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Two-photon autofluorescence 
lifetime imaging of human skin 
papillary dermis in vivo: assessment 
of blood capillaries and structural 
proteins localization
Evgeny A. Shirshin1, Yury I. Gurfinkel2, Alexander V. Priezzhev1, Victor V. Fadeev1, Juergen 
Lademann3 & Maxim E. Darvin3

The papillary dermis of human skin is responsible for its biomechanical properties and for supply 
of epidermis with chemicals. Dermis is mainly composed of structural protein molecules, including 
collagen and elastin, and contains blood capillaries. Connective tissue diseases, as well as cardiovascular 
complications have manifestations on the molecular level in the papillary dermis (e.g. alteration 
of collagen I and III content) and in the capillary structure. In this paper we assessed the molecular 
structure of internal and external regions of skin capillaries using two-photon fluorescence lifetime 
imaging (FLIM) of endogenous compounds. It was shown that the capillaries are characterized by a 
fast fluorescence decay, which is originated from red blood cells and blood plasma. Using the second 
harmonic generation signal, FLIM segmentation was performed, which provided for spatial localization 
and fluorescence decay parameters distribution of collagen I and elastin in the dermal papillae. It was 
demonstrated that the lifetime distribution was different for the inner area of dermal papillae around 
the capillary loop that was suggested to be due to collagen III. Hence, we propose a generalized 
approach to two-photon imaging of the papillary dermis components, which extends the capabilities of 
this technique in skin diagnosis.

Skin is the largest organ in the human body serving numerous functions1. Generally, skin consists of three dis-
tinct layers – epidermis, dermis and the inner layer – hypodermis, which mainly contains fat cells, adipocytes. 
Epidermis is composed of cell layers and is attached to an underlying dermis with a basement membrane (BM), 
which controls an exchange of chemicals between blood vessels and epidermis. �e BM structure is determined 
by the interaction of epidermal cells, keratinocytes, and �broblasts from the papillary dermis, which produce 
necessary protein components, including collagen type IV1–4.

�e dermis consists of two layers – papillary (stratum papillare) and reticular dermis (stratum reticulare). �e 
depth of a papillary dermis is approximately 300–400 µm, and its upper part is arranged into ridge-like struc-
tures, the dermal papillae, which contain microvascular and neural structures1. Dermal papillae greatly extend 
the surface area of the dermal-junction and facilitate delivery of soluble molecules to the epidermis from blood 
capillaries. A typical adult has about 1011 blood vessels, and more than 99% of these vessels are involved in the 
microcirculation – a vast network of interconnected vessels5. �is network is controlled by numerous mecha-
nisms, and there are many ways in which such a delicate system may break down, leading to cardiovascular dis-
ease. �e structure of capillaries can also be in�uenced by dermal diseases such as psoriasis6–8. Skin capillaries can 
be observed using standard optical microscopy9. In the common case, the super�cial capillary loops are oriented 
perpendicular to skin surface, hence, only their terminal parts can be distinguished. However, in the �ngernail 
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bed area capillaries are aligned parallel to the surface, and can be inspected across the whole length9. Digital 
optical capillaroscopy provides clinically important information on microvascular abnormalities in patients. For 
instance, the density of the capillary network and the ratio of the capillaries’ venous segment to arterial segment 
diameters could give quantitative evidence for characterization of arterial hypertension stages10. �ough being 
informative in terms of prediction of microvascular complications, whose earliest manifestations are encountered 
in the microcirculation, as well as other pathologies11, simple visualization of capillaries with optical microscopy 
does not allow for assessing of molecular species and biochemical processes in blood. At the same time, in vivo 
blood cytometry, which can be performed through skin noninvasively, is highly desirable for biomedical diagno-
sis and can be potentially performed by complex methods12, 13.

