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Abstract. This paper discusses the advantages of using non-classical states
of light for two aspects of optical imaging: the creation of microscopic images on
photosensitive substrates, which constitutes the foundation for optical litho-
graphy, and the imaging of microscopic objects. In both cases, the classical
resolution limit given by the Rayleigh criterion is approximately half of the
optical wavelength. It has been shown, however, that by using multi-photon
quantum states of the light field, and a multi-photon sensitive material or
detector, this limit can be surpassed. A rigorous quantum mechanical treatment
of this problem is given, some particularly widespread misconceptions are
addressed, and turning quantum imaging into a practical technology is
discussed.

The idea of overcoming the limits of classical optical imaging by using multi-
photon processes is fairly well known. For example, Marlan Scully discusses, in
his book [1], a two-photon microscope scheme that beats the diffraction limitation
by a factor of

ffiffiffi
2

p
, by making a sinc4ðkxÞ diffraction pattern instead of the usual

sinc2ðkxÞ. Such narrowing of a diffraction pattern can be observed by a detector
sensitive to the square of intensity, instead of just intensity itself. In other words,
one needs a two-photon process to observe the

ffiffiffi
2

p
narrowing beyond the diffrac-

tion limit, even within classical optics. Moreover, using detectors based on a
higher-order multi-photon process, which are sensitive exclusively to the higher
orders of intensity, one could see even narrower diffraction patterns.

This approach would not work so well for holographic imaging used in
lithography. In this technique, the desired image is composed of interference
fringes of different spatial frequencies, so the resolution is given by the highest
spatial frequency. This spatial frequency is equal to the inverse of the fringe
period, which cannot be shorter than one half of the optical wavelength. It is easy
to see that this period is the same for any power of intensity, for example, a
sin4ðkxÞ fringe has the same period as a sin2ðkxÞ fringe.

Different approaches have been suggested to obtain an interference fringe of
the square of the intensity with a shorter period. It has been proposed, for
example, that frequency modulation can be used to blur the longer-wavelength
component of a sin4ðkxÞ fringe [2]. The use of quantum sources of light to beat this
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limit has also been proposed [3] and demonstrated with electronic coincidence
detection [4].

Consider the setup in figure 1, which has been proposed for quantum inter-
ferometric lithography [3]. This is a modification of a well-known two-photon
interference experiment [5, 6], in which the single-photon detectors are removed
and the output beams are directed at a two-photon sensitive substrate (e.g. one
covered with a lithographical photoresist).

Following the standard theoretical treatment for two-photon interferometers,
we write the two-photon square amplitude as

jAj2 � hûjÊEðÿÞÊEðÿÞÊEðþÞÊEðþÞjûi ¼ jh0jÊEðþÞÊEðþÞjûij2; ð1Þ
where the fields depend on the propagation paths, and the state jûi is the
frequency-entangled output state of a Spontaneous Parametric Down Converter
(SPDC):

jûi ¼
ð
d�hð�Þâayð�Þb̂byðÿ�Þj0i: ð2Þ

In equation (2), creation operators âay and b̂by refer to channels labelled l1 and l2,
respectively, in figure 1; � is the frequency-detuning from the central frequency
!0, the latter being equal to one half of the pump frequency !p. The spectral
function hð�Þ gives the phase-matching width and accounts for inexact momentum
conservation due to the finite length L of the crystal:

hð�Þ ¼ 1ÿ eÿiL�zð�Þ

iL�zð�Þ : ð3Þ

Derivation and analysis of expressions (2) and (3) are given in a number of
publications on SPDC. In particular, in [7, 8], it is shown that for collinear
degenerate type-I SPDC

�zð�Þ ¼ ÿD 0�2; D 0 ¼ d

d!

1

v

ýýýýý
!0

; ð4Þ

and for collinear degenerate type-II SPDC, where the signal and idler photons
have orthogonal polarizations, we have
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Figure 1. Two-photon interferometer with photosensitive substrate.



�zð�Þ ¼ D�; D ¼ 1

vo
ÿ 1

ve
; ð5Þ

where v denotes the group velocity of the signal and idler photons. In case of
orthogonal polarizations (type-II), the group velocity v has indices o and e for
‘ordinary’ and ‘extraordinary’ polarization components.

The two-photon amplitude of equation (1) can describe the coincidence
detection rate, as well as the two-photon absorption rate, as a function of
pathlengths l1;2 and x1;2. In the coincidence detection case, the fields in equation
(1) are evaluated at the two distinct locations of the two detectors, while in the two-
photon absorption case they are evaluated at the same, arbitrary, point on the
photosensitive substrate. A geometric size of the ‘point’ in this context may be
equal to the size of photo emulsion grain, or of the photoresist molecule. It is
reasonable to assume that this size is much smaller than the interference structure
we are expecting to see. As a further simplification, we will consider a one-
dimensional problem with exactly counterpropagating beams. This geometry is
obviously not practical, since no light energy is delivered to the surface, and we
study this case just as an illustration allowing us to simplify the treatment.

