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Two-phase viscous modeling of compaction of granular materials
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An inviscid model for deflagration-to-detonation transition in granular energetic materials is
extended by addition of explicit intraphase momenta and energy diffusion sqBstmable the use

of a straightforward numerical scheni@) avoid prediction of structures with smaller length scales
than the component grains, a(8 have a model prepared to describe long time scale transients that
are present in some slow processes which can lead to detonation. The model is shown to be
parabolic, frame invariant, and dissipative. Consideration of the characteristics for cases with and
without intraphase diffusion indicate what boundary conditions are necessary for a well posed
problem. A simple numerical method, based on a method of lines applied to the nonconservative
form of the equations, is shown to predict convergence at the proper rate to unique solutions which
agree well with known solutions for an unsteady inviscid shock tube and a steady piston-driven
viscous shock. A series of simulations of inert piston-driven subsonic compaction waves in which
the additional mechanisms of interphase compaction, drag, and heat transfer are systematically
introduced at an order of magnitude suggested by experiments reveals that interphase drag and heat
transfer equilibrate velocities and temperatures, and that compaction equilibrates solid and
configurational stresses. At higher piston velocities, supersonic shock and compaction waves are
induced; comparison of predictions with and without viscosity demonstrate some of the
computational advantages of explicit inclusion of diffusion. The local dissipation rates for each
mechanism are quantified, and it is seen that dissipation due to compaction dominates that due to
intraphase and interphase transport of linear momenta and energy, suggesting that compaction is the
key mechanism in inducing the transition to detonation in piston-driven experimen2)0@
American Institute of Physics[DOI: 10.1063/1.1764951

I. INTRODUCTION work of Baer and Nunziatd,most studies now focus on
models which are formally hyperbolic. Such models are well
Common heterogeneous energetic solids such as thsosed for initial value problems and admit a variety of dis-
Plastically Bound eXplosive PBX 9501, composed of granucontinuous waves. However, most incarnations of these mod-
lar crystalline HMX (cyclotetramethylene-tetranitramine els cannot be written in full conservation form, which gives
embedded within a polymeric binder, contain grains withrise to difficulties in properly capturing the discontinuities
length scales on the order 1@0n. A computational model with standard numerical metho$Moreover, as noted by
which captures the grain scale details thus requires cell sizgsowerset al.® common constitutive models for interphase
on the order of 1um, as well as complex models for mass, momenta, and energy transport can predict, when care-
grain/binder interfaces. Such an approach is clearly impracully resolved, flow structures with length scales that are en-
tical for systems whose length scales are typical for engicroaching those for which the continuum assumption is in-
neering applications; these are on the order of 10 cm oyalid for the granular mixtures. These models have typically
greater. However it is also well known that features of macCHeen app“ed to predict results of experiments in which a
roscale engineering interest, such as susceptibility to deton@jston is driven at high velocity into an ambient bed of
tion, are strong functions of the microscale granuldrfty. tightly packed granular material. In such experiments, it is
Consequently, given the resources of present computationglesumed that diffusion will have insufficient time to act on
technology, a successful theory to predict the behavior ofhe macroscales and is thus not modeled. However, it is clear
these granular materials at engineering length scales Withat somemechanism must be included in the continuum
most likely need to employ a continuum theory with special-mixture theory to model the subcontinuum effects of granu-
ized nontraditional constitutive models which capture effectqarity_ Commonly used algebraic interphase transport terms
present at the granular scale. have appeal, but as they are represented as source terms and
Inviscid continuum mixture theori_es have been us_e_d forot diffusion terms, they have limited ability to suppress
over two decades to model compaction and the transition tgne_scale physical and numerical instabilities, such as the
detonation in granular energetic materiié! Following the Kelvin—Helmholtz instability, which is present near slip
lines. Moreover, there is another important class of problems
dElectronic mail: powers@nd.edu in which a granular energetic solid is subjected to a slow
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incubation, which could be on the order of hours, in whichSainsauliel? to simulate the grain-scale physics, and focus
diffusion plays a key role. In this process, known as cookofftheir efforts on the first. Here, we will consider the third.
it is conjectured that the material goes through stages in We have extended the BMSKS model in three ways.
which first diffusion, then slow convection, granular com- First, the equations are written in a general three-dimensional
paction, and lastly acoustic wave steepening lead finally taensorial form, and are thus suited to arbitrary geometries.
catastrophic detonation. In order to have a robust modelSecond, relatively simple, thermodynamically consistent
amenable to straightforward numerical analysis, which isstate equations with sufficient nonideality to capture gross
able to account for all of these mechanisms, as well as téeatures observed in acoustic and compaction wave dynam-
provide a mechanism to suppress subcontinuum length scale&s experiments have been selected. And third, intraphase
predicted by common inviscid models, a viscous extensioomomenta and energy diffusion effects have been included in
of the earlier models is studied here. a simplistic fashion, motivated by traditional diffusion in
The new viscous model is most directly extended fromgas-phase systems; these models amount to the assumption
the inviscid model given by Bdziet al,’* which will be  of materials which behave as Newtonian fluids which satisfy
called here the BMSKS model. As detailed in their article,Fourier’'s law. In the same sense that molecular collision
the BMSKS model has several subtle but compelling advantheory can be used to predict values for diffusion coefficients
tages over related models, most importantly embodied in itéh gaseous systems, one can imagine that a granular-scale
careful analysis of the second law of thermodynamics, espesubmodel could be used to give rational estimates for mac-
cially as related to the process of compaction of the granularoscale diffusion in these systems. We are at present devel-
material, as well as its thermodynamically consistent use of aping such a theory, which is not reported here. In the
solid equation of state with explicit dependence on volumepresent study, a simple and practical choice for diffusion co-
fraction. BMSKS employ an overly general form for inter- efficients is made so as to insure that the finest length scales
phase transport terms in order to demonstrate that the secopdedicted by the model are large enough to encompass sev-
law admits a wider class of constitutive theories than haderal grains. Once this choice of diffusion coefficients is
been demonstrated previously. We have made specifimade, it is adhered to. One is then obliged to include a suf-
choices, admitted by the BMSKS model, so aglpinclude ficient number of computational cells to insure that the dif-
so-called nozzling effects, which helps insure second lawusion induced by the physical mechanism dominates the
satisfaction and admits the plausible, altsithog physical  diffusion induced by the chosen numerical method. Further,
justification given by BMSKS(2) assign all so-called com- one need not then be concerned if the computational cell size
paction work to the solid(3) deposit all energy released by approaches or is less than the grain size, since the actual
reaction to the gas phas@) require Galilean frame invari- viscous structure encompasses many grains.
ance,(5) assign all dissipation from interphase drag to the  An advantage of choosing a simple model for diffusion
gas phase, an@) neglect dissipation introduced by velocity is that it is easy to design to prevent grain-scale structures
changes associated with interphase mass transport, Thefsem being predicted. The disadvantage of this choice is that
choices correspond, in the notation described by BMSKS, téhe diffusion coefficients necessary to achieve this result are
w=1,b=0,v=1,f=1,a=0, anda=0. significantly higher than those appropriate to describe mac-
As discussed by BMSKS, inclusion of nozzling effects roscale diffusion in a slow cookoff process, not simulated
introduces an asymmetry in the two-phase equations whichere. However, one can imagine a straightforward extension
renders it impossible to cast the equations in a fully conserto craft a grid-independent, grain size-dependent diffusion
vative form. This has important implications for analytic and, model in which the diffusion coefficients had strain rate de-
consequently, computational solutions involving discontinui-pendency so as to guarantee ordinary diffusion at low strain
ties, as has been extensively discussed in the literature; rates found in cookoff, and high values in regions of steep
recent summary is given by Kapilet al!® Importantly, a gradients near shocks.
so-called regularization is needed to fully specify shock It is appropriate to give an extended comment on nu-
jumps. Computation of end states of jumps by standard numerical diffusion, i.e., pseudodiffusion proportional to the
merical methods constructed to be flux conservative is easilgrid discretization length scale and an intrinsic property of
corrupted by numerical errors, in contrast to models whichthe discretization scheme. Here the term “numerical diffu-
are formally conservative. The study of Abgrall and Sa&drel sion”is used loosely and actually encompasses all numerical
most completely addresses this issue within the context afioise-generating mechanisms, the most prominent typically
traditional flux-conservative numerical methods; howeverpbeing diffusion and dispersion. It is often argued that inviscid
the fundamental nonconservative nature of the underlyingnodels are sufficient because numerical diffusion, harnessed
theory removes the foundation upon which most commorwisely at a super-granular scale, will be sufficient to properly
high resolution shock capturing schemes are based. Consemear subcontinuum effects. However, when one realizes
quently, in that extreme care must be used in constructing that the amount of numerical diffusion present in all stable
numerical method for such models, it is reasonable to exshock capturing schemes is highly dependent on the particu-
plore alternatives. Kapilt al® suggest three viable rem- lar method chosen, and that it is often difficult to quantify the
edies: (1) asymptotic analysis of inner layers to yield the amount of numerical diffusion, one concludes that alterna-
appropriate jumps(2) development of a physically based tives have some clear advantages. First, models with explicit,
model for grain-scale phenomena, (@ careful imposition  grid-independent diffusion are more likely to converge when
of a simple diffusion model, motivated in part by the work of subjected to grid resolution tests. Grid resolution tests ap-
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plied to inviscid models soon bring the model to the sub-suppresses spurious oscillations predicted by a complemen-
granular level, where it is unphysical. Furthermore, in mul-tary inviscid model.
tidimensional inviscid calculations, it is obvious that grid Simple constitutive models with parameters appropriate
resolution in the neighborhood of structures such as Kelvinfor typical heterogeneous energetic material are adopted.
Helmholtz instabilities can never converge, as ever-fineiWhile these simple models may not be appropriate to match
grids reveal ever-finer fractal-like structures. Consequently, iall known experimental observations, it has been sHéwn
is more reliable to employ explicit, grid-independent diffu- that similar approaches can properly capture correct orders of
sion so as to provide a clear mechanism to suppress nomagnitude of most relevant phenomena. The models em-
physical high frequency instabilities, as well as to provide aployed, including notably an interphase drag suggested by
means by which the solution to which one converges is inthe experiments and analysis of Asayal,’* demonstrate
dependent of the particular numerical method chosen. Lastlyhat for problems in which significant compaction occurs,
the diffusion added here differs from the explicitly addedinterphase transport rapidly equilibrates solid and gas veloci-
so-called “artificial viscosity,” commonly employed in com- ties and temperatures; compaction equilibrates solid pres-
putational models since its introduction by von Neumannsures and configurational stress. Quantitative consideration
and Richtmyef® Traditional artificial viscosity has explicit of the dissipation in this problem shows conclusively that
dependence on the size of the discretization, and thus suffee@mpaction is overwhelmingly dominant over all other inter-
similar defects as intrinsic numerical viscosity. While onephase and intraphase mechanisms.
might be tempted to classify the diffusion added in the  The novelty of this work lies in it§1) systematic exten-
present study as “artificial,” one must realize that is distinctsion of a two-phase reactive flow model to include diffusion
from typical artificial viscosity or numerical diffusion in that of linear momenta and energ{) quantitative predictions of
it is dependent on the physical scales rather than the discregtompaction wave phenomena using a solid equation of state
zation scales of the problem. with explicit volume fraction dependency in the manner first
In the body of this paper, the extended BMSKS modelsuggested by BMSKS, an@) quantitative predictions of a
will first be presented in a nominally conservative and therbudget of irreversibility generated by each mechanism, so
fully nonconservative form. After specification of common that the relative importance of each can be gauged.
constitutive models, it will be impossible to express the gov-
erning equations in a fully conservative form. In an analysis
similar to that for single phase materials, diffusion will be ||, MODEL EQUATIONS
shown to be dissipative, and the entropy generation terms for
each individual phase will be explicated. A simple set of  Inthis section, the extended BMSKS model is presented.
fully conservative mixture equations is given with a rational Inasmuch as possible, an identical nomenclature is imposed.
set of mixture variables. In the one-dimensional limit, results
from a standard characteristic analysis are presented which Nominally conservative form

