple sizes sediment cloud 

releases. Multiphase CFD models are considered to be currently still in 

development stage. 

 

Previous theoretical and experimental investigations had focused primarily on the 

sediment cloud thermal regime, while the fluid motion induced by the sediment 

cloud was rarely studied. In this paper, we first introduce Turner (1964)’s 

expanding Hill’s spherical vortex model for studying the flow structure of a single 

phase thermal. Then we extend Turner’s model and propose a two-phase model of 

the solid-fluid flow to solve for the transport of both particles and entrained fluid 

in the thermal and dispersive regimes. Experiments measuring both the solid and 

fluid phase characteristics were conducted to validate the model. Comparisons of 

model predictions with observations from previous studies also demonstrate the 

generality of the model. 

2 Modeling of a single phase thermal  

2.1 An expanding Hill’s vortex 

For later model development, it is useful to first consider an expanding Hill’s 

vortex model which Turner (1964) used to study the flow induced by a single-

phase thermal.  
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Hill’s vortex (1894) is an exact solution to Euler’s equation, which describes the 

flow induced by a steady non-expanding vortex ring with vorticity distributed in a 

sphere (see Appendix A). While useful for studying the flow induced by a vortex 

ring, the Hill’s vortex is not suitable for studying the thermal flow since 

entrainment is not modeled.  

 

Turner (1964) then proposed an extension to the Hill’s vortex solution such that 

the flow pattern of a thermal can be studied. With a priori specification of the 

Hill’s vortex radius as a function of time (r = α t, where α is the entrainment 

coefficient), Turner assumed the instantaneous flow induced by a thermal is the 

same as that of this expanding Hill’s vortex. The entrainment pattern of a thermal 

can be studied by computing the trajectory of a layer of inertialess particles when 

an expanding Hill’s spherical vortex passes through. Results of Turner showed 

that it had reasonable resemblance to the experimental observation of a thermal 

structure.  

 

Figure 1 shows an example trajectory of a layer of 12 particles.  Particles are 

located at z = 2ro, with equal spacing spanning a width of 4ro , where ro is the 

initial radius of the thermal with volume 58.42 10  m
3
.  An expanding 

spherical vortex with growth rate r = α t passes through from negative to positive 

z with unit velocity starting from zo =0, to = ro/α. The dimensions have been scaled 

such that the sphere is fixed in size in the plot. Results using α=0.25 are shown. 

Solid lines represent results by solving Turner’s derived equations, while circle 

symbols represent our computation by advecting particles numerically with the 

flow field induced by the same expanding spherical vortex. The two results are 
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visually indistinguishable. The number of particles being entrained can be shown 

to increase with α.  

2.2 Continuity of an expanding Hill’s vortex 

Two issues were not considered in Turner’s model. Firstly, a thermal does not 

descend with a constant velocity, but decelerates during its descent. Secondly, the 

continuity issue of whether the modeled entrainment into a thermal equals the 

thermal growth was not addressed. This section serves to resolve these two issues.  

 

The thermal motion and its velocity during its descent can be predicted by solving 

an integral model (e.g. Escudier and Maxworthy 1973) describing the 

conservation of volume, momentum, and buoyancy of a thermal (see section 3.1 

for details). Equation (1) in particular describes the change of thermal volume 

over time being equal to the entrainment into the thermal. 

 

The conservation of volume equation can also be considered in the expanding 

Hill’s vortex model. Instead of assuming the thermal velocity to be a constant, in 

our model we have used the velocity that is predicted by the integral model; the 

integral model also predicts the radius ri of the thermal. A numerical experiment is 

performed to determine whether the conservation of volume is satisfied. A 

numerical tank of volume V is considered to be filled with N ‘water parcels’, each 

with volume V/N.  As an expanding spherical vortex passes through, some of the 

parcels will be entrained, and these will be ‘relabelled’ as ‘thermal parcels’(Figure 

2).  (Scase et al. 2007 considered a similar example for pure plumes.) The 

number of parcels and the total volume contained within a thermal represented as 
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an expanding spherical vortex of radius rh are tracked in each time step, and 

compared with the thermal volume predicted by the integral model.   

 

Results show that if rh = ri is assumed, the volume of the expanding Hill’s vortex 

model is about 4% less than that of the integral model, indicating that the 

characteristic width of an expanding Hill’s vortex can be different between the 

two. This can be expected as the two models have markedly different assumptions 

regarding the velocity distributions within and outside the thermal. Because rh ≠ ri 

, an adjustment factor η, such that rh = η ri, needs to be employed for the volume 

to be conserved.  

 

We determined the optimum η to be 1.012, and with this adjustment, the volume 

difference for every time step was generally less than 0.5%, easily sufficient for 

practical purposes (the corresponding difference in radius being less than 0.2%). 

Figure 3 shows a comparison of the thermal volume predicted by an integral 

model, and by an expanding Hill’s vortex with η = 1.012. There is practically no 

difference between them. For consistency purposes, in all following sections the 

modeled half-width of the thermal will be taken as that predicted by the integral 

model. 

 

3 Two-phase modeling of sediment clouds 

We now extend Turner (1964)’s model of a single-phase thermal to a two-phase 

sediment cloud. The problem under consideration is shown in Figure 4. Each of 

the Np spherical particles with diameter d, mass mp, and density ρp , are released 

instantaneously (in the +z direction)  into an otherwise stagnant ambient of 
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density ρa. The total initial mass of the sediment cloud is mo, and the total 

buoyancy of the cloud is Bo = mo(1- ρa /ρp)g, where g is the acceleration due to 

gravity. Initially, it is assumed that the sediment cloud has a half-width rs and 

front position zs equal to the entrained fluid half-width rf and front position zf  

(approximated as a sphere with cz  denoting its centroid vertical coordinate). The 

entrained fluid is composed of the original tracer mixed with the sediment 

particles before release, and the ambient fluid entrained by turbulent entrainment. 

