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Two-Photon Diffraction and Quantum Lithography
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We report a proof-of-principle experimental demonstration of quantum lithography. Utilizing the en-
tangled nature of a two-photon state, the experimental results have beaten the classical diffraction limit
by a factor of 2. This is a quantum mechanical two-photon phenomenon but not a violation of the
uncertainty principle.
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Classical optical lithography technology is facing its
limit due to the diffraction effect of light. However, this
classical limit can be surpassed, surprisingly, by utilizing
the quantum nature of entangled multiphoton states [1].
In an idealized experimental situation, the minimum width
of the entangled N-photon diffraction pattern can be N
times narrower than the width of the corresponding classi-
cal diffraction pattern. The working principle of the effect
has been discussed theoretically by Boto et al. [2], and by
Scully from a different approach [3]. In particular, one can
consider two-photon entangled states. For a two-particle
maximally entangled EPR state, the value of an observ-
able for neither single subsystem is determined. However,
if one subsystem is measured to be at a certain value for
an observable, the value of that observable for the other
subsystem is determined with certainty [1]. Because of
this peculiar quantum nature, the two-photon diffraction
pattern can be narrower, under certain conditions, than the
one given by the classical limit. This effect has been ex-
perimentally observed by Kim and Shih [4].

We wish to report a proof-of-principle quantum
lithography experiment in this Letter. By using entangled
photon pairs in Young’s two-slit experiment, we found that
under certain experimental conditions, the two-photon
interference-diffraction pattern has a spatial interference
modulation period smaller and a diffraction pattern width
narrower, by a factor of 2, than in the classical case.

One of the principles of geometrical optics is that “light
propagates in a straight line.” If this were always true, one
could obtain the image of a physical object, for example,
a physical slit, with an unlimited small size by applying
a perfect lens system. Unfortunately, light is also a wave.
The minimum size of the image one can make is deter-
mined by the wave property of light: diffraction. The
physics is very simple: according to the Huygens-Fresnel
principle, each point on the primary wave front serves as
the source of spherical secondary amplitudes (wavelets)
and advances with the same speed and frequency as those
of the primary wave. The wavelets from a physical slit
will meet at any point in space with different phases. The
superposition of the wavelets will determine the size of the
image. The intensity distribution of light can be calculated
by considering an integral of the wavelets coming from the
physical object.
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Consider a classical one-dimensional optical diffraction
by a single slit. A well-collimated laser beam passes the
slit and then its intensity distribution is analyzed in the
Fourier transform plane (or in the far-field zone). This
distribution, which is the diffraction pattern of a single slit,
is well known as sinc2�b�, where sinc�b� � sin�b��b, the
parameter b � �pa�l� sinu � �pa�l�u, a is the width
of the slit, and u is the scattering angle [5]. When b

reaches p, the superposition of the wavelets results in a
minimum intensity. The sinc2�b� pattern determines the
minimum width one can obtain. Usually, this minimum
width is called the “diffraction limit.”

To surpass the diffraction limit, our scheme is to utilize
the entangled nature of an N -particle system. To under-
stand the physics of this scheme, consider the gedanken ex-
periment illustrated in Fig. 1(a). An entangled photon pair
can be generated anywhere in region V ; however, photons
belonging to the same pair can only propagate (1) oppo-
sitely and (2) almost horizontally (quantitative discussion
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FIG. 1. Schematic of a two-photon diffraction-interference
gedanken experiment. The right and left sides of the picture rep-
resent signal and idler photons of an entangled pair. Detectors
D1, D2 perform the joint detection (coincidence) measurement.
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will be given later) as indicated in the figure. Two slits
are placed symmetrically on the left and right sides of
the entangled photon source. A photon counting detector
is placed into the far-field zone (or the Fourier transform
plane, if lenses are placed following the slits) on each side,
and the coincidences between the “clicks” of both detectors
are registered. The two detectors are scanning symmet-
rically, i.e., for each coincidence measurement, both
detectors have equal x coordinates. A two-photon joint
detection is the result of the superposition of the two-
photon amplitudes, which are indicated in the figure by
straight horizontal lines [6]. To calculate two-photon
diffraction, we need to “superpose” all possible two-
photon amplitudes. Different from the classical case, a
double integral is necessary involving the two slits and
the two-photon amplitudes (parallel lines in Fig. 1). The
two-photon counterpart of the classical intensity, the joint
detection counting rate, is now sinc2�2b�, which gives a
distribution narrower than the classical pattern by a factor
of 2. Now if we “fold” the symmetrical left and right
sides of the experimental setup together and replace the
two independent detectors with a film that is sensitive
only to two-photon light (two-photon transition material),
then, in principle, we have two-photon lithography.