gives indication as to what conditions are necessary for a  The nominally conservative form of the model equations
well posed problem in the presence of diffusion. is given here. Note that the later specification of the BMSKS

Numerical solutions are then presented to exercise thgonstitutive theory will render this system to be inherently
model. Because diffusion has been explicity modeled, n¢,gnconservative.

exotic numerical methods are necessary; second order central
differencing of spatial gradients has been applied to a non¢ _

. . . — +V. us)=C, 1
conservative formulation of the equations to convert them tat (psbs) (psepsl) @
a large system of ordinary differential equations which are
solve_d y\_/lth a standard |m_pI|C|t time advancgment s_che_me. I%T(pg(ﬁg) +V - (pgdguy) = —C, 2
the limiting case of a mixture of two noninteracting ideal
gases in a shock tube, the method is able to match well the
results of an exact unsteady inviscid solution. Moreover, the—t( psdsUs) + V- [ pspsUgul + do(psl — 75) 1= M, 3
solution is shown to be converging at a rate consistent witf?
the method’s order of accuracy. Next the unsteady model igy T
shown to give predictions of the structure of viscous shockﬁ(Pg%Ug) + V- [pgpgUgugt dg(pgl —7)]=—-M, (4
in two noninteracting ideal gases which match well with the

independent predictions of a steady Navier—Stokes modeld 1 1
Lastly, a series of problems with inert compaction waves ingg | Ps®s| €st 5Us Us| |+ V| psss| €5+ 5 Us- Us
an interacting nonideal gas and solid HMX system is studied

in such a way that the effects of intraphase diffusion, inter-

. ' + psUs- (Pl — 75) + =¢, 5
phase compaction, momenta transfer, and energy transfer, as PsUs- (Psl = 75) + bsdls ®
well as the irreversibility they induce, are quantified. At pis- 1 1
ton \_/elocmes sufficiently low soasto mdgce ;ubsonlc com-_t Pyl gt 5 Ug- ug) +V | pgdbgUgl g+ 5 Ug- ug)
paction waves, the effects of intraphase diffusion on compac?
tion are small. At piston velocities sufficiently high to induce
a coupled shock and compaction wave, intraphase diffusion  + ¢yuy- (pgl — 79) + d;gqg) =-¢, (6)
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ap psF Urs-u
—2+V. (psUs) = — L: (7 Om= @ PsUrs| 5T =)+ Urs* (Psl — 7) + s
ot s 2
J + gl pgu o, + o ) |, A(pgl —7y) +
E(Psd’sns—’_pgd’gﬂg)_"v'(ps¢susns+pg¢gugng) 9| Patra| o 2 rg" (Pg o) g
(16)
d’sqs ¢gqg .
==V T. + _Tg : (8)  then the sum of the mass, linear momenta, and energy evo-

lution equations can be represented in a fully conservative

The subscripts andg denote solid and gas phases, respecform as

tively; p, ¢, u, p, 7, €, q, », andT represent intrinsic den-

sities, volume fractions, velocity vectors, pressures, ViSCOUS— +V - (pU,,) =0, (17)
stress tensors, internal energies, heat flux vectors, entropies,

and temperatures, respectively. The tedas\, &, and F

represent interphase transport of mass, linear momenta, and(pmum) + V- (pmUmUn+ Pml — 7m) =0, (19
energy, and a source term for material compaction, respec-

tively. Equationg(1)—(6) describe the evolution of mass, lin- , Uy Upy TRt

ear momenta, and energy in the solid and gas, respectivelgf Pl €mT —=— 11TV pmUm| €mT 5 )

