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ABSTRACT  
Bacillus subtilis spores (a simulant of Bacillus anthracis) have been imaged by two-photon luminescence (TPL) 
microscopy, using gold nanorods (GNRs) functionalized with a cysteine-terminated homing peptide. Control 
experiments using a peptide with a scrambled amino acid sequence confi rmed that the GNR targeting was 
highly selective for the spore surfaces. The high sensitivity of TPL combined with the high affi nity of the 
peptide labels enables spores to be detected with high fi delity using GNRs at femtomolar concentrations. It 
was also determined that GNRs are capable of signifi cant TPL output even when irradiated at near infrared 
(NIR) wavelengths far from their longitudinal plasmon resonance (LPR), permitting considerable fl exibility 
in the choice of GNR aspect ratio or excitation wavelength for TPL imaging.
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Introduction

Optical  modalit ies  for detecting pathogenic 
microorganisms should be sufficiently sensitive 
to enable the rapid and accurate identification of 
bioparticles in natural settings, while discriminating 
against background signals to minimize false 
positives. Nonlinear optical modalities such as 
two-photon luminescence (TPL) are well suited 
for this purpose because of their intrinsically low 
autofluorescence under multiphoton excitation 
conditions, resulting in much higher signal-to-noise 

than conventional (linear) optical imaging methods 
[1 4]. TPL and other multiphoton processes can be 
excited at near infrared (NIR) frequencies below 
750 nm, a spectral region which permits photons to 
penetrate through biological tissues with relatively 
high transmittivity. These attributes give TPL and 
related imaging modalities the potential to detect 
individual pathogens in complex environments, if 
coupled with a suitably developed agent for targeted 
imaging.

Plasmon-resonant gold nanorods (GNRs) have 
recently been shown to produce strong TPL activity 
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using femtosecond-pulsed laser excitation [5 8], 
and provide excellent contrast for TPL imaging 
applications [8 12]. GNRs can support a higher 
absorption cross section at NIR frequencies per 
unit volume than most other nanostructures [13], 
are efficiently prepared in micellar surfactant 
solutions using seeded growth conditions [14, 15], 
and can be stabilized by mild chemical treatments 
[16] to facilitate their practical application as TPL 
contrast agents. GNRs can also be functionalized 
with chemisorptive ligands such as thiols [17, 18] 
or dithiocarbamates [10 12, 19] for their targeted 
delivery to cell surface receptors. 

In this report,  we demonstrate that GNRs 
can be used in bacterial detection schemes based 
on TPL imaging using a high-affinity peptide 
sequence specific for the spores of Bacillus subtilis, 
an established and widely used simulant species of 
Bacillus anthracis, the causative agent of anthrax [20–
23]. Current technologies employed for the detection 
of spores or other pathogenic organisms include the 
use of traditional antimicrobial culture techniques, 
antibody-based capture methods, immunoassays, 
and genomic analysis based on polymerase chain 
reaction (PCR) amplification [22, 24 27]. All of 
these methods suffer from some limitations in the 
time to result or the number of steps involved. TPL 
imaging with functionalized GNRs is direct and 
can be complementary or even advantageous for 
pathogen detection, as its sensitivity has already 
been demonstrated at the single-particle limit for in 
vivo applications and also for the targeted labeling of 
tumor cells in vitro [8, 11, 12].

 

1. Experimental

TPL imaging was performed using a home-built 
inverted microscope system (IX-50, Olympus) equipped 
with a femtosecond-pulsed Ti:sapphire oscillator (Mira 
900, Coherent) operating at 77 MHz, with a tunable 
wavelength output in the range of 700 900 nm. The 
luminescence was measured by a photomultiplier tube 
(Hamamatsu) with a bandpass fi lter of 500 600 nm. The 
excitation pulses were focused onto the bottom of an 
optically transparent cover dish (Biosciences, CA) using 
a 60× water-immersion objective (N.A. = 1.2, Olympus). 

Images were acquired at a resolution of 256 pixels × 256 
pixels (26.2 μm × 26.2 μm) at a scanning rate of 2 frames 
per second.