As the cloud descends, the mixing characteristics of the two phases are expected 

to differ increasingly. The objective is to predict the change in these 

characteristics of the two phases throughout the descent process. 

3.1 Modeling of the fluid motion 

Initially, when the particles are all within the entrained fluid, the motion of the 

entrained fluid can be described by an integral model tracking the changes in its 

volume V, momentum M, and buoyancy B. Over time, particles gradually settle 

out, and the buoyancy B of the entrained fluid is expected to decrease. By 

assuming a constant circulation (K) in the sediment cloud, Turner (1957) showed 

that B = Bo = 2πcαρaK
2
 in the thermal regime, where c is a constant depending on 

the thermal shape, and α is the entrainment coefficient. In the dispersive regime, B 

is expected to be 0 as the sediment particles have completely separated from the 

entrained fluid.  Further, Rahimipour and Wilkinson (1992) obtained 

experimentally the variation of α in the thermal regime in the form of α = αo (1-

c1Nc
c2

) , where αo is the initial entrainment coefficient, c1 and c2 are experimental 

constants. This results in the following integral equations describing the bulk 

characteristics of the entrained fluid: 
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f f
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2
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c

f
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w
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2
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c

(1 )     when     1

0                           when     1

c
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B

N
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where wf, ρf, and V are the characteristic velocity, `density', and volume of the 

entrained fluid respectively; CM ≈ 0 (Bush et al. 2003) is the added mass 

coefficient; CD≈ 0 (Ruggaber 2000) is the drag coefficient.  We have assumed in 

the model that the dispersive regime is reached when Nc  = 1 (e.g. Bush et al. 

2003).  

The following two equations are used to relate the characteristic variables to the 

bulk characteristics of the entrained fluid (with the Boussinesq approximation): 

1/33
( )
4

f

V
r  (5) 

f

f a

M M
w

V V
 (6) 

Equations (1) – (3)  are solved using a fourth-order Runge-Kutta numerical 

integration scheme, and the algebraic expressions equations (4) – (6) with initial 

conditions (V = 0, M = 0, zf = zvo ) at t  = tvo which can be determined with a 

known virtual origin in space and time (zvo, tvo). An additional equation of tracer 

mass conservation  

( )
0

d VC

dt
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(where C is the volumetric mean concentration of the entrained fluid) can be used 

to compute the dilution of the tracer that descends along with the sediment cloud.  

Turner (1964) suggested that the flow field of the thermal resembles that of an 

expanding Hill's spherical vortex (Hill 1894) with buoyancy conservation. We 

adopt a similar but new approach to the sediment cloud by assuming that the 

entrained fluid is a thermal with reducing buoyancy as shown in equation (4). 

Thus, the instantaneous flow field [uz (z,r), ur (z,r)] at a particular time t can be 

represented as a Hill's vortex centered at (zc, 0) with constant velocity wf  and 

radius  rf. This yields the following analytical expressions for the complete fluid 

flow field at time t: 

  

Inside the entrained fluid (R<rf, where 2 2 2( )cR r z z ) 

2 2
3 10

[4( ) 2( ) ]
4 3

f c

z

f f

w z zr
u

r r
 (7) 

2

3
( )

2

f

r c

f

w
u r z z

r
 (8) 

Outside the entrained fluid (R> rf): 

3 2 2

2 2 5/2

2( )

2 [( ) ]

f f c

z

c

w r z z r
u

z z r
 (9) 

3

2 2 5/2

3 ( )

2[( ) ]

f f c

r

c

w r r z z
u

z z r
 (10) 
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3.2 Modeling of the particle motion 

3.2.1 Particle equation of motion 

A Lagrangian approach is used to model the sediment particle motion. With the 

computed fluid flow field, the particle equation of motion (e.g. Crowe et al. 1998, 

Lee 2010) can be used to compute the hydrodynamic forces acting on each 

particle: 

p

p D A SG g

du
m F F F F

dt
 (11) 

where  

Re
3 ( )

24

Dp p

D f p

C
F u u  is the drag force; ( )

f p

A f p

Du du
F V

Dt dt
 is the 

added mass force; ( )
f

SG f p

Du
F V g

Dt
is the fluid stress gradient; 

g p p
F V g is the gravitational force; ( , )

f z r
u u u is the fluid velocity; 

( , )
p pz pr

u u u is the particle velocity;  is the dynamic viscosity of the fluid; 

Dp
C  is the drag coefficient of a particle; Re

f p

Dp

u u d
is the particle 

Reynolds number ( /
f
); and 

p
V is the volume of a particle. 

 

The drag coefficient can be evaluated by the formula from Swamee and Ojha 

(1991): 

 

1.6 0.72 2.5 2 0.25 0.2524 130 40000
0.5{16[( ) ( ) ] [( ) 1] }

Re Re Re
Dp

p p p

C  

Simplifying and casting equation (11) into a component form: 
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2

2

Re 3
(1 ) 3 ( )

2 24 2

f p Dp p f r

r pr

p p p p

d r C Du
d u u

dt V Dt
 (12) 

2

2

Re 3
(1 ) 3 ( ) (1 )

2 24 2

f p Dp p f fz

z pz

p p p p p

d z C Du
d u u g

dt V Dt
 (13) 

The convective derivatives in equations (12) and (13) can be expressed as (e.g. 