Equation (7) is a relation modeling material compaction,

widely used in the detonation community, albeit nontradi-

tional. It is a usefulad hocrelation which allows volume FUm: (Pml = 7m) + Gm | =0. (19

fraction to evolve in response to interphase mass transfer as
well as stress nonequilibrium. While lacking a rigorous jus-This is precisely the form of the classical compressible
tification based on averaging from the microstructural scaleNavier—Stokes equations. While the derivation of the appro-
it has proved able to(1) capture observed compaction Priate mixture and relative quantities given by E(®—(16)
phenomen&,’ (2) prevent initial and initial/boundary value is detailed, the results are easily verified by direct substitu-
problems from being ill posed in the sense of Hadamard, an#on into Egs.(17)—(19) and comparison with the appropriate
(3) be useful in satisfying an entropy inequality. Equatieh ~ sums of evolution Eqg1)—(6). It is also seen that when the
is the entropy inequality, extended for systems with in-velocities of the components relative to that of the mixture
traphase energy diffusion. No consideration is given here t@re zero (s=u,=0), the mixture pressure, energy, shear
an angular momenta axiom; however, a complete theory fogtress, and heat flux reduce to simple mass- or volume-
multidimensional motion, not studied here, will need to in-averages of the components. The relative velocities, analo-
clude this principle. gous to fluctuation velocities of turbulence theory, induce
Equations(1)—(6) have been constructed to insure thatcorrections to pressure, energy, stress, and heat flux in an
whatever form the phase interaction terhs\, and¢ take, analogous fashion to Reynolds stresses in turbulence.
appropriate mixture quantities are formally conserved. In o _
fact, if the following mixture variables, denoted by the sub-B. Constitutive equations

are defined as constitutive equations, designed in such a fashion to guaran-
tee satisfaction of the entropy inequality, E§):
meps¢s+pg¢g ) 9
PsPsUst pg¢gug N
=), 10 = +
PR (10 Ys= Pis(ps, T9) + B(s), (21)
by=y(pg,Ty), (22)
Urs=Us— Up, (11) ’ srens
Y
_ 2 S
Urg=Ug— Up, (12 Ps= psé,_ps , (23
Ts. s
Pm= ds(Pst %Psurs' Urs) + ¢g(pg+ %Pgurg ) urg)v (13 5 APy
pgnga_ 1 (24)
Urs Urs Urg - Urg & To
psPs| €st T TPgbg| €5+ 2 )
6 = a4 o — Vs (25)
Ps¢s+Pg¢g s dTs ) dJ’
Tm= ¢S{Ts_Ps[ursu;rs_ %(urs' urs)l]} 51//9
. 9= 57| ¢ (26)
+¢g{7'g_Pg[urgurg_ %(urg‘urg)l]}i (19 9%pg
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s 6, an interphase drag parameter, d@idan interphase heat
Bs:PsﬁbsW ; (27)  transfer parameter. For simplicity,and’{ are taken here to
Slps.Ts be constants; it is common to allow both to have a depen-
6= et Tere, (29) dency on .the local stqte of the system.
Equation(20) requires that the mixture be saturated by
&= gt Tg7g, (29 solid and gas; the mixture contains no voids with vacuums.
T Equations(21) and(22) are canonical equations of state for
(Vug) +Vug 1 . . . g .
=2 5 §(V'us)|)r (30)  the solid and gas, which will later be specified. Equations
(23)—(29) are standard thermodynamic relations for pressure,
(Vug)T+Vug entropy, and energy. Equatiori80) and (31) are classical
T«fl%(f— §(V'Ug)|), (31)  Newtonian relations between viscous stress and strain rate
for an isotropic compressible material which satisfies Stokes’
gs=—ksVTs, (32)  assumption. Equatior(82) and(33) are Fourier’s law for the
Qo= —k VT 33 solid and gas. Equatiof27) is a definition of the configura-
9 9v g tional stress as detailed in BMSKS. Equati@84)—(37) are
C=C(ps,pg:Ts, Tq:Ps), (39 special forms of the interphase transport equations as re-
ported in BMSKS, constructed to insure frame invariance
M=pgV s— 8(Us—Ug) + 3 (Us+Ug)C, (35  and second law satisfaction. It is the tepgV ¢ in Eq. (35)

which models nozzling and renders the system nonconserva-

3 Ug- Ug :
E=H(Ty—T)— pgF+ug M+ | eg— c, (36 tive.

2 As much of the analysis which will follow in later sec-
b tions will be independent of the particular form of the ther-
F= M—g(ps—,BS— Pg)- (37) modynamic state equations, the forms reported have been
C

general. When numerical calculations are made later, specific
New variables in Eqs(20)—(37) are #, the Helmholtz free  state equations will be required, and they are reported here.
energy angs, a configuration stress for the solid. The func- Relatively simple choices are made which have been shown
tion B(¢s) will be needed to account for the free energyto accurately capture compaction and detonation wave
associated with the configurational stress, wlﬁjj;eaccounts speeds in heterogeneous energetic matéerials.

for the classical free energy of the solid. New parameters BMSKS suggest a canonical form for state equations for
introduced areu, a coefficient of viscosityk, a coefficient of  granular materials, and application of their prescription to the
thermal conductivity,u., a so-called compaction viscosity, Tait equatiort> modified for compaction effectsyields

Ielps Te b =C T[l—m(ﬁ +( _1)|n(& L Pt
s{Ps» s, Ps vs!s Teo Vs Pso Ys Ps sTd
(1_¢S )2—¢so 2—¢S (2= ¢9)(2— d0)
(pSO_DQO)(2_¢SO)In (1_¢O)2*¢5 (2_¢ }
N s : s0 (38
2— |
psol bs) bso n(1_¢30)

Herec, is the constant specific heat at constant volume of the selit a constant related to the ratio of specific heais,

is a constant with units of energy per mass fixed by matching to compaction wave speed, fdatal T, are the reference
density and temperature for the solfd, andpg, are reference solid and gas pressures, which are calculated such that they are
consistent with the reference states for density and temperdgiyyré the ambient solid volume fraction, ands the chemical
energy of the solid. Applying Eq$23), (25), (28), and(27) to the canonical fornt38) yields

1
Ps=(¥s—1)CpspsTs— 71)5085' (39
s
. Ts Ps
Ns= CvS|n<T_so> —(ys— 1)Cvs|n(a>a (40)
(1= ¢pgg)? ¢s0 ( 2— ¢ ) (2¢s)(2¢so)}
- 2— In -
B 1 Pso (psO pgo)( ¢SO) [ (1_ ¢s)2 ¢bq 2 d’sO
€s=C,sTst 7 —est Q-+t , (42
s Ps

1
pso(2— ¢s) bso In( 1_—‘1530)
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deg
Ps(;bsﬁ =—PsPsV Ust+ ds75:VUs— pg~7:+ H(Tg_ Ts)
s

(42

1
In| ———
sPs 2— S 2 (1_ s)
,Bs:(pso_pgo) ps? ( ¢O) ¢

pPsoPso\ 2— s

- ¢sv'qs_ qs’vd’s- (51)

'“( 1= dug

For the gas, a virial equation of state is adopted, which
has canonical form de,
pqugd—tg =—PgdgV Ugt+Pg(Us—Ug) - V g+ dg7y:VUg

T Pyg
Po(pg:Tg)=CoaT [1—|n(—g +(y,—1) In(—)
grerte 99 TgO g Pgo +ng_H(Tg_Ts)_d’gV'QQ_qg'Vd’g
+by(pg- pgo)} ] “3 + (U= Ug) - (Us— Ug) — (5~ €9)C, (52