If one replaces the single slit in the above setup with
a double slit, Fig. 1(b), it is interesting to see that un-
der the half-width diffraction pattern, the double-slit two-
photon spatial interference pattern has a higher modulation
frequency, as if the wavelength of the light were reduced
to one-half. To observe the two-photon interference, one
has to “erase” the first-order interference by reinforcing an
experimental condition: du . l�b, where du is the di-
vergence of the light, b is the distance between the two
slits, and l is the wavelength.

The heart of this gedanken experiment is a special two-
photon source: the pair has to be generated in such a de-
sired entangled way as described above. We have found
and demonstrated that, under certain conditions, the two-
photon state generated via spontaneous parametric down-
conversion (SPDC) satisfies the above requirements. The
working principle, as well as the report of a real experi-
ment, will be given below.

The schematic setup of the experiment is illustrated
in Fig. 2. It is basically the “folded” version of the
double-slit interference-diffraction experiment shown in
Fig. 1(b). The 458 nm line of an argon ion laser is used
to pump a 5mm BBO (b 2 BaB2O4) crystal, which
is cut for degenerate collinear type-II phase matching
[7,8] to produce pairs of orthogonally polarized signal
(e ray of the BBO) and idler (o ray of the BBO) pho-
tons. Each pair emerges from the crystal collinearly,
with vs � vi � vp�2, where vj � j � s, i,p� are the
frequencies of the signal, idler, and pump, respectively.
The pump is then separated from the signal-idler pair by
a mirror M, which is coated with reflectivity R � 1 for
the pump and transmissivity T � 1 for the signal idler.
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FIG. 2. Schematic of the experimental setup. Details are given
in the text.

For further pump suppression, a cutoff filter F is used.
The signal-idler beam passes through a double slit, which
is placed close to the output side of the crystal, and is
reflected by two mirrors, M1 and M2, onto a pinhole P
followed by a polarizing beam splitter PBS. The signal
and idler photons are separated by PBS and are detected
by the photon counting detectors D1 and D2, respectively.
The output pulses of each detector are sent to a coinci-
dence counting circuit with a 1.8 ns acceptance time
window for the signal-idler joint detection. Both detectors
are preceded by 10 nm bandwidth spectral filters centered
at the degenerate wavelength, 916 nm. The whole block
containing the pinhole, PBS, the detectors, and the coinci-
dence circuit can be considered as a two-photon detector.
Instead of moving two detectors together as indicated
in Fig. 1, we rotate the mirror M1 to “scan” the spatial
interference-diffraction pattern relative to the detectors.

One important point to be emphasized is that the double
slit must be placed as close as possible to the output sur-
face of the BBO crystal. Only in this case, the observed
diffraction pattern can be narrower than in the classical
case by a factor of 2; see Eq. (9). Otherwise, it will be
close to

p
2 as suggested in Ref. [3].

Figure 3 reports the experimental results. In our experi-
ment, the width of each slit is a � 0.13 mm. The distance
between the two slits is b � 0.4 mm. The distance be-
tween the double slit and the pinhole P is 4 m. Figure 3(a)
shows the distribution of coincidences versus the rotation
angle u of mirror M1. The spatial interference period and
the first zero of the envelope are measured to be 0.001 and
60.003 radians, respectively.