Batchelor 1967): 

( )z z z r r

z

Du u u u u
u

Dt t z r r
 

( )r r z r r

r

Du u u u u
u

Dt t z r r
 

The partial derivatives above can be evaluated analytically using the Hill's vortex 

velocity field (see Appendix A) as follow: 

 

Inside the entrained fluid (R<rf): 

2 2

3 ( ) 3
;        ( )e cz z z

c

f f

w z zu u u
z z

z r t r
 (14) 

2

2 2

3 ( ) 3
;        

2 2

f c fr r

f f

w z z wu u
r

r r t r
 (15) 

Outside the entrained fluid (R>rf): 

3 2 32 3 2 3

7/2 7/2
2 2 2 2

c c

3 3( )[2( ) 3 ] ( )[2( ) 3 ]
;      

2 2(z- ) (z- )

f f f fc c c cz z
w r w rz z z z r z z z z ru u

z tz r z r

 

(16) 

3 2 32 2 2 2

7/2 7/2
2 2 2 2

c

3 3( )[2( ) 4 ] [4( ) ]
;        

2 2(z- ) ( )

f f f fc c cr r

c

w r w rz z z z r r z z ru u

r tz r z z r
 

(17) 
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Equations (14) – (17) are evaluated at the position of each particle z=zp and r =rp. 

Equations (12) – (13) can be cast into a set of ordinary differential equations 

which is solved by a fourth order Runge-Kutta integration scheme: 

3
( )

2

1
2

f r
r pr

pr p

f

p

Du
A u u

du Dt

dt
 (18) 

3
( )

2

1
2

f z
z pz

pz p

f

p

Du
A u u B

du Dt

dt
 (19) 

p

rp

dr
u

dt
 (20) 

p

zp

dz
u

dt
 (21) 

where 
Re

8

Dp p

p

dC
A

m
, and 

Re
(1 ) / ( )

8

f Dp p

p p

C
B g

m
. 

These equations are subject to initial conditions (zpo,rpo,upzo,upro) at cz = 0, t = 0, 

where a uniform particle distribution (equidistance in z- and r- direction) in the 

spherical entrained fluid of half-width wf  (t=0) is assumed. 

3.2.2 Hydrodynamic diffusion of particles in the dispersive regime 

In the dispersive regime, the sediment cloud descends as a swarm with velocity 

being the same as the settling velocity of an individual particle.  At the same 

time, the swarm continues to spread laterally, though at a smaller rate than in the 

thermal regime. Buhler and Papantoniou (1991) suggested α≈0.1, arguing that the 

spreading of the particles is caused by the lateral displacement flow resulting from 

the wake behind each particle. Rahimipour and Wilkinson (1992) suggested that 
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the spread in the dispersive regime is due to the weak dispersive influences 

between adjacent particles. However, so far no study has confirmed the physical 

mechanism for the lateral spread of a sediment cloud in the dispersive regime. 

Here, it is suggested that the sediment cloud spread is due to `hydrodynamic 

diffusion' (Guazzelli and Hinch 2010) as seen in a group of settling particles. It 

has been observed that the random motion of each particle in a group causes the 

group to spread even when the particle volume fraction is small.  

 

The normalized hydrodynamic diffusivity in the vertical direction Dv /[(d/2) ws] as 

a function of particle volume fraction was reported previously by Davis and 

Hassen (1988, 1989). In our model, the particle volume fraction in each time step 

is computed by assuming the sediment cloud volume as (4/3)ηπr
3, where η= 0.68 

is the shape factor (Zhao et al. 2012). Dv /[(d/2) ws] can hence be determined by 

implementing Davis and Hassen’s plots in our model (for our experiments the 

typical value of the normalized hydrodynamic diffusivity is in the order of 0.7). 

The normalized hydrodynamic diffusivity in the horizontal direction Dh/[(d/2) ws] 

was found to be a few times smaller than than the normalized vertical diffusivity, 

and by using data of Nicolai et al. (1995) for particle volume fraction <0.2, the 

ratio is computed to be Dv / Dh = 3.7. In the above expressions, ws is the settling 

velocity of the particle which can be estimated experimentally, or by Dietrich 

(1982)'s formula for spherical spheres (Appendix B). The settling velocity is that 

for an isolated particle, as a dilute suspension is considered (volume fraction in 

the order of 0.001); hindered settling is not considered but its affect is expected to 

be small for a dilute suspension. The hydrodynamic diffusion effect can be 

incorporated into the model by a random walk model (Kitanidis 1994): 
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( ) ( ) 2
p p pr h

r t t r t u t D t  (22) 

( ) ( ) 2
p p pz v

z t t z t u t D t  (23) 

where ξ is a normally distributed random number with mean 0 and variance 1. 

Note that in the dispersive regime, it is assumed that the vorticity generated is 

only in the fluid phase (or the entrained fluid) represented by the expanding Hill’s 

vortex. From the simulation of Pignatel et al. (2011) using Oseenlets with the 

particle Reynolds number in the order of Rep ~ O(0.1), it can be seen that weak 

vorticity can also be present within the particle cloud, even in the dispersive 

regime.  Such vorticity is due to the macroscopic effect induced by each particle, 

which can affect their settling. We do not preclude the possibility of similar 

macroscopic effects from particles which generate vorticity in our study of high 

particle Reynolds number flows [Rep ~ O(100)], but experimental observations 

show that this effect is relatively weak, as all particles fall almost vertically. Also, 

note that our primary objective is not to model the sediment cloud motion in such 

details, but to provide an efficient tool for predicting its bulk characteristics. The 

effectiveness of the present modeling approach can ultimately be determined by 

comparison with experiments.      

 

3.3 Model implementation details 

Given the total mass of a sediment cloud and the particle diameter, the motion of 

both the fluid and solid particles can be predicted by the model in the following 

manner. First, the time step used in the model is max0.05 /ot r w , where 

1/3[3 / (4 )]o pr V is the equivalent radius of the initial sediment cloud volume, 

and wmax is approximately the maximum velocity that a thermal can attain in the 
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initial acceleration regime, which can be estimated to be (Escudier and 

Maxworthy 1973, see Appendix C): 

max 1/3

( ) / 1

2 (1 ( ) / )

o p a a

p a a

gr
w

  (24)

 

Physically, the chosen Δt roughly assumes that the movement of particles at any 

time is less than 0.05 ro. Further reducing the time step does not yield noticeable 

changes in the predicted results for the cases considered in this study. 