Herec,q is the constant specific heat at constant volume of
the gas,y, is a constant related to the ratio of specific heatsd¢s C

. g . ——=F+—, (53
by is the virial coefficient, andly, and pyo are reference  dt, Ps

states for the gas. Applying Eq&4), (26), and (29) to the
canonical form(43) yields

Pg=(vg—1)CygpgTy(1+bgpg), (44) dzn dn
g ¢ gree oo Ps¢sd_tS+Pg¢gd_tg+C(77$_ 779)
s g

T p
[¢] 9
Mg~ Cug In(-l- )_(79_1)0119 |I"I( +b(pg_PgO)}; é & 1
0 Pgo - By. 0. R
’ ¢ (45) = TSV Ost+ Tg ds VTS qus V¢s
eg=cngg. (46) ¢g ¢g 1
—T—gV°qg+ T—ng'VTg— T—gqg~V¢g. (59

C. Fully nonconservative form

A detailed analysis of the type given by Powertsal®
and BMSKS _aIIOWS Eqs(l)_—(8) to b_e yvritten in a fully _ It is noted that in this fully nonconservative form, veloci-
nonconservative form. This analysis involves systematigies only appear as differences; consequently, it is easy to

elimination of terms involving mass and linear momentashow that the equations are invariant under a Galilean
from the energy equations, and elimination of terms '”VOlV'change of reference frame.

ing mass from the linear momenta equations. Doing this as
well as (1) directly invoking constitutive models for inter-

D. Dissipation
phase momenta and energy transport and compa@r
(37), and(2) defining material derivatives for the solid and It is now possible to determine what conditions are nec-
gas, respectively, agl/dts=d/dt+us-V, d/dty=dlit essary for Eq947)—(593) to satisfy the second layb4). First
+Ugy-V, one obtains one must consider the rate of entropy change in each phase.
To do this, first consider thermodynamic Gibbs identities
dos_ o Ps” 47
di, P g
d C dps des psdps Bs do
PO p Vet | 221 L T T B T ol (55
dtq 9 g bg\ ps t ts  ps dts  psos dis
pg}— Pg
+ 4+ =L (ug—uy)- Vg, 48
¢g ¢g( s g) d’g ( )

dng _dey pg dpg
du, Todt, ~dty  p2 dty’ %8
Ps¢sd_ts == ¢5Vps+(pg_ Ps)V st psV 75+ 75- V b

1
AU Ug) + 2(Ug = Us)C 49 consequences of Eq&2)—(29) and (27), developed in full
dug by BMSKS. Next use Eqg55) and(56) to eliminate energy
Pebygr. — ~ DoV Pyt gV 7yt 75 V gt S(Us— Ug) derivatives in favor of entropy derivatives in Eq8§1) and
g (52) to get alternate expressions for the first law of thermo-
+ 3 (ug—uy)C, (500  dynamics for the solid and gas:
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d 7 Substitution of the modified energy Eq&7) and (58)
ps‘ﬁsTsW:H(Tg_Ts)_ bsV-0s—0s- Vg into the second law54) yields, after simplification,
S
hs ¢
+ ¢s7s:VUus+ ; g(pS_BS_ pg)2 T H(Tg_Ts)_T_qu'VTs+ $hs7s:VUsg
C S S
(=0 hsdby 2 (=0 1
+:85 Ps ) (57) +?(ps_ﬁs_pg) +Bs? +T—g _H(Tg_Ts)
d7g _ bq v v
pqungd—tg——7'-((Tg—TS)—¢>gV-qg—qg-V¢g —T—gqg- Tyt g7y VUug+ S(Us—Ug) - (Us— Ug)
+ o7y VUgt S(Us—Ug) - (Ug— Ug) 1 1
e e m e +| &g ———”(—@ +(=C)(mg= 79=0.
1 1 Pg Ps
+ es—eg—pg(p—g— p—s (—C) (58) (59)

It is obvious from EQ(57) that terms related to material Now consider entropy Changes induced by intraphage
compaction, those involvingu., are inducing positive momenta diffusion. First define the standard viscous dissipa-
semidefinite changes in the solid entropy only. It is also ob+tjon functions® as

vious that interphase drag is inducing positive semidefinite

changes in the gas entropy only. The BMSKS model has & =r,:Vuq, ®y=174:Vuy. (60)
additional degrees of freedom to partition this dissipation

among the phases, though they give arguments for reconBy employing the Newtonian assumpti@0) and(31), after
mending these choices. One also notes that the entropy of aome effort involving the use of quadratic forms, the viscous
individual phase can rise or fall in response to general interdissipation functions can be cast in a positive semidefinite
phase and intraphase transport; the second law only providésrm involving the squares of the portions of the strain rates

restrictions when the entire mixture is considered. that deviate from the mean strain rates.
|
Vu+(Vu)? 1 Vu+(Vu)? 1
q)szzlu’s f_ g(vq'ls) I): f_ E(V‘lls) I B (61)
strain rate mean strain rate strain rate mean strain rate
deviatoric strain rate deviatoric strain rate
Vu,+(Vu,)? 1 Vu,+(Vu)' 1
_ 14 14 14 14
By=2pt, |~ S (Veu)) 1|1~ (Vo) 1. (62)
strain rate mean strain rate strain rate mean strain rate
deviatoric strain rate deviatoric strain rate

Because the materials have been chosen to be Newtonian, Substituting Eqs(61) and(62) as well as Eqs(32) and
which implies the viscous stress varies linearly with the(33) into Eq.(59) and rearranging, one finds a result equiva-
strain rate, and satisfy Stokes’ assumption, which implies théent to that of BMSKS for the extended system:

mean total stress is equal to the thermodynamic stress, cer-

tain consequences arise. First, it can be shown that the vis-

cous stress is entirely deviatoric, and that it is induced only Bs  €s—eyg—pgy(lipg—1ips)

by deviatoric strain rates. Moreover, the viscous dissipation 1=(=0) peTs + T, Mg~ s

is induced only by deviatoric strain rates. The deviatoric )

strain rates are volume preserving. Mean strain rates are +5(US_ Ug) - (Us— Ug) +H(T9_TS)

equivalent to volumetric deformations and here are associ- Tq TyTs

ated entirely with mean stresses, in this case the thermody- bsby (Ps— Bs—Pg)?  dDs  dyPyg

namic stresseps and py. As here the mean stresses and + e T, T, + T

mean strain rates do not induce entropy changes while doing 9

work, it is concluded they induce only reversible energy N ks¢sVTs‘VTs+ kg¢gVTg'VTg20 63

changes. T T;
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Here the irreversibility production rate has been defined. The system is defined as hyperbolic if all generalized eigen-
With this form, it is easy to see how each transport mechavalues are real and linearly independent generalized eigen-
nism contributes to the irreversibility, which enables one tovectors can be identified. If all the generalized eigenvalues
make a quantitative calculation of the relative importance ofare real and there are fewer thatinearly independent gen-
each mechanism. The so-called strong form of the secondralized eigenvectors, the system is defined as parabolic. If

law is satisfied provided each term in E®J) is positive
semidefinite, thus requiring<0, 6=0, H=0, u.=0, us
=0, ug=0, k=0, k,=0, and

€y~ €5t Py(1lipg—1lps) < Bs n
Tg psTs

N9~ Ts- (64)

all of the generalized eigenvalues are complex, the system is
elliptic. If some are real and some are complex, the system is
of mixed type, and has some of the features of elliptic sys-
tems. Deciding how to formulate problems which are well
posed in the sense of Hadamard is in general difficult. As a
rule of thumb, hyperbolic systems are well posed when ini-

BMSKS provide a plausible argument why the final nonclas-ial values are provided on a curve which is not a character-

sical condition is likely to be satisfied.