For comparison, we also measured the first-order
interference-diffraction pattern of a classical light with
916 nm wavelength by the same double slit in the same
experimental setup; see Fig. 3(b). The spatial interference
period and the first zero of the envelope are measured to
be 0.002 and 60.006 radians, respectively.

In both “classical” and “quantum” cases, we obtain simi-
lar standard Young’s two-slit interference-diffraction pat-
terns, sinc2��pa�l�u� cos2��pb�l�u�; however, whereas
the wavelength for fitting the curve in Fig. 3(b) (classi-
cal light) is 916 nm, for the curve in Fig. 3(a) (entangled
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FIG. 3. (a) Experimental measurement of the coincidences
for the two-photon double-slit interference-diffraction pattern.
(b) Measurement of the interference-diffraction pattern for
classical light in the same experimental setup. With respect to
the classical case, the two-photon pattern has a faster spatial
interference modulation and a narrower diffraction pattern
width, by a factor of 2.

two-photon source) it has to be 458 nm. Clearly, the
two-photon diffraction “beats” the classical limit by a fac-
tor of 2.

To be sure that we observed the effect of the SPDC pho-
ton pair with wavelength of 916 nm but not the pump laser
beam with wavelength of 458 nm, we remove or rotate the
BBO crystal 90± to a non-phase-matching angle and ex-
amine the coincidence counting rate. The coincidences
remain zero during the 100 sec period, which is the data
collection time duration for each of the data points, even
in high power operation of the pump laser. Comparing this
with the coincidence counting rate obtained with BBO un-
der phase matching, see Fig. 3(a), there is no doubt that
the observation is the effect due to the SPDC photon pairs.

To explain the result, we have to take into account the
quantum nature of the two-photon state. SPDC is a non-
linear optical process in which pairs of signal-idler photons
are generated when a pump laser beam is incident onto an
optical nonlinear material [7,8]. Quantum mechanically,
the state can be calculated by the first-order perturbation
theory [7] and has the form

jC� �
X

s,i
F�vs, vi , ks, ki�a

y
s �v�ks��ay

i �v�ki�� j 0� ,

(1)

where vj, kj ( j � s, i, p) are the frequencies and wave
vectors of the signal (s), idler (i), and pump (p), respec-
tively, F�vs, vi, ks, ki� is the so-called biphoton ampli-
tude, and a

y
s and a

y
i are creation operators for the signal
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and idler photons, respectively. The pump frequency vp

and wave vector kp can be considered as constants. The
biphoton amplitude contains d functions of the frequency
and wave vector,

F�vs, vi , ks, ki� ~ d�vs 1 vi 2 vp�
3 d�ks 1 ki 2 kp� . (2)

The signal or idler photon could be in any mode of the
superposition (uncertain); however, due to Eq. (2), if one
photon is known to be in a certain mode then the other one
is determined with certainty.

The phase-matching conditions resulting from the d

functions in Eq. (2),

vs 1 vi � vp, ks 1 ki � kp , (3)

play an important role in the experiment. The transverse
component of the wave vector phase-matching condition
requires that

ks sinas � ki sinai , (4)

where as and ai are the scattering angles inside the crystal.
Upon exiting the crystal, Snell’s law thus provides

vs sinbs � vi sinbi , (5)

where bs and bi are the exit angles of the signal and
idler with respect to the kp direction. Therefore, in the
degenerate case, the signal and idler photons are emitted
at equal, yet opposite, angles relative to the pump, and
the measurement of the momentum (wave vector) of the
signal photon determines the momentum (wave vector) of
the idler photon with unit probability and vice versa. In
the collinear case, which we use in our experiment, the
scattering angles of the signal and idler photons are close
to zero and occupy the range Du, which is determined by
the size of both the crystal and the pump beam; see [9].