Dermis is mainly composed of extracellular matrix (ECM) produced by �broblasts3, with collagen being the 
most abundant protein component. Di�erent subpopulations of �broblasts result in di�erences between the ECM 
organization in di�erent areas of dermis. At that, papillary dermis is characterized by thin, randomly oriented 
�bers made of collagen types I and III, intercrossed with the elastin �bers, while reticular dermis is made of thin 
collagen �bers1. �e ratio and the interaction between collagen type I and type III determine biomechanical prop-
erties of the connective tissue4. Various diseases, as well as connective tissue disorders, have manifestations at the 
level of dermis. Keloid, morphea, dermal elastosis, skin aging and photodamage are associated with reorganiza-
tion of the ECM and rearrangement of collagen �bers’ architecture and content14–17. Collagen remodeling is also 
a central process during wound healing18, 19, and its monitoring in vivo is important for regenerative medicine20. 
Current techniques to visualize and quantify changes in tissue collagen types rely on immunohistochemistry and 
polarized staining under the microscope21, 22. Although histopathology is the golden standard and provides for 
the highest accuracy and speci�city in detection of tissue pathologies, it requires time-consuming tissue process-
ing and invasive procedures, which is not suitable e.g. for a routine investigation of cosmetic problems. �is led to 
an impetuous development of several in vivo methods, which allow for the assessment of skin structure, including 
high frequency ultrasonography23, optical coherence tomography (OCT)24, 25, confocal laser scanning microscopy 
(LSM)26–28, confocal Raman microscopy (RM)29, 30 and multiphoton imaging31, including multiphoton tomogra-
phy (MPT)32 combined with coherent anti-Stokes Raman scattering (CARS)33, 34.

MPT is based on non-linear optical e�ects such as higher optical harmonics generation (e.g., SHG, Second 
Harmonics Generation), two photon excited auto�uorescence (TPEAF) and CARS, which require the use of 
short (usually femtosecond) excitation pulses. MPT allows for non-invasive imaging of tissue structure at the 
subcellular level with a real-time temporal resolution32. �e major advantage of this technique is the possibility 
of assessment of biochemical properties of tissues, i.e. molecular composition at certain spatial points, especially 
when MPT is combined with time-resolved methods, i.e. pump-and-probe spectroscopy and FLIM (Fluorescence 
Lifetime Imaging)32, 35.

MPT allows for the evaluation of tissue architecture and molecular composition in the upper dermis. While 
the SHG signal in the dermis mainly originates from collagen I �bers and can be used for their quanti�cation 
and morphology assessment36, intense TPEAF from this skin region is considered to be due to elastin �bers37. 
As a result, several descriptors have been developed to assess the morphological state of the upper dermis on the 
basis of MPT37–39, thus solving the principal quanti�cation problem for dermatology and cosmetology. It was also 
shown that SHG microscopy itself is a powerful method, which allows obtaining detailed information on the col-
lagen I �bers structure and their arrangement in tissues, providing for valuable clinical information40–43. However, 
signal separation for di�erent collagen types is not readily provided by the MPT.

�ough �uorescent properties of di�erent collagen types in model systems have been studied44–46, their sepa-
ration in �uorescence images for real objects, especially in vivo, still remains a challenging problem and requires 
an application of FLIM with advanced processing algorithms47, which in the case of dermis requires separation of 
auto�uorescence of other ECM components, e.g. elastin. Fluorescence lifetimes of elastin and collagen have been 
multiply addressed in relation to measurements of aorta walls constituents48, 49. It was shown that the absolute 
lifetime values of these species vary signi�cantly depending on the sample preparation, storage and environment, 
e.g. �uorescence lifetime for model preparations elastin di�ers from that for elastin in aorta44, 48. Generally, the 
data on the absolute lifetime values of collagen I and elastin is rather contradictive44–49, and implementation of an 
independent method, e.g. SHG, is required for reliable localization of collagen and elastin in tissues.

While a lot of works using MPT was performed on epidermis50–53, only a sparse information was reported 
on microvascular components in the papillary dermis. For instance, it is a common knowledge that the loca-
tion of capillary in papillae is seen as a hollow area inside the collagen I matrix in the SHG signal40, 42, 43, how-
ever, applications of MPT in the dermal microvasculature research are almost lacking. In this work, we aimed at 
the investigation of capillaries in dermal papillae of human skin in vivo with a focus on the possibility of their 
imaging with MPT-FLIM using auto�uorescence of the endogenous compounds. For this purpose, the origin of 
capillary-related �uorophores at two-photon excitation was investigated. We also performed a detailed investiga-
tion of the molecular species localization in papillary dermis around the capillaries using segmentation of FLIM 
images guided by the intensity distributions of SHG and TPEAF. �e obtained results suggest the existence of at 
least three distinct ECM components in the dermal papillae, two of them being collagen I and elastin, and the 
third, presumably, collagen III. Finally, we propose a generalized approach to MPT imaging of capillaries interior, 
including blood plasma, and neighboring tissues in the framework, which extends the standard collagen-elastin 
picture of dermis composition accepted in MPT studies.