E. Characteristics

istic curve of the system. This constitutes an initial value
problem. Parabolic problems typically require initial data;
these are supplemented with boundary value data to consti-

In order to determine what boundar nditions are n tute an initial and boundary value problem. Elliptic problems
order to dete € what bounaary co ons are ectypically do not evolve in time; conditions are required at all

essary to constitute a _weII pos_ed problem, it is helpful to eometrical boundaries to constitute a well posed boundary
consider a characteristic analysis of the unsteady system lue problem

the one-dimensional limit. As discussed by Drew and
Passman® the issue of well-posedness for general two-phase. No diffusion
systems remains controversial. Common inviscid systems |n the limit of zero diffusion,ug=us=0, kg=ks=0, it

without dynamic compaction equations such as &g.aré s well known that the systert47)—(53) is hyperbolic. In a
known to be ill posed for initial value problems. And as ca|culation first reported for this class of systems by Baer

discussed in recent work by Kreiss and Yt/ the com-  and NunziatS, the dimension of the systemiis=7, and it is
mon technique of relying on diffusion, numerical or physical, foynd that

to stabilize models which are ill posed in the zero diffusion
limit is questionable.

In the one-dimensional limit, with as the spatial coor- Here ¢, andc, are the isentropic sound speeds of the solid
dinate, Eqs(47)—(53) coupled with constitutive Eq$20)—  and gas, respectively, defined by

(37) can be cast as a system of first order partial differential > >
Cs= is , Cq= ﬂ . (69)
dp 9 dp
Sl b 97,

equations of the form
The seven generalized eigenvalues are real, though only six
¢ are distinct. However, it is easy to show that there are seven
linearly independent generalized eigenvectors; hence, the full
system can be projected onto these vectors, and the full sys-
tem is hyperbolic, and thus well posed for initial value
problems.

A =1Ug,Us,Us*Cg,Ug,Ug*Cy. (68

A-—+B.-—=c. (65)

Here w is a vector of lengthn containing the dependen
variables,c is a vector of lengtm, andA andB arenXxn
matrices all of which are functions of, t, andw. In a
standard analysis, such as that described by Zautfeoee
seeks curves irx-t space described bgx/dt=\ along
which Eq.(65) can be cast as ordinary differential equations.» gnergy diffusion

In so doing, one is led to the generalized eigenvalue problem Consideration of energy but not momentum diffusion,

while perhaps not physically important, yields a result with

g-(NA—-B)=0, (66)
whereg is a generalized eigenvector, ardoften called a an interesting interpretation. Inclusion of Fourier heat con-
9 9 9 ' .duction here raises the dimension of the systermte9.

c_haracteristic, Is a g_ene_ralized eige_nyalue. The CharaCterli\'fter a detailed analysis involving standard thermodynamic
tics are found by satisfying the condition derivative manipulations, the generalized eigenvalues are

INA—B|=0. (67)  found to be
|
( Us,
(gpS apS TS apS aTS
Us= \/ 9p. 0T |\ plcedTel . ape !
)\:< Ps Ts s s ps b Pstus s Ps:bs Ps 75, Ps (70)
U+ \/ﬁpg 9Pg ( Ty 9Pg ar
ot \/ 7 T T2 | T e
\ dpg T, dTg rg PgCug dTg by dpg "
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Here, there are five generalized eigenvalues, and they are afion of Poinsot and Lel® it is required that the following

real and distinct. In the limit of two calorically perfect ideal eight boundary conditions be satisfied:

gases, these equations simplify considerably to faorm _ _ _ _

=Us,Us*C{ U= Cy, wherec andc; are the so-called iso- Ug(0)=ug(L ) =us(OD) =uy(L, 1) =0, (72

thermal  sound  speeds, ¢l=dps/dpslt, 4,  Cg 0g(01) =0dg(L,1)=0s(0t) =qs(L,t) =0. (73

= 9pg/dpg|r,. Consequently in this limit, Newton's isother- st these houndaries, second order one-sided difference

mal theory to predict acoustic propagation speeds is correctchemes are employed to maintain the overall accuracy of

though never realized in practice. the method. Appropriate extrapolation techniques are used to
In this case while five generalized eigenvectgisan be  account for the fact that heat fluxes and viscous stresses are

found for each of the five generalized eigenvalues, there argefined at the midpoints of the primary grid.

not enough generalized eigenvectors to transform the entire At this point the system is represented by a |arge system

system into characteristic form. Thus the system is paraboliGf coupled nonlinear ordinary differential equations. These

and it appears reasonable to assume that should appropriai then solved with an implicit Adams method as embodied

Dirichlet, Neumann, or Robin boundary conditions@and  in the widely available Fortran codeLsope®® This code

Ty be provided, the initial and boundary value problem isprovides automatic time step selection prescribed in such a

well posed. Thus with four boundary conditiofteo at each  manner to achieve a user-defined error tolerance. This error

end of the one dimensional domaion temperature and five tolerance was set well below the level of truncation error for
initial conditions on other variables, there are enough condithe spatial discretization.

tions for the nine equations. All calculations were done usingrDRTRAN90COdE run-
o ning on a Macintosh PowerBook G4 laptop computer oper-
3. Momentum and energy diffusion ating at 667 MHz. Depending on the numerical stiffness of

Consideration of simultaneous energy and momentunthe source terms, calculations fbr=1001 grid points re-
diffusion is more typical in nature, especially in gas systemsquired anywhere from 5 min to 1 h. The longest calculation
Inclusion of Fourier heat conduction and viscous stressegn a highly refinedN=10 001 grid took approximately 7 h.
here raises the dimension of the systermte11. Another
detailed but straightforward calculation reveals that the gen-

eralized eigenvalues are simply IV. VERIFICATION OF NUMERICAL METHOD

A=Ug,Us,Uq. 71 .
s1Usg (73) Two cases were calculated for which known benchmark

For each of the three generalized eigenvalues, of which twgolutions existed in order to verify the numerical method: a
are indistinct, three generalized eigenvecrsin be found.  shock tube and a piston-driven shock. Intraphase diffusion
Once again, there are not enough generalized eigenvectors\igs present in all cases, with coefficients selected so that the
transform the entire system into characteristic form. Thus thgiscous zone enveloped several grain diameters, and so that
system is not hyperbolic; it is, however, parabolic, andthe Prandtl numberPr=yuc,/k, for both solid and gas
should appropriate Dirichlet, Neumann, or Robin boundarw\,as of order unity, thus rendering momentum and energy
conditions onTs, Ty, Us, andugy be provided, it is reason- diffusion to be of similar importance. To achieve this end,
able to suppose that the initial and boundary value problenyajues foru andk are significantly higher than they are for

is well posed. Thus with eight boundary conditiofisur at  single phase materials, and thus this simple model cannot at
each endlon Tg, Ty, Us, andug and three initial conditions  the same time describe ordinary slow macroscale diffusion.
on other variables, there are enough conditions for the eleveror problems such as cookoff where slow diffusion is impor-

equations. tant, a more sophisticated constitutive theory could be em-
ployed in which the diffusion coefficients had strain-rate de-
ll. NUMERICAL METHOD pendency.