The coincidence counting rate Rc is given by the proba-
bility P12 of detecting the signal-idler pair by detectors D1
and D2 jointly,

P12 � �CjE
�2�
1 E

�2�
2 E

�1�
2 E

�1�
1 jC�

� j�0jE�1�
2 E

�1�
1 jC�j2, (6)

where jC� is the two-photon state of SPDC and E1, E2 are
fields on the detectors. The effect of two-photon Young’s
interference can be easily understood if we assume for
simplicity that signal and idler photons always go through
the same slit and never go through different slits. This
approximation holds if the variation of the scattering angle
inside the crystal satisfies the condition:

Du ø b�D , (7)

where D is the distance between the input surface of the
SPDC crystal and the double slit. In this case, the state
after the double slit can be written as

jC� � j0� 1 e�ay
s a

y
i exp�iwA� 1 b

y
s b

y
i exp�iwB�� j0� ,

(8)

where e ø 1 is proportional to the pump field and the
nonlinearity of the crystal, wA and wB are the phases of the
013602-3
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pump field at region A (upper slit) and region B (lower slit),
respectively, and a

y
j , b

y
j are the photon creation operators

for photons passing through the upper slit (A) and the
lower slit (B), respectively. In our experiment, the ratio
�b�D��Du � 30 and Eq. (7) are satisfied well enough.
Moreover, even the ratio �a�D��Du is of the order of
10, which satisfies the condition for observing two-photon
diffraction:

Du ø a�D . (9)

In Eq. (6), the fields on the detectors are given by

E
�1�
1 � as exp�ikrA1� 1 bs exp�ikrB1� ,

E
�1�
2 � ai exp�ikrA2� 1 bi exp�ikrB2� ,

(10)

where rAi �rBi� are the optical path lengths from region A
(B) to the ith detector. Substituting Eqs. (8) and (10) into
Eq. (6), we get

Rc ~ P12 � e2j exp�ikrA 1 iwA� 1 exp�ikrB 1 iwB�j2

~ 1 1 cos�k�rA 2 rB�� , (11)

where we define rA 	 rA1 1 rA2 (rB 	 rB1 1 rB2). We
have assumed wA � wB in Eq. (11).

In the far-field zone (or the Fourier transform plane),
interference of the two amplitudes from Eq. (8) gives

Rc�u� ~ cos2��2pb�l�u� . (12)

Equation (12) has the form of a standard Young’s two-slit
interference pattern, except having the modulation period
one-half of the classical case or an equivalent wavelength
of l�2.

To calculate the diffraction effect of a single slit, we
need an integral of the effective two-photon wave function
over the slit width. Quite similarly to Eq. (12), it gives

Rc�u� ~ sinc2��2pa�l�u� . (13)

Equation (13) has the form of a standard single-slit diffrac-
tion pattern, except having one-half of the classical pattern
width.

The combined interference-diffraction coincidence
counting rate for the double-slit case is given by

Rc�u� ~ sinc2��2pa�l�u� cos2��2pb�l�u� , (14)

which is a product of Eqs. (12) and (13).
The experimental observations have confirmed the

above quantum mechanical predictions.
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In conclusion, we have demonstrated the possibility of
quantum lithography by using an entangled two-photon
state generated by a specially designed spontaneous para-
metric down-conversion. One may not see immediate
practical advantages from the above proof-of-principle ex-
perimental demonstration. The advantage, however, is in
the case of a large number of entangled particle states.
Based on our entangled N-photon scheme �N $ 3� [10]
one can beat the classical limit by a factor of N and keep
the “pump” laser beam wavelength close to one-half that
of the entangled photon beam. This is a quantum me-
chanical N-photon phenomenon but not a violation of the
uncertainty principle. There are also other mechanisms of
breaking the classical diffraction limit for lithography, for
example, near-field scanning optical microscopy [11].
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