Results and Discussion
LSM imaging of capillaries in papillae. �e major aim of the present research was to assess the molecular 
structure of internal and external regions for skin capillaries with two-photon imaging, but previously to that 
characterization of the corresponding structures with LSM operated in the re�ection mode54 was performed.
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Figure 1a demonstrates the image of nailbed capillaries obtained using LSM in a re�ectance mode under 
785 nm light excitation. Pronounced structure of capillaries in �ngernail bed makes them a convenient object for 
visualization and quanti�cation of the microvascular network. In contrast to that, papillary capillaries in other 
regions of skin are oriented perpendicular to the surface. �e capillary loops in the inner forearm at ~60 µm depth 
can be seen in Fig. 1b. Importantly, the blood �ow was clearly seen in the LSM video mode both for the �ngernail 
and forearm capillaries (see the Videos 1 and 2).

Using LSM (�uorescence mode) on the �ngernail bed region, no �uorescence was observed from the papillary 
area upon excitation at 488 nm, which could be due to the strong light absorbance and scattering in tissue, as well 
as due to the absence of a su�cient number of �uorophores excited by this wavelength.

Two-photon imaging of fingernail bed capillary loops. As the fingernail bed capillaries exhibit 
a pronounced horizontally oriented structure, which can be easily recognized, we started our experiments on 
two-photon imaging of blood vessels from the �ngernail bed area.

In the dermis (at ~150 µm depth) prolonged �nger-like structures could be observed in the SHG channel 
(Fig. 2a), suggesting that these are horizontally aligned papillae where the capillaries should reside.

�e SHG signal in human skin originates from collagen I �bers, which are characterized by a needle-like 
non-centrosymmetric geometry and hyper polarizability. �ey give rise to a non-zero second order susceptibility. 
�is approach is widely used to study the organization of collagen �bers in the human dermis55. TPEAF from the 
same area, which is observed simultaneously with the SHG signal, is presented in Fig. 2b. Figure 2c shows the 
false-color image of the merged SHG and TPEAF signals, demonstrating the orientation of papillae in the �nger-
nail bed. As can be seen, no clear signs of the capillary can be observed in this image.

In contrast to this, the FLIM images, that represent the distribution of �uorescence decay parameters over 
the selected area, demonstrate the structure, which can be readily attributed to the capillary. �is is con�rmed 
by the capillary geometry obtained using LSM. At that, the colors in Fig. 2d correspond to the values of the fast 
component in �uorescence decay (τ1), and the colors in Fig. 2e correspond to the values of amplitude a1 of this 
fast component in �uorescence decay. �e capillary-like structure is characterized by a fast �uorescence decay 
(τ1 ~ 150 ps) and high amplitude of the fast component (a1 ~ 90%). Figure 2f demonstrates the merged image of 
the SHG signal (red) and signal with fast �uorescence decay (τ1 < 200 ps, a1 > 80%), illustrating that the hollow 
areas in the papillae �t the capillary structure. We also observed that upon a tense pressure on the �ngernail bed 
during measurements the capillary-induced signal in FLIM disappeared, suggesting that the fast �uorescence 

Figure 1. Capillaries of human skin in vivo in (a) �ngernail bed, 150 µm depth, (b) inner forearm, 60 µm depth 
as seen via LSM (re�ection mode); the red lines correspond to papillae borders, and the red arrows indicate the 
position of capillary loops inside the papillae. �e scanning wavelength was set to 785 nm.
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decay is due to the capillary’s content, i.e. blood, but not due to the capillary walls. To further investigate the origin 
of the �uorescence signal from the area of the capillary, we performed a separate study of two-photon �uores-
cence of blood, namely, of its two main components – red blood cells (RBCs) and blood plasma.

TPEAF/FLIM of human red blood cells and blood plasma. To verify the origin of �uorescence located 
in the capillaries area we performed the measurements of human RBCs and blood plasma. It has been reported 
that hemoglobin exhibits high two-photon absorption cross-section, and that two-photon excitation of hemo-
globin results in a high energy Soret �uorescence with a fast decay56–58. TPEAF of hemoglobin, which is the 
major intracellular component of RBCs with the concentration of ~300 mg/ml, makes it a prominent marker for 
non-invasive imaging of blood vessels57, 58. Hence, TPEAF �uorescence of hemoglobin could be considered as a 
major component responsible for blood vessels signature in the FLIM signal. Indeed, the results of RBC’s TPEAF 
measurements show that RBCs are characterized by a fast �uorescence decay with a narrow lifetime distribu-
tion (100 ± 20 ps) and high impact of the fast component’s amplitude a1 (Fig. 3). �e slower decay component 
observed for RBCs was about 500 ps and could be probably originated from NAD(P)H59.