The solution scheme for the model can be expressed as a simple algorithm: 

1. Determine the initial conditions of entrained fluid at z = 0, t = 0 from virtual 

origin; 

2. Distribute the particles with the determined initial conditions at z = 0, t = 0; 

3. Use the integral model to solve for the entrained fluid characteristics; 

4. Compute the velocity field induced by an expanding Hill’s vortex; 

5. Compute the total acceleration and forces acting on the particles; 

6. Account for the hydrodynamic diffusion of the particles in the dispersive 

regime; 

7. Solve the particle tracking equation; 

8. Advance to next time step and repeat from step 3 until the desired time duration 

is reached. 

With a known virtual origin length above the water surface zvo, the integral model 

(Equations (1) – (3)) can be used to determine the virtual time origin tvo assuming 

a constant buoyancy. The initial conditions of the entrained fluid at the real origin 

z=0 and t=0 are then known (Zhao et al. 2012). Particles (Np ≈ 500 in this study) 

are uniformly distributed inside the entrained fluid at t=0 (particle spacing is equal 

in r- and z- directions within the sphere of radius ro).  



18 

 

Here we have used the concept of “computational particles” (Crowe et al. 1998), 

whereby the model identifies a packet of particles as a single computational 

particle with the same properties as the physical particles. The actual number of 

particles is in the order of 10000 – 20000. Using the actual number of particles 

only increases computational time and our results show that increasing Np beyond 

about 500 produced no noticeable change in the prediction results. 

 

4 Experiments 

4.1 Experimental setup 

Because experiments on the two-phase characteristics of a sediment cloud were 

limited in the literature, a comprehensive experimental programme was carried 

out in the present study for this purpose. 

 

Experiments were carried out in a 0.85 m (width) × 2.85 m (length) × 1.0 m 

(depth) glass tank. The schematic diagram of the experimental setup is shown in 

Figure 5. A constant mass of 3.0 g particles (Ballotini Impact beads, Potters 

Industries, Inc.) was filled in a cylinder with 0.9 cm inner radius (rc) in all 

experiments. Three sizes of particle were considered: size A with a median 

diameter d= 0.725 mm; B: 0.513 mm; and D: 0.256 mm. All particles had a 

density of 2.5 g/cm
3
 (Table 1). The range of particle size can be scaled up to that 

typically encountered in the field by using Froude scaling (Ruggaber 2000). The 

cylinder was placed at the mid-width of the tank. Rhodamine-B (Rho-B) dye 

solution was added to visualize the entrained fluid. The level of the dye solution 

coincided with the water level external to the cylinder so there was no extra 
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pressure acting on the particle-dye mixture. The cylinder bottom was covered with 

a taut latex sheet, which could be ruptured quickly for an instantaneous release. A 

needle, placed at the center of the cylinder was used to rupture the latex sheet.  It 

was controlled by an electrically triggered motor to eliminate human factors 

affecting the release conditions. The minimum distance from the cylinder center 

to the tank wall was 0.425 m, which was sufficient for the experiments in this 

study to be free from boundary effects. 

 

Laser induced fluorescence (LIF) was used to visualize both the sediment cloud 

and the entrained fluid. A laser sheet, with approximately 3 mm thickness, was 

generated using a 532 nm solid state diode pump laser and a diverging lens 

located at the bottom of the tank with its convex side facing upwards. It cut 

through the plane of symmetry of the cylinder and was wide enough to cover the 

area of interest. With the illumination, Rho-B dye fluoresced to give out yellow 

light and the particle diffracted the green laser light towards the camera. 

 

Two 8-bit monochrome CCD cameras (Dantec FlowSense 2M, 1186 1600 

pixels) and a color video camera (Sony HDR-XR550E, 1080 1440 pixels) were 

used in all experiments. One CCD camera was used to capture the LIF images at 

15 Hz of the dyed entrained fluid by fitting a 570 nm lowpass filter. Another CCD 

camera was used to capture the sediment particle images by fitting a 532 nm 

bandpass filter. Both cameras were aligned perpendicular to the laser sheet. The 

sediment cloud motion in the upper region (close to the release point) and the 

lower region close to the bottom were captured in separate experiments due to the 

limited field of view of the CCD camera. The video camera perpendicular to the 

laser sheet was also used to capture the motion and provide extra information of 
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the sediment cloud release outside the field of view. Recording began just before 

the rupture of the latex sheet, and stopped when the entrained fluid reached the 

tank bottom. Experiments were repeated 10 times [5 for upper region (z ~ 0 -30 

cm) and 5 for lower region (z ~ 30 - 60 cm)] for all sizes of particle. The captured 

LIF images were background subtracted for analysis. The captured videos were 

also converted to a series of 30 Hz 24-bit images (8 bits for each red, green and 

blue) for analysis. 

 

4.2 Observations 

It is useful to define two length scales for describing the behavior of a sediment 

cloud (Luketina and Wilkinson 1998): 1/3

f( / )at ol m  is the acceleration-to-

thermal regime length scale, and is approximately the distance for the cloud to 

enter the thermal regime; 
1/2[( / ) '] /td o f sl m g w is the thermal-to-dispersive 

regime length scale, and is the approximate distance required for the cloud to 

reach the dispersive regime.  These two length scales are computed and listed in 

Table 1.  