As a next step, we need to represent the fields in (1) in terms of the same
operators that describe the two-photon wavefunction, equation (2). For perfectly
monochromatic plane waves with a wavenumber k ¼ !0=c, the representation is
obtained by propagating the operators through the interferometer:

ÊEðþÞ ¼ âaeikl1
1ffiffiffi
2

p eikx2 þ iffiffiffi
2

p eikx1
� �

þ b̂beikl2
1ffiffiffi
2

p eikx1 þ iffiffiffi
2

p eikx2
� �

: ð6Þ

In equation (6), the proportionality constant is placed between the field operator
and the annihilation operator equal to unity. Also, it is assumed that the fields in
the arms l1 and l2 have the same polarization. It is easy to see that otherwise there
will be no two-photon interference fringes on the photosensitive substrate.

The plane-wave approximation implies that in the wave function equation (2),
hð�Þ should be replaced by �ð�Þ. Then substituting equations (6) and (2) into
equation (1) it is easy to see that the terms with âa2 and b̂b2 drop out, which is
consistent with only one photon being present in each channel. The other four
terms can be represented by four paths shown in figure 2. These paths correspond
to both photons being transmitted by the beamsplitter (a), both reflected by it (b),
one transmitted, the other reflected (c), and vice versa (d). Notice that, in the usual
coincidence-detection treatment of two-photon interference, the amplitudes cor-
responding to paths (c) and (d) are discarded simply because they do not result in a
pair of coincident detections. Therefore, one cannot directly apply to our system
the well-known results for a two-detector experiment, and then argue that the
detectors are placed at the same point, since this leads to loss of the amplitudes (c)
and (d). Let us now show that it is these amplitudes that give rise to two-photon
interference.

In the following, a more realistic model of wavepackets than plane waves is
considered. The fields will be allowed to have a finite frequency bandwidth around
the central frequency !0, described by a real, even function fð�Þ:

E ¼
ð
d�fð�Þ âað�Þeikð�Þl1 eikð�Þx2 þ ieikð�Þx1

� �
þ b̂bð�Þeikð�Þl2 eikð�Þx1 þ ieikð�Þx2

� �n o
: ð7Þ
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Then the two-photon amplitude, equation (1), takes on the following form:

A ¼
ð
d�d�1d�2hð�Þfð�1Þfð�2Þ

� eikð�1Þl1eikð�2Þl2 eikð�1Þx2 þ ieikð�1Þx1
� �

eikð�2Þx1 þ ieikð�2Þx2
� �n o

� h0jâað�1Þb̂bð�2Þâayð�Þb̂byðÿ�Þj0i: ð8Þ
The inner product in equation (8) is equal to �ð�1 ÿ �Þ�ð�2 þ �Þ which reduces
equation (8) to a single integral. To handle it, we expand kð�Þ ¼ k0 þ �=c, where
k0 � kð!0Þ. This then gives

A ¼ eik0ðlþxÞ uð�l þ�xÞ ÿ uð�l ÿ�xÞ þ 2uð�lÞ cosð2k0�xÞ½ �; ð9Þ
where uðzÞ is given by a Fourier transformation of a combined spectral density,
and therefore has the meaning of a correlation function, namely,

uðzÞ �
ð
d�hð�Þf2ð�Þeið�=cÞz: ð10Þ

In equation (10), the variables x � x2 þ x1, �x � 1
2 ðx2 ÿ x1Þ, l � l2 þ l1 and

�l � l2 ÿ l1 have been introduced. Note that the coordinate along the substrate
�x is equal to a half of the path difference x2 ÿ x1.

Analysing the symmetry properties of hð�Þ, it is found that in both cases of
type-I, equation (4), and type-II, equation (5), SPDC uðzÞ is always a real, even
function:

uðzÞ ¼ uðÿzÞ ¼ u�ðzÞ ¼ u�ðÿzÞ: ð11Þ
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Figure 2. Different two-photon paths contributing to the amplitude (1): (a) both
photons are transmitted; (b) both reflected; (c) transmitted–reflected; (d) reflected–
transmitted.