We also investigated TPEAF of the second major component of human blood – blood plasma. Upon excitation 
of a blood plasma liquid drop with 760 nm laser pulses a pronounced �uorescence signal was observed, the inten-
sity of which was several times lower compared to RBCs. �e �uorescence decay parameters for blood plasma are 
presented in Fig. 3, which are characterized by a quite narrow distribution of τ1 (170 ± 20 ps), that is characteristic 
of single �uorophore predominance in the overall �uorescence signal, and high a1/a2 ratio, which was comparable 
to that of hemoglobin. �e slow component τ2 with 1–2 ns lifetime, a broad distribution (FWHM ~ 500 ns) and 
~10% amplitude in the �uorescence decay could be supposedly due to the �uorescence decay artefacts. However, 
during the processing of blood plasma FLIM images we took into account only bright pixels with >500 counts 
intensity in maximum, hence, we expect this decay component to be originated from real �uorophores. �ough 
the origin of these �uorophores requires further investigation, we note that at one-photon excitation in this wave-
length region (~380 nm) numerous �uorophores are known to emit �uorescence in blood plasma, such as dif-
ferent advanced glycation end-products, NAD(P)H, �uorescent protein cross-links, etc.60, 61. However, the fast 
component of blood plasma decay (200 ± 20 ps) is su�ciently lower than that for NAD(P)H (~500 ps), which is 
known to contribute signi�cantly to the blood plasma emission62. Fluorescence of biological liquids, especially of 
blood plasma, is extensively studied, that is motivated by the necessity to develop novel methods for the detection 
of pathologies and metabolic disorders in the human organism60–62. Collectively, our results suggest that TPEAF 
could be a prospective method to assess the �uorescence of blood plasma in vivo.

Figures 3c–e also demonstrate the �uorescence decay parameters distribution obtained for the capillary area 
presented in Fig. 2d–f. It can be seen that the τ1 and a1 values for capillary are somewhere in between the corre-
sponding parameters obtained for RBC and blood plasma, as one could expect.

We note that in our experiments a single FLIM image with a 300 µm width was measured during 6.2 s, which 
correspond to the 50 µm/s scan rate. Considering the blood �ow velocity in capillaries of ~500 µm/s63, one could 
expect a homogeneous distribution of �uorophores in the measurement area, i.e., no single RBCs could be 
observed and the resulting signal would be a mixture of RBCs and blood plasma �uorescence with a predominant 
impact of RBCs. However, the longer lifetime component (τ2 ~1.7 ns) present in the capillaries could be associ-
ated with blood plasma �uorescence as it is completely lacking in the RBC-induced FLIM signal (Fig. 3e).

Figure 2. Two-photon imaging of the �ngernail bed area: (a) SHG signal, (b) TPEAF signal, (c) merged SHG 
and TPEAF signals, (d) FLIM image, colors correspond to the τ1 values (the color scale corresponds to the 150–
500 ps range), (e) FLIM image, colors correspond to the a1 values (the color scale corresponds to the 85–100% 
range), (f) merged SHG and FLIM images.
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FLIM of the forearm capillaries. In contrast to the �ngernail bed, the capillaries in the inner forearm 
are oriented perpendicular to skin surface, and only a transverse cross-section of U-shaped capillary loops can 
be obtained (Fig. 4a). Figure 4b,c demonstrate representative two-photon images taken at 60 µm depth in the 
inner forearm of a healthy individual, which show the following features. Collagen I �bers of the papillae can be 
observed in the SHG channel (Fig. 4b), while �brous structure revealed in TPEAF could be attributed to elas-
tin (Fig. 4c). In Fig. 4b,c a hollow area can be observed in the middle of the papillary structure (white arrow), 
where no SHG and weak TPEAF signals are observed. Figure 4d demonstrates the spatial distribution of the 
SAAID (SHG to Auto�uorescence Aging Index of Dermis) index across the papilla, which is characteristic of the 
collagen-to-elastin ratio in the skin37, 38. Positive SAAID values (red color) correspond to collagen I predomi-
nance, and negative SAAID values (green color) correspond to the elastin-rich areas.