 

Two-phase sediment clouds were observed in all experiments. The typical 

observation in an experimental run can be seen in Figure 6. In the current 

experiments, atl was relatively short such that the sediment clouds entered the 

thermal regime almost immediately after being released. Figure 6(a) shows that in 

the beginning, the particles stayed with the entrained fluid and descended as a 

coherent mass resembling a thermal. A buoyant vortex ring structure was evident 

in many cases. A trailing stem of the fluid phase was generally formed, but the 

mass of particles in the stem appeared significant only for smaller sizes of particle 
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considered (see Ruggaber (2000) for a detailed account of the particle trailing 

stem formation). Figure 6(b) shows that the particles began to settle out from the 

entrained fluid, with the particles concentrated at the bottom of the thermal. This 

occurred approximately at z ≈ ltd to 2 ltd. After separation, the particles continued 

to descend at approximately their own settling velocity.  Meanwhile the 

entrained fluid descended with its remaining momentum imparted by the particles; 

a vortex ring structure was sometimes observed (like a puff) and its descent 

velocity was noticeably lower than that of the sediment [Figure 6 (c)]. As seen in 

Figure 6 (d), the entrained fluid took two to three times longer to reach the bottom 

of the tank than the particles. Further lateral growth of the entrained fluid at this 

stage was not apparent. Note that the present measurements did not provide much 

information on the fine details of the dye field structure.  Such fine scale 

structure of the dye motion after phase separation can result from continuous 

turbulence generation, or simply the residue motion of earlier time, but the present 

experimental resolution was not sufficient to resolve these issues, their primary 

objective being to provide bulk characteristics of both phases of the sediment 

cloud. Future investigation of fine details of a two-phase sediment cloud would be 

worthwhile.   

4.3 Results and analysis 

The LIF images and videos were post-processed to obtain the characteristics 

(frontal position and half-width) of the entrained fluid and the sediment cloud. For 

the images captured by the two CCD cameras, the two phases were captured by 

separate cameras fitted with appropriate filters, giving two sets of images for a 

single experiment. The resolution was higher than the video camera but limited by 

the field of view of the CCD cameras. The videos were subsequently converted to 
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a series of color images at 30 Hz frequency. By extracting different color bands in 

the images, the entrained fluid and sediment cloud were isolated from each other 

and their characteristics could be quantified separately. The video had the 

advantage of a larger field of view covering the whole descent process of the 

sediment cloud, but with lower image resolution. In both the LIF images and 

videos, the boundary of the entrained fluid and particles were extracted using the 

Otsu’s (1979) method. This method binarizes the grey level image by using all 

possible pixel value thresholds (background taken as 0, foreground taken as 1), 

and selects an optimized threshold based on minimizing the spread of pixel values 

(about the mean of the background and foreground) for each side of the threshold.   

4.3.1 Virtual origin and entrainment coefficient 

Using the data from the CCD cameras, for each time instant at which 

measurements were made, rs, zs were obtained and Nc was derived. The 

entrainment coefficient of the sediment cloud as a function of the cloud number is 

given in Figure 7. Best fit curve of the data was found to be α = 0.53(1-0.65 Nc 

0.36
), i.e. αo = 0.53, c1 = 0.65, c2=0.36 ; this was adopted in the model (in the 

thermal regime) for all comparisons with experiments.  The virtual origin was 

assumed to be at rc/αo in the model prediction of all subsequent comparisons 

(assumed to be zero if rc is not reported in studies to be compared).  It was also 

necessary to obtain the entrainment coefficient of the entrained fluid after all 

sediment particles had fallen out. Using the data in the range of z > 3lts, we found 

the entrainment coefficient to be 0.07 (average of size A, B and D) and this was 

adopted in the model in the dispersive regime. Note that if an integral model is to 

be utilized, a second virtual origin is needed for the sediment cloud in the 

dispersive regime. The present model circumvents such need.  
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5 Comparison of model predictions with 

experiments 

5.1 Shape and size of entrained fluid and sediment clouds 

The data from the video camera were used in observing the shape and size 

changes of a sediment cloud during its whole descent process. The predicted 

shape and size of a sediment cloud at different times are represented as a group of 

circles (each of them is a computational particle) shown in Figure 8(a) for particle 

size B. At t = 1.3 s, the particles were concentrated at the bottom of the thermal as 

a thin layer. From t = 3.3 s - 6.6 s, the sediment cloud rained out as a bowl shaped 

swarm, and its shape elongated in the z-direction as it descended. Finally, the 

sediment cloud reached the tank bottom, but the entrained fluid continued to 

descend at a slower rate than the particles and kept on decelerating, reaching only 

half of the water depth after 13.3 s.  The experimental results in Figure 8 (b) 

showed similar results. The predicted and observed behaviors for the other 

particle sizes were similar except that the thermal-dispersive regime transition 

occurred at different depths depending on ltd. Note that in our model, the dye or 

the tracer transport is implicitly assumed to be equivalent to the vorticity 

transport. In general, the transport of the tracer and vorticity is different, but our 

experimental study of single-phase thermal shows that the size indicated by the 

tracer is close to that of the vorticity (Zhao et al., submitted), and it is a reasonable 

approximation for the purpose of our model.  

 

More quantitative comparison of the sediment cloud shape is given in Figure 9 

using data of particle size A, B and D. Figure 9(a) shows the predicted and 

observed circularity of the sediment cloud is defined as 4π times the area of the 
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sediment cloud divided by the square of its perimeter.  This can be obtained 

experimentally with the sediment cloud boundary defined by the Otsu’s method. 

The small scales in the images were filtered off by a median filter. With the 

outline of sediment cloud obtained, the boundary is carefully tracked manually 

and the area and circumference of the shape defined by the boundary was 

computed.  The trailing stem portion was not included. To define the boundary 

of the sediment cloud in the model, two runs were made.  The first was based on 

a single particle diameter for a given particle class, and the other used the upper 

and lower bound diameters of a particle type (Table 1) in a single run with a bi-

disperse population of particles.  The lower size limit with smallest ws defined 

the upper boundary, and the upper size limit defined the lower boundary. 

Experimental observation in Figure 9 (a) shows that initially the sediment cloud 

was somewhat ‘less circular’ (since sediments concentrated at the bottom of a 

thermal), and it kept increasing until about z/lt-s = 7 (forming a swarm which 

elongates vertically), and then leveled off and dropped beyond z/lt-s = 15.  