Therefore, the first two terms in equation (9) cancel each other when �l ¼ 0.
Taking the absolute square of the remaining term, we get

jAj2 ¼ 4u2ð0Þ cos2ð2k0�xÞ: ð12Þ
From equation (12) it can be seen that the two-photon absorption amplitude is a
periodic function of coordinate �x measured along the photosensitive substrate,
that has a spatial frequency 4k0, which is twice the spatial frequency of the usual,
second-order interference fringes. The two-photon interference fringes of equa-
tion (12) appear to have a perfect contrast for all �x. This is a consequence of a
plane-wave approximation for the pump. If one considers the pump with a finite
bandwidth, the exponential pre-factor in (9) will no longer be just a phase factor,
but will turn into an envelope, equivalent to the pump envelope. Therefore the
two-photon interference fringes (12) will have a coherence length equal to the
pump coherence length, which may be quite long and can reach metres for cw
lasers.

It is very important that the two-photon coherence length does not depend on
the bandwidth of the fields given by fð�Þ, nor on the phase-matching width given
by hð�Þ. This is obvious from the condition �l ¼ 0. It has been shown [5, 6], that
in this case the two-photon amplitudes represented in figure 2 by diagrams (a) and
(b) exactly cancel each other, and the photon pair always goes to one channel
(either x1 or x2), depicted in diagrams (c) or (d). In other words [3], the
beamsplitter produces an entangled state, j2ix1 j0ix2 ÿ j0ix1 j2ix2 , which picks up
spatial phase at the same rate as the pump photon would. It also dephases at the
same slow rate as the pump photon does, owing to its finite bandwidth, which
results in the two-photon coherence length of the SPDC light being equal to the
pump (single-photon) coherence length.

Now let us consider the linear interference in the apparatus. This analysis is
important, since the modulations of intensity will directly affect the result equation
(12) for the two-photon absorption rate. For example, there will be no two-photon
absorption in the nodes of the single-photon interference fringe.

The expression for intensity is

I ¼ hûjÊEðÿÞÊEðþÞjûi; ð13Þ
where the state jûi is given by equation (2) and the field is given by equation (7).
Setting l1 ¼ l2, and treating this expression the same way we have treated the
fourth-order field momenta, we arrive at

I ¼ 1ÿ cosð2k0�xÞ
ð
d�jhð�Þj2f2ð�Þ sin 2

�

c
�x

� �
: ð14Þ

Notice that the integrand in equation (14) is an odd function, and hence the whole
integral is zero and equation (14) equals unity. This means that in our apparatus
there will be no intensity modulations due to the second-order interference,
regardless of the individual coherence length of the signal and idler photons.
This at first appears surprising, since one might expect to see at least a few
interference fringes at the white light interference condition x1 ¼ x2. However,
taking into account that both inputs of the beamsplitter are used, there are two sets
of interference fringes exactly out of phase with each other, and hence the total
intensity is unmodulated.

Two-photon interferometry for high-resolution imaging 523

Revised Proofs LC i:/T&F UK/Mop/MOP49-3-4/Mop-1584.3d MOP 101584 Keyword



Two more issues associated with two-photon quantum imaging need to be
addressed to make it a practically useful technology. One is the availability of two-
photon sensitive photoresists and detectors, and the other has to do with the fact
that using SPDC as a two-photon source, one first loses a factor of two in spatial
resolution by downconverting the pump frequency (and hence doubling the
wavelength), and then regain this factor by using two-photon processes. There-
fore, in terms of spatial resolution, the quantum imaging technique has no
apparent advantage over using classical imaging at the pump wavelength. The
counter is that it is not always possible to use the UV light argument [9]. For
example, it may be incompatible with imaging biological or other light sensitive
objects. Another example is 3D lithography [9]. Creating 3D structures with
single-photon exposure of photolithographical materials is very difficult, since they
strongly absorb UV light, which limits the depth of penetration. Two-photon
exposures solve this problem. However, much value would be added to the
quantum imaging technology if one could prepare two-photon states without
doubling the wavelength. One way to achieve it is to use a Hyper Parametric
Scattering (HPS) instead of SPDC.

HPS is a nonlinear optical process occurring via the cubical optical nonlinearity
�ð3Þ, in which two pump photons recombine into an entangled photon pair. This
process is similar to four-wave mixing in the same sense as SPDC is similar to
parametric amplification (PA): four-wave mixing and PA assume non-vacuum
input into the signal or the idler modes. HPS is distinct from the SPDC, where a
single pump photon produces an entangled pair. This distinction is most evident
from comparing the phase-matching conditions for SPDC with those for HPS:

~kkp ¼ ~kks þ ~kki; !p ¼ !s þ !i; ð15Þ

2~kkp ¼ ~kks þ ~kki; 2!p ¼ !s þ !i; ð16Þ
which is illustrated graphically in figure 3. An important thing to notice in figure 3
is that the average wavelength of the photons produced in HPS is the same as that
of the pump, while in the case of SPDC it doubles.