FLIM data demonstrates much more detailed aspects of the dermal papilla organization (Fig. 4e, colors cor-
respond to di�erent values of τm), and their analysis allows for the following localization of �uorescing species. 
First, fast �uorescence decay (red color in Fig. 4e) can be observed for two spots in the center of the papilla, which 
represent the cross-section of the U-shaped capillary loop. Indeed, a capillary must be present inside the papilla, 
and �uorescence properties of these two spots coincide with that of capillaries from the �ngernail bed (Fig. 2d). 
�e FLIM pictures taken at di�erent depths are presented in the Video 3, where the consequent cross-sections of 
the U-shaped capillary loops can be clearly observed. �e �uorescence contour around the papilla with charac-
teristic fast decay (Fig. 4e) could be attributed to melanin-containing cells52. We note that visualization of the rete 
ridges by separating fast melanin �uorescence in FLIM (blue color in the Video 3) could be used to reconstruct the 
morphology of the dermal-epidermal junction, which is indicative of skin pathologies64.

Second, bright �brous regions in the TPEAF image (Fig. 4c) correspond to the light-blue areas of the FLIM 
image (Fig. 4e). �ese fragments could be associated with elastin �bers in papillary dermis. �ird, the green 
regions inside the papilla outside the “hollow” area in Fig. 4e correspond to the red regions in Fig. 4d, i.e. to the 
positive SAAID. �ese regions are rich in collagen I and exhibit lower �uorescence compared to bright blue areas 
in Fig. 4d. O� note, yellow areas with the average lifetime of 500 ± 100 ps and the average size of 6 ± 2 µm were 
present in more than 30% of the obtained dermal papillae FLIM images in their inner parts. �ough the origin of 
the observed areas requires further investigation, we suppose that they could be originated from cell components, 
which could be present near the capillary in the perivascular space65.

Finally, the green area, which surrounds blood vessels in the middle of papilla and corresponds to the “hol-
low” area (white arrows in Fig. 4) can be clearly observed in the FLIM image (Fig. 4e). As no SHG is detected 
for this region, this signal couldn’t have been caused by collagen I. At the same time, elastin-rich regions are 
colored in blue in Fig. 4e, as described above. �ese facts suggest that the inner (“hollow”) area of the papillary 
structure, which surrounds the capillary loop, predominantly contains molecular species di�erent from collagen 
I and elastin.

Using the SAAID value for di�erent parts of the papilla (Fig. 4d), �uorescence lifetime distributions can 
be obtained for its outer area and collagen I-rich (positive SAAID, high SHG signal) and elastin-rich (negative 
SAAID, high TPAEF intensity) regions as shown in Fig. 4f. It can be seen that the mean �uorescence lifetimes for 
collagen I and elastin represent the fast and slow parts in the overall distribution obtained for the outer area of 
the papilla. However, the presence of other �uorescing species in the outer area of the papilla can’t be excluded.

A more detailed analysis of �uorescence decay parameters is presented in Fig. 5. �e dermal papilla was seg-
mented into three regions – the inner and outer areas, colored in red and black, respectively, and the “intensity 
mask” area, which corresponds to pixels in the outer area with the highest auto�uorescence intensity (Fig. 5a,b). 
�e cuto� value for the intensity mask (15% of the brightest pixels) was taken arbitrary to demonstrate the origin 
of bright �brous structures inside the papilla – as this regions were characterized by the slowest decay, this area 
could be expected to be elastin-rich, and the lifetime distribution for this area should be similar to the distribution 

Figure 3. (a) TPEAF and (b) FLIM images of RBCs obtained at 760 nm excitation (2 mW on the sample, 
the image width is 50 µm). �e colors in Fig. 3b correspond to the 50–170 ps range for τ1, (c–e) Normalized 
distributions of the τ1, a1 and τ2 parameters obtained for RBCs (blue), blood plasma (red) and capillary (black). 
�e FLIM images were �tted biexponentially for the pixels with maximum intensity exceeding 200 counts.
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for elastin shown in Fig. 4f. �e inner area was selected as the region inside the papilla where the SHG signal was 
absent (see also Fig. 4a,b).

�e obtained lifetime and amplitude distributions for the selected areas are presented in Fig. 5c–f, and the 
corresponding values are summarized in Table 1. As expected, the lifetime distribution under the intensity mask 
(blue color in Fig. 5b) was close to the distribution for elastin �bers (Fig. 4f), and the distributions obtained for 
the outer area could be interpreted as previously, namely, as a sum of distributions for collagen and elastin.