 

Some more insights can be obtained by considering the aspect ratio of the 

sediment cloud. We define the cloud aspect ratio defined as (zs -zsc)/rs , where zsc 

is the centroid of the sediment cloud. Ruggaber (2000)’s method of obtaining the 

centroid of a sediment cloud is used. The horizontal center of mass is determined 

by dividing the mean displacement in the horizontal direction by the cross-

sectional area. The vertical center of mass is then determined by dividing the first 

spatial moment about the horizontal center of mass by the cloud volume (refer to 

Ruggaber 2000 for details). The centroid is obtained in the model by finding the 

mean z-position of all computational particles. Figure 9(b) shows the predicted 

and observed sediment cloud aspect ratio. Experimentally it can be seen the aspect 
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ratio kept increasing, showing the elongation in the vertical direction was faster 

than the horizontal direction. The sediment cloud was at first a ‘flat ellipsoid’, it 

then becomes close to a circle, and finally became a ‘tall ellipsoid’. This also 

explained the leveling off (which is expected to decrease if the cloud descends 

further) of the cloud circularity beyond z/lt-s = 15.         

   

Despite the fact that both the circularity and aspect ratio are sensitive to the flow 

details, our simple model is able to predict the trend of both the circularity (Figure 

9a) and aspect ratio (Figure 9b) in general. The model predictions are obtained by 

averaging the predictions for the three particle sizes. Quantitatively comparison 

shows that the predicted shape is more ‘flattened’ before z/lt-s = 10, and more 

‘elongated’ beyond z/lt-s = 15. The irregular predicted trend for z/lt-s smaller than 5 

on both figures shows that the initial uniform distribution of particles is 

undergoing changes to form a vortex ring structure.  If only a single (median) 

size from a particle type is used, the agreement can be seen to be poorer for both 

the circularity and aspect ratio, showing that the particle distribution plays an 

important role in determining the shape of the swarm.  

 

Figure 10 shows the boundary of the sediment cloud and entrained fluid for all 10 

experiments (from the video camera) of particle size B at t = 3.3 s. Note that the 

sediment cloud characteristics varied somewhat among runs. Five runs from the 

CCD cameras in each of the upper and lower regions were used for averaging in 

the subsequent comparisons. 
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5.2 Depth and half-width 

The predicted penetration depth over time of both the sediment cloud and 

entrained fluid is compared with observation in Figure 11. Figure 11 (a) shows 

that the predicted sediment cloud penetration depth over time is in reasonable 

agreement with observation from the thermal to dispersive regime for all particle 

sizes tested. Only limited data were available for large size particles as they 

settled to the bottom quickly. There is a slight under-prediction of the descent 

speed for particle sizes B and D, which can be explained by the fact that the 

frontal sediment cloud position is governed more by the largest particle size 

within the range. The penetration depth of the entrained fluid over time is also 

well predicted as shown in Figure 11 (b).  Also shown in the figure (dashed line) 

are the predictions if constant buoyancy is assumed throughout the flow. It can be 

seen that if the reduction of buoyancy is not accounted for, the cloud descent 

velocity can be significantly over-predicted for the entrained fluid.  

 

The comparison of the predicted half-wdith of the sediment cloud (from the 

integral model) and entrained fluid with observation is given in Figure 12. The 

half-width is defined as half of the maximum width in the r-direction. The 

predictions for sediment cloud half-width are in good agreement with 

observations as shown in Figure 12 (a). Figure 12 (b) shows that the predicted 

entrained fluid half-widths are also in good agreement with observation. This is 

despite the fact that the model approximates the entrained fluid as a sphere while 

in reality it is more like an ellipsoid. Again, the dashed line shows the predictions 

if constant buoyancy is assumed throughout, which can be seen to over-predict the 

entrained fluid width in all cases.  
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5.3 The spread of a puff – fluid phase after phase separation 

It is noted that the growth rate of the entrained fluid (which can be considered as a 

vortex ring) in the dispersive regime, is considerably higher than that of a vortex 

ring (Maxworthy 1974) which has a typical α ≈ 0.01. It appears that the 

characteristics of a vortex ring can be affected by the generating mechanism. The 

shape of the puff observed in our experiments appeared to be somewhat thicker 

than that of Maxworthy (1974), and a direct comparison of parameters obtained 

experimentally may not be suitable. The lack of other independent experimental 

data on the growth rate of the entrained fluid after phase separation prevented a 

more conclusive remark. For modeling purposes, the use of α ≈ 0.07 found in this 

study can be applied to the entrained fluid (in the dispersive regime) for a wide 

range of sediment cloud release conditions.  

6 Comparison with previous studies 

The sediment cloud characteristics predicted by the model are compared with 

representative studies in the literature to show the generality of the model. 

Comparisons are first made with studies that focused on the thermal regime of 

sediment clouds, followed by studies on the dispersive regime, and finally studies 

on the two-phase characteristics of sediment clouds. Virtual origins in these 

previous studies were typically not specified, and are taken to be zero in the 

model predictions.  

6.1 Thermal regime of sediment clouds 

The thermal regime of a sediment cloud was studied by Rahimipour and 

Wilkinson (1992). Experiments were conducted with graded sand particles of d = 
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0.150 - 0.350 mm. Initial volume ranged between 3.45 - 7.65 cm
3
, giving a total 

mass of 9.0 - 20.0 g, assuming a typical sand density of 2.6 g/cm
3
.  

 

The average size of the graded sand was used for each case assuming a uniform 

sand size distribution (by size). The settling velocity (required in computing Nc) 

was computed using the Dietrich's formula (1982). Figure 13 (a) shows the 

predicted ratio between the cloud front velocity and the corresponding miscible 

thermal velocity, with equal buoyancy at the source as a function of Nc. The 

prediction is an average curve over 5 runs of four release conditions (each of them 

collapsing into approximately a single curve). The thermal velocity was taken as 

2.3( / ) /
thermal o a s

w B z (Scorer 1957). In agreement with the experimental data, 

the prediction shows that when Nc<1 ,
 p thermal

w w ; and when Nc>1, then

p thermalw w  (where wp is the sediment cloud front velocity) -  i.e. the theory’s 

treatment of the sediment cloud as a thermal of constant buoyancy is no longer 

applicable. 