The one-dimensional form of Eq#47)—(593) is solved
with a straightforward numerical technique. Because thinA- Case A: Shock tube
but finite, diffusion Iayers in shocks have been epr|C|tIy In the classical shock tube pr0b|em’ two halves of the
modeled and will be fully resolved, there is no compelling domain are held at the same temperature, with the left side
need to resort to more complicated numerical schemes. Sereld initially at an elevated density, given By, and Pgo.
lutions are considered on the domair:[OL], te[0),  and consequent pressures. #t0, the system is set into
wherelL is the domain length. A set ™ points is uniformly  motion, and a shock propagates to the right, a material dis-
distributed on the domain, where all variables, with the excontinuity to the left, and a rarefaction to the left. In the limit
ception of heat fluxes and viscous stresses, will take theigf a single inviscid calorically perfect ideal gas, a closed
values. Heat fluxes and viscous stresses are assigned valygem analytic solution is known, as given, for example, by
halfway between each of thé¢ points. Next the spatial gra-  Shapiro®*
dient operators in Eq$47)—(53) are approximated by a cen- Using parameters of Table |, the motion of two viscous
tral difference scheme of second order spatial accuracy. Onlyncoupled calorically perfect ideal gases propagating at dif-
boundaries ax=0 andx=L which are no-slip and adiabatic ferent speeds in a shock tube is calculated. In this simulation
are considered, and so, consistent with the detailed discugj| interphase transport is suppressed. In order to keep the
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TABLE |. Parameter values faA) shock tube(B) simple piston,(C) piston with subsonic compactiofD)
piston with subsonic compaction and drég), piston with subsonic compaction, drag, and heat transfer(@nd
piston with supersonic compaction, drag, and heat transfer.

Parameter Units Case A Case B Case C Case D Case E Case F
tmax s 6x10°% 1.2x10°4 6x1074 6x1074 6x1074 1x10°°
N - 1001 1001 1001 1001 1001 5001
L m 5x10°1 5x10! 5x10! 5x10°! 5x10°! 5x10°!
AX m 5x10°* 5x107* 5x107* 5x107* 5x107* 1x107*
up'® m/s 0 X 107 1x 107 1X 107 1X 107 1x10°
trise s 0 1x10°8 1x10°° 1x10°° 1x107°° 1x10°°
Hg N s/n? 1x10 1x10° 1x1d 1x10 1x10 1x10°0
s N s/n? 1x10° 1x10° 1x10° 1x10° 1x10° 1x 1090
kg  W/m/K 1x10° 1x10° 1x10° 1x10° 1x10° 1x10¢*|| 0
ke  WIm/IK 1x10° 1x10° 1x10° 1x10° 1x10° 1x10°|0
e N s/n? £ % 1X10° 1x10° 1x10° 1x10°
5 kg/m¥ls 0 0 0 X108 1x10° 1x10°
H  W/mPK 0 0 0 0 1x 1010 1x10Y°
C  kglmils 0 0 0 0 0 0
q Jlkg 0 0 0 0 0 0
Vg e 270x10° 2.70x10° 1.35x<10°  1.35x10°  1.35x10°  1.35x10°
Cg  JkgK  24x10° 24x10° 24x10°  24x10°  2.4x10° 2.4x10°
by m®/kg 0 0 11x107% 1.1x10°% 1.1x10°°% 1.1x10°°
Tgo K 3x 10 3x 10 3X10° 3X10° 3x 10 3X10°
Teo K 3X10° 3X 10 3X 10 3x 107 3x 107 3xX10?
Pgo kg/m? 1x10 1x10° 1x10° 1x10° 1x10° 1x10°
Pgo kg/m? 1.1x1¢° 1x10° 1x10° 1x10° 1x10° 1x10°
Ys . 5x10° 5x 1¢° 5x 1¢° 5x10° 5x1¢° 5x10°
£q J/Ikg 0 0 89x1¢° 8.98x10° 8.98x1C° 8.98x 1¢°
Cys Jlkg/K 1.5x10° 1.5x 10° 1.5x 10° 1.5x 10° 1.5x10° 1.5x 10°
Pso kg/m? 1.9x10° 1.9x10° 1.9x10° 1.9x10° 1.9x10° 1.9x10°
Pso kg/m? 2.0x 10° 1.9x10° 1.9x10° 1.9x10° 1.9x10° 1.9x10°
dso 7.3x10°Y  7.3x10°Y  7.3x107'  7.3x10°! 7.3x10°'  7.3x10°%
waves relatively close to one another for a good comparison, T (K
the pgramgteryg has been set to a hlgher valuyeg=2.7.0, 310 inviscid
than is typical for gases. For compaction wave studies, its == ; i
: S analytical
value is returned to a more typicg},=1.35. ) !
In Fig. 1, part A1, predictions of temperature at a final 305} —— VISCOUS
time t,,,,=60 us are shown along with the predictions of numerical
the inviscid theory. The agreement is remarkably good, with 300 _
the main difference being that the viscous model predicts
waves with finite thickness, due to physical diffusion. No
phenomena typically associated with numerical noise, suct 295 A1
as Gibbs phenomena or dispersion effects are seen at the:
scales, primarily because the physical diffusion is of a suffi- 290 ——————————— x (M)
; ; ; P 0.3 04 0.5
ciently high magnitude to render them indistinguishable. As
the method is formally not flux conservative, there is a very
small evolution of total mass and total energy in the system, L4(K)
which can be made as small as one likes with grid refine- 1 -
ment. o . - slope=0.75
In Fig. 1, part A2, predictions of how an error norm for .
temperature behaves as the grid is refined is given. Here g 4 .

1-normed errot_, is defined as representative of the average
error of the combination of the solid and gas temperature:

.

1 N 0.01 + slope=1.95 AD
Li=5n 2 (T~ Tail+ [T = Tgl). (74
HereTg; andT,; are the approximations for the solid and gas 0.0001 0.001 0.01 0.1

e

temperatures at thith grid point, andTg; and Tg; are the

FIG. 1. Results for case AAl) Analytic (dotted line$ and computational

values of the e)_(aCt_ 50|U'Fi0n at the corre_spondin_g grid pOintS(solid lineg solutions for the shock tube problerfA2) behavior of error
The exact solution is estimated from a highly refined solutiomorm of temperature as the grid is refined.
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with N=10001. Figure 1, part A2, clearly shows that is T (K)
converging to zero. For very coarse grids, the convergenceq . q
rate isO(AX%9, while for fine grids, the convergence rate solid
is O(Ax*99), which is approaching the order of the inherent
truncation error of the second order discretization. Examina-
tion of the solution at coarse resolution shows many effects gas
of numerical noise dominating the unresolved physical dif- 320
fusion; numerical artifacts become unrecognizable when the
grid is refined such that the physical viscous layers are310
resolved.

B1

300 01 02 03 04 035 XM

B. Case B: Piston-driven shocks

In case B, a simulation of a piston driving into two non- Ts(K)
interacting calorically perfect viscous ideal gases is pre-340
sented. In this case, the motion of a piston, located=a0
whent=0, and having velocity, of 330

t
up(t)= ug‘a)‘{ 1—- ex;{ -
trise

is modeled. Herai'®* is the maximum piston velocity, and  31q
t;ise IS the rise time for the piston acceleration, here set to be
tise=1 us. To achieve this effect, Eqé47)—(53) were sub- g
jected to an appropriate transformation to the accelerating 0.36 0.37 0.38 0.39
reference frame in which the transformed velocity at the pis-

viscous shock in solid

———— steady solution

— time-dependent
solution

, (75 320

B2

x (m)

ton face was zero. This is achieved by effecting Tg(K) ) _
) : viscous shock in gas
X=x—ul® t+t, exp(— )—1”, 76 325 N _
P ree trise 78 : A - ——steady solution
~ 320
t=t. 7D a5 — time-dependent
The velocities and accelerations in the accelerating frame ar. | solution
then given by 310,
t 305 o B3
ﬁszus—ugax{l—exp{—t. ” (79 : S~
fise 018 020 022 024 026 028 XM

}, (79 FIG. 2. Results for case B, piston driving into two noninteracting calorically

Tg=ug—up® 1—exy{— ! \ _ _ / :
trise perfect viscous ideal gasé®1) Full spatial domain(B2) expanded view of