�e lifetime distributions were di�erent for the inner area, con�rming that the corresponding �uorophore(s), 
di�erent from collagen I and elastin, yields the fast part of the τm distribution. For instance, the average lifetime 
τm distribution for the inner area is centered at ~800 ps, while τm for elastin is centered at ~1300 ps (Fig. 5f). At 
the same time, though τm for collagen I is shorter (~1000 ps), no collagen I could be expected in the inner area 
due to the lack of SHG signal.

Protein species in the papillary dermis. Localization of the ECM components in the papillary dermis in 
vivo is connected with two tasks: (i) separation between collagen and elastin and (ii) separation of di�erent types 
of collagen.

Multiphoton tomography is capable of providing for the ratios of collagen and elastin fractions in the dermis 
based on the suggestion that at a certain depth the SHG signal originates solely from collagen I, while the TPEAF 
is mainly due to elastin molecules37, 38, 66. �e corresponding collagen index, SAAID, is almost constant with depth 
at z > 120 µm and can be used as an integral indicator of the skin state without providing for spatial localization 
of ECM components66.

Koehler et al.67 reported the di�erences in lifetime distributions for the dermis obtained using MPT depend-
ing on the patients’ age and skin area localization (sun-protected or sun-exposed), that was attributed to di�erent 
content of collagen I and elastin. However, this research investigated neither spatial lifetime distribution nor 
attribution of lifetimes to certain �uorophores. �e results of investigation of collagen and elastin components 

Figure 4. (a) Schematic representation of the skin structure. �e dashed line corresponds to the plane of the 
papillary dermis cross-section measured with MPT, the outer and inner circles correspond to the cross-section 
of dermal papilla and the inner area around capillary. (b,c) Two-photon images of the dermal papilla: SHG and 
TPAEF signals, respectively. �e white arrows correspond to the “hollow” area inside the papilla. (d) Spatial 
distribution of the SAAID index (SAAID = (SHG – TPEAF)/(SHG + TPEAF)) in the dermal papilla. (e) FLIM 
image of the dermal papilla, pixel colors correspond to di�erent values of the mean �uorescence lifetime τm in 
the 100 ÷ 2000 ps range. (f) Mean lifetime distributions obtained for the outer area, positive SAAID (>0.15, 
collagen I) and negative SAAID (−0.4 ÷ −0.35) regions of the dermal papilla (see text for details).
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performed in di�erent systems using time-resolved �uorescence spectroscopy44, 48, 49 suggest that this task can be 
solved by taking into account the relative di�erences between their lifetimes, but not their absolute values.

�e collagen-to-elastin ratio has been also quanti�ed using spectrally-resolved MPT without time resolu-
tion68. In this case the authors measured �uorescence spectra from each point of the MPT image and a�er that 
performed clustering of di�erent regions based on a phasor plot in a spectral domain, which allowed to distin-
guish collagen-rich areas by speci�c SHG-related features. Interestingly, this work presented clustered images of 
papillary structures with melanin-containing cells around them, which contain characteristic “hollow” regions 
inside like the ones shown in Fig. 4, however, no blood vessels were identi�ed using the proposed approach.

�e major collagen constituents of the ECM in the papillary dermis are collagen types I and III, moreover, 
their ratio is of interest for numerous clinical applications, including the monitoring of the proliferation and 
remodeling phase of wound healing18–20. Collagens of di�erent types and sources exhibit �uorescence emission 
which varies in spectral band shape, position of maximum and �uorescence lifetimes44–47, 69, 70. Ranjit et al.47 
demonstrated the separation between collagen I and III based on the use of a phasor plot approach for bone 
marrow of mice with �brosis. Di�erent types of collagen production were also studied by means of time-resolved 
spectroscopy46, where the signal was collected from a cell culture producing ECM.