 

Figure 13 (b) shows the predicted and observed growth rate of a sediment cloud in 

the experiments of Rahimipour and Wilkinson. For Nc<1, the growth rate varies 

slightly (α ≈ 0.2 – 0.3). For Nc>1, the cloud's growth rate reduces drastically 

indicating the beginning of the dispersive regime. The predicted sediment cloud 

growth rate in the dispersive regime using a random walk model is also in good 

agreement with the experimental data. 

6.2 Dispersive regime of sediment clouds 

The dispersive regime of sediment clouds was studied in detail by Buhler and 

Papantoniou (1991,1999, 2001), who conducted sediment cloud experiments used 



29 

d = 1.95 mm (Buhler and Papantoniou 1991) and d = 2.62 mm (Buhler and 

Papantoniou 1999), and measured average ws = 18.8 and 21.8 cm/s respectively. 

For consistency, the settling velocity was computed using the Dietrich's formula 

(1982) in the model. The particle density was 2.6 g/cm
3
.  Selected experimental 

results from their studies are compared with our model predictions. 

 

A length scale zo similar to the cloud number was defined to normalize the length 

dimension: 

1/2( ) /o

o s

a

B
z w  

Figure 14 (a) shows the comparison of the predicted sediment cloud widths with 

observation.  The prediction curve is obtained by averaging the predicted 

velocity of the four cases, each of which is an average of 5 runs. It appears that the 

model slightly over-predicts the growth of the cloud on average. Using the lower 

measured ws improves the results (the measured settling velocity exhibits some 

degree of variation), but would be unnecessary given the fact that other factors 

may also contribute to the deviation, such as the position of the virtual origin. 

Overall, the predictions appear to be still within the observed range. 

 

Figure 14 (b) shows the comparison of the predicted and observed descent 

velocities. Both the prediction and observation show that wp is higher than the 

individual particle settling velocity, by a factor of 1.1 - 1.7. The prediction slightly 

under predicts the velocity, possibly for the same reasons that pertain to the cloud 

width. 
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6.3 Two-phase characteristics measurements of sediment clouds 

Luketina and Wilkinson (1998) carried out experiments that provided an initial 

understanding of the two-phase characteristics of a sediment cloud. Here, 6 g of 

glass beads (assumed density 2.5 g/cm
3
) of d = 0.4 mm with ws= 6.5 cm/s was 

released from rest into a stagnant ambient. The settling velocity was computed 

using the Dietrich's formula (1982). The descent process of both the particle and 

entrain fluid descent position with time were video recorded. Figure 15 shows that 

the predicted (obtained by averaging 5 simulations) descent position for the 

sediment cloud is in good agreement with observation. The agreement is also 

good for the entrained fluid considering the variability for the entrained fluid after 

phase separation. Similar comments can be made for the comparison of 

predictions against recent experiments of Duguen et al. (2011).  These 

experiments were conducted in a spherical container (Figure 16), with data 

deduced from the published time series of photographs (0.5 g of particles with 

density 2.6 g/cm
3
; d=0.603 mm; ws computed by the Dietrich's formula). 

6.4 Particle size effect on spreading rate 

Gensheimer et al. (2013) reported that the spread rate of a sediment cloud in the 

thermal regime at a given depth increases with decreasing particle size. This can 

in fact be reflected in the variable α formula used in this study (α = 0.53 ( 1-0.65 

Nc 
0.36

)). Figure 17 shows the sediment cloud growth observed by Gensheimer et 

al.  (2013) with particle size A:0.725 mm, and AE: 0.120 mm. It is evident that 

the spread rate of particle size AE is greater than that of A. The prediction by 

using a variable α can be seen to be consistent with this observation. 
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7 Conclusions 

The mixing characteristics of a two-phase sediment cloud were investigated 

experimentally and theoretically in this study. We report the first systematic 

experimental programme to quantify the characteristics of both the fluid phase 

and the solid phase of such sediment clouds.  Experimental observation showed 

that initially the particle cloud forms a thermal-like flow and is transported with 

the entrained fluid. With time, the particles separate from the entrained fluid when 

the cloud velocity decreases to approximately the particle setting velocity. 

Subsequently, the particle cloud descends as a bowl-shaped swarm, and the 

entrained fluid descends as a puff-like flow.   

 

Theoretically, Turner (1964)’s expanding Hill’s vortex model has been shown for 

the first time to satisfy the volume conservation equation by suitably modifying 

the characteristic width of the sphere. The entrainment pattern and internal 

structure predicted by the expanding Hill’s vortex with a specified entrainment 

coefficient was also studied and shown to be physically realistic when compared 

with that of a non-entraining vortex ring, and an entraining thermal. Subsequently, 

we extend the Turner’s model and propose a two-phase model for a sediment 

cloud. The model predicts the characteristics of both the fluid and solid phases 

covering both the thermal and dispersive regimes. The entrained fluid 

characteristics are solved by an integral model accounting for the buoyancy loss 

(due to particle separation) in each time step. The flow field induced by the 

sediment thermal is approximated by an expanding Hill's vortex centered at the 

centroid and with the size of the entrained fluid. The particle equation of motion 

under the effect of the induced flow is solved for each computational particle. A 
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random walk model using a hydrodynamic diffusion coefficient accounts for the 

random fluctuation of particles in the dispersive regime.  