U, dug  up™ p( t
— = ——exp — —
dts dts  trise t

viscous shock in solid showing steafiotted ling and unsteadysolid line)
solutions,(B3) expanded view of viscous shock in gas showing steddy
, (80 ted line and unsteadysolid line) solutions.

dly, dug ug® t waves predicted by a steady state thedrgbtained from a
E: dt.  te. X 8 hymerical shooting method, are superposed. Again the re-
g g lrise sults are remarkably good. In that the piston has translated
As the simulation time was sufficiently short to preventaway from its initial condition ak=0, the laboratory frame
wave interactions at=L, no special modifications were re- predictions are slightly displaced away from the origin. The
quired at that boundary. The well-known net effect of thispreshock and postshock temperatures are nearly in exact
non-Galilean transformation is simply to introduce a sourceagreement. The steady theory predicts wave speeds of
term due to frame acceleration into the linear momentun8153.74 m/s and 1847.85 m/s in the solid and gas, respec-
equations. Upon completion of calculation, the results werdively. Rough estimates from the unsteady calculation ob-
transformed back into the laboratory frame, which is what istained calculating the ratio of the coordinate of the mid-
reported in Fig. 2. The equations of state are such that thpoint of the viscous structure to the local time vyield
shock moves faster in the solid as seen in Fig. 2, part Blpredictions of 3125 m/s and 1917 m/s. The differences may
Once again, a high value of; has been employed to allow be due to the effects of the finite rise time as well as diffi-
simultaneous visualization of the wave dynamics. In Fig. 2culty in estimating the location of the smeared wave. The
parts B2 and B3, expanded views are focused on the viscoussults also indicate that the unsteady model is capturing the
shock layers. Here independent solutions of viscous shockorrect length scales of diffusion. Both shocks in the gas and

trise
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solid are relaxing to the steady solution; the solid shock issound speed in the solid, which is around 3000 m/s, and as
relaxing at a faster rate, which explains why the gas shockuch it is not the limiting case of a shock wave. In fact, as
shows a greater difference. Importantly, it is seen that thelemonstrated by corresponding inviscid theories, the struc-
diffusion coefficients employed give rise to a gas shockture of the compaction zone is dictated by the magnitude of
thickness of roughly 6 cm and a solid shock thickness ofu., which despite its common name of “compaction viscos-
roughly 3 cm. Consequently, roughly 300 particles of diam-ity,” is in fact not associated with classical diffusion. In con-
eter 100um fit into the smallest length scale admitted by thetrast, the precursor wave in the gas is traveling at a speed of
continuum theory. It is noted that the simple diffusion modelaround 830 m/s; its structure, which has thickness of about 4
employed predicts a thinning of the shock width as the shockm, is dictated by the gas viscosity. As the ambient gas phase
strength increases. This is consistent with the predictions afound speed is 583.9 m/s, this wave is clearly a supersonic,
an experimentally validated Navier—Stokes model forviscous shock.
gases® Determination of whether such a result can be vali- It is noted that the compaction wave speed is lower than
dated for granular materials would require consideration of ahe ambient sound speed in both phases. This is qualitatively
microstructural model not done here. consistent with well-known results obtained in special limit
of pressure, temperature, and velocity equiliBfidut the

V. COMPACTION WAVE RESULTS gquantitative agreement here is not strong. The quantitative
disagreement is not surprising, as in this study, the two
hases do not have equilibrated pressures.

The gas velocity is quite distinct from that of the solid,

Next a series of simulations was performed for inert
compaction waves. These results are similar to previouslxy

reported inviscid results for the solid phase dngnd the except that both relax to the piston velocity at the locus of

solid and gas phasé&in these calculations, both solid and the piston. Such velocity differences are not observed in

ions of re nonideal with parameter ropri-~_ . . .
gas equatio S0 state are nonideal with paramete S app Opexperlmenzt4 and can be attributed to the neglect of inter-
ate to describe common heterogeneous materials. Thr

e . -
cases are studied to quantify the effects of the mechanisms ?1ase drag. The gas and solid temperatures are distinctly
(C) compaction,(D) compaction and interphase drag, and ifferent as well, with large fluctuations noted in the gas

(E) compaction, interphase drag, and interphase heat transf&? .;Sti;ecrgﬁ]erzgtjigeﬁ ;;Ziciﬁn;rg'czg[;:qe :rraotzlreen:oaffll st,gc:
In each case the mixture with initial solid volume fraction of P 9 P

¢so=0.73 is driven by the same accelerating piston which'S"Y low value in t.he com.pacted region of near 100 K- ltis
quickly relaxes to a final velocity of 100 m/s, similar to that reasonable to attribute this to the neglect of interphase heat

used in experiments® Here the piston velocity is suffi- fransfer.
ciently small so as to induce waves which are subsonic Wit%
respect to the solid. A fourth calculation, F, considers a sce-"
nario nearly identical to E, except that the driving piston In case D, the mechanisms of interphase compaction and
accelerates to a velocity of 1000 m/s. This induces a waverag are activated. A drag parameter&t 10° kg/m®/s, of
which is supersonic with respect to the solid. In order tothe same order of magnitude as suggested by experfhisnt,
resolve the finer structures induced by this more potenemployed, and results are shown in Fig. 4. Results for the
driver, five times as many computational cells are employedolid phase are similar to those for case C. However, for the

Case D: Subsonic compaction and drag

relative to all other cases. gas phase the introduction of drag has effectively equili-
brated the gas velocity to that of the solid, brought the pres-
A. Case C: Subsonic compaction sures much closer, and increased the temperature to around

The mechanism of interphase compaction is activated b 30 K in, the postc.ompaction zone. The .sho.ck wave is no
onger discernible in the gas phase. While it appears that

reducing the compaction viscosity. to a finite value of ) X
10° Ns/n?. Interphase drag and heat transfer are not actithere is a temperature gradient and consequent heat flux at

vated. Predictions of pressures and configuration stress, solf§€ Piston face, examination of the results on a magnified
volume fraction, velocities, and temperatures are shown iﬁcale reveals there is in fact a thin relaxation layer where the
Fig. 3. Here clearly distinct disturbances in the solid and ga&€at flux approaches zero for both phases.
are predicted. In the solid, the disturbance is traveling at i i
approximately 415 m/s and is associated with a increase ify: CaS€ E: Subsonic compaction, drag, and heat

. .. transfer
the volume fraction to a nearly completely packed solid with
¢<~1. The pressure in the solid rises from an ambient value In case E, the mechanisms of interphase compaction,
of near 10 MPa to a compacted value of over 50 MPa. Aftedrag, and heat transfer are activated. By making a so-called
a short delay in the compaction zone, the configurationaReynolds analogy that interphase drag and heat transfer are
stressB, relaxes to a value close to that of the solid pressureof the same order of magnitude, the heat transfer coefficient
while the gas pressure is significantly lower. The thickness ofs estimated at{~ 6u§/TC, where the characteristic velocity
the compaction zone is about 6 cm, thus it encompasseand temperature are estimated to lpe-100 m/s andT.
about 600 particles of 10@m diameter. These values are ~100 K. This gives rise to an estimate ofH
quite close to values observed in experiment, as discussed in10'° W/m®/K. Results are shown in Fig. 5. The results are
detail by Powerst al.” This wave, known as a compaction essentially identical to those of case D, except that the solid
wave, is traveling at a much slower speed than the ambiergnd gas temperatures have relaxed to nearly identical values.
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FIG. 3. Results for case (piston-driven subsonic compactioiC1) Solid and gas pressure and configuration stress profi, solid volume fraction
profile, (C3) velocity profiles,(C4) temperature profiles.
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volume fraction profile(D3) velocity profiles,(D4) temperature profiles.
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As discussed in detail by Asagt al.?* these equilibration