HPS was observed for the first time over 30 years ago [10]. At that time, it did
not attract attention as a source of EPR-states because of a very low efficiency of
the �ð3Þ processes compared to �ð2Þ processes. A typical value for �ð2Þ is 10ÿ8

statvoltÿ1, while for �ð3Þ it is 10ÿ15 statvoltÿ2. Fortunately, HPS output power is
quadratic with respect to the pump intensity, while in the case of SPDC it is
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Figure 3. The phase-matching (momentum and energy conservation) diagrams for
SPDC (a) and HPS (b).



only linear. To compare efficiencies of the two processes, one must compare
the j Ep�

ð2Þ j and j �ð3Þ j. Modern powerful femtosecond lasers, that were not
available in the early days of HPS, dramatically changed the situation in favour
of HPS.

Another argument in favour of HPS is that, unlike SPDC, this process does not
require any particular symmetry of the media and can be observed not only in
crystals but also in glass fibres [11], which promises to increase the interaction
length to metres or beyond. Furthermore, it has been shown [12] that nearly four
orders of magnitude improvement of the signal can be achieved by cascading two
�ð2Þ processes to emulate a �ð3Þ HPS process. A large amount of research has been
done on �ð3Þ processes, and particularly on four-wave mixing [1, 13–15], and we
plan to rely on these results in a new research programme directed at creating a
robust source of entangled photon pairs or two-photon states without down-
converting from a higher frequency.

The second practical issue, mentioned above, is the availability of two-photon
sensitive photoresists. Considering the very low power of two-photon sources, a
high two-photon sensitivity of the photoresists is required. Unfortunately, high,
single-photon, UV sensitivity of many commercially available photoresists does
not guarantee that they would be suitable two-photon sensitive materials. The
synthesis of such a material appears to be a difficult task, although a large volume
of research has been done in this area motivated by the growing recognition of the
two-photon imaging technology importance [9, 16, 17].

We also have carried out a preliminary search for two-photon sensitive
lithographic materials. Relying on the analogy with atomic systems, we expect
that a suitable two-photon material would have an intermediate level correspond-
ing to the single-photon energy, so that the single-photon detuning, which factors
inversely into the two-photon absorption cross-section, is small, and the two-
photon absorption rate is peaked. It is further required that the molecular
transition corresponding to the intermediate absorption level does not result in
photochemical reaction in photoresist (otherwise the resist would be one-photon
sensitive). Finally, we require that the intermediate level or band is normally
depopulated and very short-lived (otherwise the resist would be one-photon
sensitive via cascaded processes); and that both transitions have the correct
selection rules.

We have taken absorption spectra of various commercially available photo-
resists. The results are shown in figure 4. One of our samples, the Novalac 5740,
has shown a local absorption maximum which is centred at about 520 nm and is
clearly separated from the strong transition in the UV part of the spectra, which is
associated with the photochemical reaction initiating the photoresist. We spun an
approximately 15 mm thick sample of this photoresist on a gold plated substrate
and exposed the sample to different doses of argon ion laser light, whose
wavelength (514.5 nm) was close to the centre of the absorption peak of interest.
A threshold dose of about 2 kJ/cm2, was found, assuming 100% radiation reflection
off the mirror substrate and operating at the intensity level of 5W/cm2. Repeating
the experiment at 25W/cm2, gave the same results with an exposure time that was
five times shorter. This result suggests that the exposure process is linear in
intensity and hence is a single-photon one. Notice that the threshold found at
514.5 nm is roughly five orders of magnitude higher then for a regular UV
exposure.
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Next, the exposures were repeated for another argon ion laser line with
457.9 nm wavelength, which is off the intermediate absorption peak but is closer
to the UV absorption transition. It was found that, at this wavelength, the
threshold dose was definitely lower than 0.4 kJ/cm2. This suggests that the
high-threshold photo-initiation observed at 514.5 nm, as well as at 457.9 nm, is
not related to the intermediate absorption peak, but rather is due to a far off-
resonant absorption on the wing of the UV absorbing transition. Therefore, the
selected material may satisfy the above-outlined requirements for a two-photon
optimized photoresist, and it would be interesting to try exposing it with a two-
photon source. We plan on carrying out such experiment in the near future.

In conclusion, a rigorous analysis has been carried out that confirmed the
earlier results [3]. In addition, the analysis has shown that the desired two-photon
interference fringe will have a very long coherence length, equal to that of the
pump, and that the second-order (single-photon) interference fringes will be
entirely absent. The questions related to alternative sources of two-photon states
and to the choice of two-photon sensitive photolithographical materials have been
discussed. Although bringing the research in this area to the level of practical
technology is a challenging task, it is at the same time an interesting and potentially
rewarding one.
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Figure 4. Absorption spectra for different photoresists. The sample of choice shows an
absorption maximum centred at about 520 nm. Arrows mark the wavelengths the
sample was exposed to: 457.9 nm and 514.5 nm.
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