Considering the facts that collagen III is the most abundant collagen in the papillary dermis a�er collagen I 
and the connective tissue enriched with collagen III is more �exible1, 71, it can be suggested that collagen III is the 
main ECM component responsible for the lifetime distribution in the inner area of dermal papillae presented in 
Fig. 5. As the inner area contains the blood vessel, it could be expected that the surrounding tissue is more “so�” 
compared to the outer area, which is rich in collagen I and is responsible for biomechanical properties of the 
whole skin. Indeed, while the outer area of dermal papillae exhibits strong SHG signal, no SHG is observed from 
their inner areas containing blood vessels13, 40, 42, 72. Of note, it was demonstrated that the third harmonic gener-
ation could be used to visualize the capillary in the inner area of papillae, making possible in vivo assessment of 

Figure 5. (a) FLIM image of the papillary structure, colors correspond to the values of mean �uorescence 
lifetime in the 100 ÷ 2000 ps range. (b) segmentation of the FLIM image of papilla into the inner area (red), 
outer area (black) and intensity mask area (blue). �e yellow area corresponds to the melanin-rich area around 
the papilla. (c–f) – distributions of fast (τ1) and slow (τ2) decay components, amplitude of the fast component a1 
and mean �uorescence lifetime, respectively.

τ1, ps τ2, ps a1/a2 τm

Elastin 400 ± 70 2300 ± 200 1.2 ± 0.2 1300 ± 100

Collagen I 300 ± 50 2500 ± 200 1.8 ± 0.2 1000 ± 150

Inner area 
ECM

250 ± 70 2300 ± 300 3.0 ± 0.4 800 ± 150

Table 1. Fluorescence decay parameters obtained for the ECM components in the papillary dermis.
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blood �ow13. �e geometrical parameters of the capillary-containing inner area of dermal papillae were also used 
to characterize skin aging in vivo using harmonic generation microscopy43. �e comparison between collagen I 
and IV distribution in a section of �brotic mouse kidney clearly demonstrated colocalization of SHG with colla-
gen I, while the inner area containing aorta was �lled with collagen IV, which lacks SHG40. Collagen IV is known 
to be the major protein constituent of blood vessel walls, however, the super�cial dermal capillary wall thickness 
is much lower compared to aorta73, where even the collagen IV ring was ~50 µm thick. Hence, we consider the 
hypothesis that the major ECM component of the inner area in the dermal papillae is collagen IV unlikely, how-
ever, further histological investigation is necessary to con�rm its origin.

Materials and Methods
Research objects. In vivo measurements were performed on six healthy volunteers on their �ngernail bed 
and inner forearm areas. In total, over 100 images of papillary structures were obtained. �e volunteers were 
instructed not to use any cosmetic products for at least 48 hours and not to take a bath or shower for at least 
4 hours previous to the beginning of the measurements. �e skin areas selected for the measurements were with-
out hairs, wrinkles and visible distortions or abnormalities. Blood sample taken from a healthy individual was 
centrifuged for 10 minutes at 1500 RPM (Hettich Zentrifugen, Universal 320R) to obtain blood plasma. RBC 
measurements were performed in a 0.1 M NaCl solution.

All the experimental protocols and subject recruitment were approved by the Ethics Committee of the 
Charité-Universitätsmedizin Berlin. Informed consent was obtained from all subjects. All methods were carried 
out in accordance with relevant guidelines and regulations.

Confocal laser scanning microscopy (CLSM). In vivo investigations were carried out using a CLSM 
(VivaScope® 1500 Multilaser, Mavig, Germany) in both �uorescence (excitation wavelength 488 nm) and re�ec-
tance (excitation wavelength 785 nm) modes. �e utilized CLSM system was described in detail elsewhere54. All 
the images were built using the ImageJ so�ware74.

Multiphoton tomography and fluorescence lifetime imaging. Two-photon in vivo imaging was 
performed with a Dermainspect (JenLab GmbH, Jena, Germany) device equipped with a tunable femtosecond 
Ti:sapphire laser (Mai Tai XF, Spectra Physics, USA). �e laser was operated at 760 nm and generated 100-fs 
pulses at a repetition rate of 80 MHz. �e 410–680 nm bandpass �lter was used to detect auto�uorescence.

FLIM images were processed in the SPCImage so�ware (Becker&Hickl, Berlin, Germany) incorporated 
into the Dermainspect system. Fluorescence decay in each pixel was �tted with a sum of two exponentials (fast 
and slow) with a �xed shi� value, and the intensity threshold was chosen depending on the image quality. �e 
obtained lifetime (τ1 and τ2) and amplitude (a1 and a2) values were further exported and used for the evaluation of 
lifetime distributions and image segmentation. �e average lifetime was de�ned as τm = (a1τ1 + a2τ2)/(a1 + a2). All 
the images were built using the ImageJ so�ware. �e utilized MPT-FLIM system has been previously presented 
in details elsewhere75.
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