1.75<10° W/m®/K; solid momentum diffusion, 2.2

phenomena have important consequences when considering1 0’ W/m®/K; solid energy diffusion, 1.810° W/m®/K;
mechanisms which are likely to induce a transition to detointerphase momentum transfer, 8.40* W/m®/K; gas mo-
nation in a reacting material. In particular, this model pre-mentum diffusion, 4.8 10° W/m®/K; interphase energy
dicts that the compaction wave crushes the material to thgansfer, 1.&410° W/m®/K; gas energy diffusion, 3.3
extent that it would be difficult for reaction product gases tox 10! w/m3/K. Obviously the bulk of the dissipation is fo-
permeate ahead of the compaction wave to any significanfysed in the solid phase, and the bulk of that is attributable to
degree. However, there remains a small amplitude of gagompaction. Momentum diffusion in the solid phase is the

velocity which may be potentially important in a slow gnly other mechanism which makes a contribution of suffi-
cookoff scenario. This rapid equilibration has motivated re-jent magnitude to be discerned in Fig. 6.

cent studies which replace evolution equations with algebraic
constraints which force solid—gas equilibrium in order to re-p case F: Supersonic compaction, drag, and heat
duce the computational stiffness associated with resolvingansfer

thin layers!®

Predictions of an instantaneous budget of irreversibility
production raté are given for case E in Fig. 6. Here E§3)

In this case, each of the mechanisms active in case E
remains active, and the same parameter values are employed,

is employed to calculate as well as the magnitude of each €XCept the piston is driven ten times faster at 1000 m/s. A
of its constituents. In this case the peak entropy productioffetailed steady inviscid analySigeveals that at such speeds,
rates for the various processes are all located in the regiofPmpaction waves are described by a steady shock wave
nearx=0.3 m, and have the following approximate peakPropagating faster than the ambient sound speed in the solid
magnitudes, given in rank order: interphase compactionf,onowed by an attached compaction zone in which all vari-
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200
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Solid Momentum
~ =~ Diffusion

FIG. 6. Results for case Bpiston-driven subsonic compaction with inter-
phase drag and heat trangfefotal irreversibility production raté and

0.1

0.2

03 04 o5 XM

ables relax to their equilibrium values.

Predictions of solid pressure versus distance are shown
in Fig. 7. In order to clearly display the structure of the wave,
only a small portionxe[0.020 m,0.032 i of the entire
domainxe[0 m,0.5n is depicted. The model predicts a
wave of approximate thickness 0.0024 m propagating at an
approximate velocity of 3250 m/s in which the pressure re-
laxes to a final value of 4566 MPa. Such a wave structure
admits roughly 24 particles of size 1Q0m within its relax-
ation zone. Other variables behave in a qualitatively similar
manner as they did in case E in that solid and gas velocities
as well as solid and gas temperatures are effectively equili-
brated. The distinction between the shock and compaction
zone is not apparent in Fig. 7. Had smaller diffusion coeffi-
cients been employed, this distinction would become dis-

contributions from major components: interphase compaction and solid mocem'ble at the expense of rende”ng diffusive relaxation

mentum diffusion.

length scales to be smaller than the grain size.
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p,(MPa) 8.8x10° W/m*/K; gas energy diffusion, 2%10" W/
T m*/K; interphase momentum transfer, X0 W/m®/K.
AARRARPARD ] "/"\ "l”."w R \";,',' } F Again, the bulk of the dissipation is focused in the solid
! Y !

phase, and the bulk of that is attributable to compaction.
Momentum and energy diffusion in the solid phase are the
only other mechanisms which makes a contribution of suffi-
cient magnitude to be discerned in Fig. 8. One also notes that
the dissipation due to diffusion is at the leading edge of the
disturbance, while that due to compaction trails slightly. This
is consistent with the predictions of an inviscid theory which
has a leading shock followed by a compaction zone.

4000

3000

viscous
2000

————— inviscid
1000

0022 0024 0026 0028 003 oose <™

FIG. 7. Results for case @piston-driven supersonic compaction with inter-
phase drag, and heat trangfeBolid pressure predictions of the viscous VI. DISCUSSION
theory (solid line) and corresponding inviscid equivalefashed ling
This study has shown that it is possible to introduce

diffusion in a rational manner to models of heterogeneous
Superposed onto Fig. 7 are the predictions of an equivaenergetic solids. With this extension, it has been demon-
lent theory with all diffusion coefficientas, ug. Ks, kg S€t  strated that real advantages exist relative to inviscid models.
to zero. Here, the same simple second order spatial discrefgirst, at the expense of computing on a sufficiently fine grid
zation scheme was used. As this discretization does not o resolve all diffusive structures, one can app|y re|ative|y
duce to a first order scheme in the neighborhood of disconsimple numerical methods to nonconservative formulations
tinuities, it is susceptible to pronounced dispersion effectsf the governing equations. Second, the presence of a small
which depend critically on the numerical resolution. Thesefinjte length scale on which dissipation occurs can prevent
undesirable effects are readily seen in Fig. 7. For modelgnphysical instabilities predicted by inviscid models when
which do not include nozzling and thus have a fully conserthey are subjected to grid resolution. Third, as these calcula-
vative form, the use of Godunov-based techniques for invistions were resolved with modest modern computational re-
cid flows reduces the discretization to first order in the neigh'sources with no adaptive mesh refinement, it may be appro-
borhood of discontinuities and is able to crisply capture thenpyriate for the modeling community to reconsider if the
without spurious oscillatiofi*’ For models which include  traditional reasons for routinely neglecting diffusion are al-
nozzling, similar techniques can crisply capture jurffisut  ways applicable. Fourth, the modeler has gained control, in-
questions remain as to whether the method has captured tigpendent of the particular numerical method chosen, over
correct jumps? the width of the small scale structures, which should never
Predictions of an instantaneous budget of irreverSibi”tybe below that of the grain sca]e, as they can be for inviscid
production ratd are given for case F in Fig. 8. In this case models.
the peak entropy production rates for the various processes Exercise of this model has demonstrated that it is con-
are all located in the region near=0.028 m, and have the Verging at the proper order, and that appropriate boundary
following approximate peak magnitudes, given in rank orderonditions have been imposed to guarantee the initial bound-
interphase compaction, @0 W/m*/K; solid momen-  ary value problem is well posed. Predictions of compaction
tum diffusion, 3.2<10" W/m*K; solid energy dif- wave structures demonstrate good agreement with known re-
fusion, 1.2<10" W/m°K; interphase energy trans- suits and verify the critical role of compaction in introducing
fer, 1.5x10° W/m*/K; gas momentum diffusion, jrreversible energy transfer, which could induce combustion,
into the solid phase.
A challenge which is unmet, however, is to provide a
rigorous granular subscale physical justification for the the
F critical constitutive theories required by this and all con-
tinuum mixture models in a fashion similar to that which has
been provided from the kinetic theory of gases. All present
macroscale models of deflagration-to-detonation transition
are validated by tuning model parameters so as to be able to
replicate limited experimental data sets. While this approach
has value in interpolating within the confines of the experi-
Solid Momentum Diffusion. . /- - mental data base, it may not work well outside the bounds of
Solid Energy Diffusion _<----__. the experiments. Consequently, without a more fundamental
0022 0024 0026 0028 003 0032 (m) theory, the best of ongoing and important national efforts to
FIG. 8. Results for case piston-driven supersonic compaction with inter- improve both CompUtati(-)nal hqrdware and algorithms pro-
pha.se.drag and heat trangfefotal irreversibility production raté and vide a necessary, but insufficient, step towards a theory

contributions from major components: interphase compaction, solid momenWh_iCh truly predicts the behavior of energetic granular ma-
tum diffusion, and solid energy diffusion. terials.
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