 

The model predictions are compared with a wide range of experimental data of the 

two-phase mixing characteristics of a sediment cloud. The predicted transient 

descent depth and half-width, and descent velocity of a sediment cloud and its 

entrained fluid, are in good agreement with observation. The time-varying shape 

of a sediment cloud over time, which is highly sensitive to flow details, can also 

be reasonably predicted. Certain model approximations and assumptions have 

limited our ability to predict the finer details of the flow, but the good agreement 

between predictions and observations in key sediment cloud characteristics 

indicates that we have captured the important physics of the problem. The model 

is computationally much more efficient than a two-phase computational fluid 

dynamics model, and at the same time gives more detail than traditional integral 

models. The simplicity of the model also permits possible extensions to consider 

other problems frequently encountered in practice, e.g., multiple particle size 

releases, or the effects of an ambient current. These will be subjects for future 

study. 
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Appendix A Hill's vortex induced velocities and 

their derivatives 

This appendix presents the derivation of the derivatives of velocities presented in 

the main text. 

For a Hill's vortex translating at speed U with radius a centered at (zc, 0), the 

vortex induced velocity field to a stationary observer is given by: 

Inside the entrained fluid (R<a): 

2 23 10
[4( ) 2( ) ]

4 3
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z

z z UtU r
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Outside the entrained fluid (R>a): 
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The convective derivatives of the velocity field are needed to evaluate the forces 

acting on each computational particle: 
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Partial derivatives presented in the above equations can be evaluated as follow: 

Inside the entrained fluid (R<a): 
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Outside the entrained fluid (R>a): 
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Note that in the above equations, t is a variable different from the physical time. 

In every time step, we assume a Hill's vortex centered at ( cz ,0) and radius rf  

translating at U = wf. The instantaneous value of the partial derivatives in each of 

the model time step is given by setting t 0. This results in the equations 

appeared in the main text after accounting for the center position shift. 
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Appendix B Dietrich's formula (1982) for settling 

velocity of spherical particles 

The Dietrich's formula (1982) used for computing settling velocity of spherical 

particles (0.01 mm - 100 mm) is given as: 

2
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10 10
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Appendix C Estimate of the maximum velocity 

attained by a thermal 

We provide in this appendix an order of magnitude estimation of the maximum 

velocity attained by a thermal. Escudier and Maxworthy (1973) derived the 

asymptotic solutions of a round thermal in both the initial acceleration and 

thermal regimes with the following dimensionless variables: 
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t t
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Thus, for the initial acceleration phase: 

1
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and for the thermal regime: 

1/2
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where k ≈0 is the added mass coefficient; o a

o

a

F is the excess density ratio. 

The maximum velocity of the thermal occurs approximately when t of the initial 

acceleration regime is equal to t of the thermal regime. Equating the two results in 

an equation expressing the velocity at this particular time: 

max 1/3

( ) / 1
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      (C.4)

 

 

where ro is approximated (sufficient for an order of magnitude estimation) as the 

radius of an equivalent sphere with the same volume as the particle release mass. 
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Fig. 1 Trajectory of a layer of particles when an expanding spherical vortex passes  

           through. 

 

Fig. 2 Visualization of the ‘ambient parcel’ (blue symbols) and the entrained  

          ‘thermal parcel’ (red symbols) at t = 6.0s. Initial buoyancy Bo = 

0.0414 kg  

           m/s
2. α = 0.25. Actual computations carried out in three-dimensional  

           domain 

 

Fig. 3 Volume of thermal predicted by an integral model (line) and an expanding  

           spherical vortex (symbols). Initial buoyancy Bo = 0.0177 kg m/s
2
 

 

Fig. 4 A dense particle cloud in stagnant ambient fluid 
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Fig. 5 Experimental setup of this study 

Fig. 6 Observation in the experimental run with size D: (a) t = 0.8s; (b) t = 3.3s; 

(c) t = 13.3s; (d) t = 26.6s 

Fig. 7 Variation of the cloud growth rate with cloud number 

Fig. 8 Comparison of model predictions and observation of the shape and size of a 

particle cloud in an experiment run (size B).(a) Model predictions; (b) 

Observation. Time t from left to right: t=1.3 s;t=3.3 s; t=6.6 s; t=13.3 s. 

 

Fig.9 Comparison of model predicted and observed (a) circularity (b) aspect ratio 

of a sediment cloud along z.  

Fig.10 Variation of particle cloud position, size, and shape in 10 runs (size B, t= 

3.3 s) 

Fig.11 Variation of (a) particle cloud front;(b) entrained fluid front with time. 

Line: predictions, symbols: observation (average of five runs). Error bar 

indicates data range. 

Fig.12 Transient variation of the half-width of (a) particle cloud; (b)entrained 

fluid. Line: predictions, symbols: observation (average of five runs). Error 

bar indicates data range. 

 

Fig.13 Comparison of predicted (solid line) and observed (Rahimipour and  

           Wilkinson 1992) characteristics of a particle cloud in the thermal 

phase. (a)  

            Descend velocity; (b) Growth rate 

 

Fig.14 Comparison of predicted (solid line) and observed (Buhler and  
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           Papantoniou 1991,1999,2001) characteristics of a particle cloud in 

the  

           dispersive phase. (a) Cloud width;  (b) Cloud descend velocity 

 

Fig.15 Comparison of predicted (solid line: solid phase; dashed line: fluid phase) 

and observed cloud descent with time (Luketina and Wilkinson 1998) 

Fig.16 Comparison of predicted (solid line: solid phase; dashed line: fluid phase) 

and observed cloud descent with time (Deguen et al. 2011) 

 

Fig.17 The particle size effect on sediment cloud spreading predicted by the 

model and its comparison with observation (data from Gensheimer et al. 

2012). Mass of release: 40.0 g. Solid line: prediction for size A; dashed 

line: prediction for size AE (d = 0.120 mm). 

 

 

Type 

Median d (mm) 

(range) ρs (g/cm
3
) lat (cm) lts (cm) 

A 0.725 2.5 1.44 4.0 

  (0.600 - 0.850)       

B 0.513 2.5 1.44 5.9 

  (0.425 - 0.600)       

D 0.256 2.5 1.44 14.4 

  (0.212 - 0.300)       
 

Table 1 Properties of particles used in this study 

 

 