GNRs were synthesized as previously reported 
[14 16]. Briefly, seeded growth was carried out in 
a micellar solution of cetyltrimethylammonium 
bromide (CTAB) with AgNO3 as an additive, followed 
by treatment with Na2S 15 20 min after injection of 
the seed solution to arrest further growth. GNRs (ca. 
5 mg Au) were precipitated by centrifugation for 
15 min at 9000 rpm (12 500 g) and separated from 
excess CTAB, then redispersed in 10 mL deionized 
water to an optical density (O.D.) of ca. 14. The 
CTAB-stabilized GNRs were then treated with 5 mL 
of a 1% polystyrenesulfonate (PSS) solution (MW 
~70 kD, sonicated 30 min in 1 mmol/L NaCl before 
use) and the mixture was allowed to sit overnight, 
followed by the separation of GNRs from excess PSS 
by centrifugation. The PSS-stabilized GNRs were 
resuspended in deionized water to a final O.D. of 
0.8. Several batches of GNRs were prepared in this 
manner, with λmax values of the final dispersions 
ranging from 685 to 875 nm. 

A cysteine-terminated Bacillus binding oligopeptide 
(NHFLPKVGGGC) and a scrambled control sequence 
(LFNKHVPGGGC) were synthesized, purified, and 
characterized as previously described [22, 28]. 50 μL 
of a phosphate-buffered solution (PBS) containing 
oligopeptide (1 mg/mL, pH 7.4) was added to 5 
mL of PSS-stabilized GNRs (O.D. 0.8) and allowed 
to sit at room temperature for at least 5 h (Fig. 1). 
The functionalized GNRs were separated from 
excess ligand by centrifugation for 10 min at 9000 
rpm, and resuspended in 5 mL of a 1 mmol/L NaCl 
solution (fi nal O.D. 0.5 0.6). Quantitative amino acid 
and ICP-MS analysis of a concentrated solution of 
GNRs (71 nm× 28 nm, based on TEM size analysis) 
functionalized with the homing oligopeptide 
(O.D. ca. 12, λex=785 nm) was found to contain 
174 pmol/mL peptide and 423 ppm (μg/mL) of 
Au, corresponding to a GNR concentration of 0.83 
nmol/L and a peptide-to-GNR ratio of 210. A similar 
analysis with the control peptide sequence yielded 
a somewhat higher peptide-to-GNR ratio, due to an 
uncertainty in the amount of peptide used.

Bacillus subtilis sp 168 were cultured for 72 h 
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in sporulation media, purified, and quantified as 
previously described [22, 28]. In a typical experiment, 
spores (106 109 per mL) were incubated for 45 min 
in the presence GNRs functionalized with either 
the homing peptide or negative control (scrambled 
sequence) at 37 °C (8 fmol/L 8 pmol/L, or 5×1010

5×1013 GNRs per mL). The spores were subjected 
to centrifugation (2×5 min at 7000 rpm) with 
redispersion in fresh PBS to remove unbound GNRs, 
resulting in a suspension of GNR-labeled spores at 
fi nal concentrations in the range 106 107 particles/mL. 

These were deposited onto a cover 
dish with an optically transparent 
bottom (Biosciences, CA) and imaged 
as described above.

2. Results and discussion

We f irst  examined polystyrene-
sulfonate (PSS)-coated GNRs with 
different aspect ratios, to evaluate 
h o w  t h e s e  m i g h t  i m p a c t  t h e i r 
TPL activity at specific excitation 
wave lengths .  The  longi tudina l 
plasmon resonance (LPR) responsible 
for the NIR-absorbing properties of 
GNRs is well known to be sensitive 
to particle aspect ratio [29], as well 
as to changes in the surface dielectric 
due to chemical adsorption [30]. 

The range of NIR tunability available by changes 
in aspect ratio is sufficient to produce GNRs with 
minimally overlapping LPR modes (Fig. 2(a)) [14
16]. The peak shifts due to electrostatic adsorption 
are less pronounced; in our case, only slight changes 
in LPR are observed with the adsorption of PSS or 
peptides on the GNR surface (Fig. 2(b)). Anionic 
polyelectrolytes such as PSS are often used to coat 
CTAB-stabilized GNRs to increase their dispersion 
stability in solutions at physiologically relevant 
pH and ionic strength, as well as to counteract 

Figure 2  (a) Peptide-functionalized GNRs with longitudinal plasmon resonances at 685 nm (black line) and 875 nm (red line); (b) absorption 
spectra of as-prepared GNRs (black line), PSS-coated GNRs (red line) and peptide-functionalized GNRs (blue line, λmax= 806 nm). Inset: 
transmission electron microscopy (TEM, Philips CM-10, 80 kV) image of peptide-functionalized GNRs 

Figure 1 Scheme describing the preparation of peptide-functionalized GNRs and their 
targeted labeling of Bacillus subtilis spores 

（a） （b）
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dilution effects [31 34]. Stabilization issues must 
be addressed because multiple washes will reduce 
CTAB to below the critical micelle concentration 
(ca. 1 mmol/L) [10 12, 35], leading to the eventual 
flocculation of GNRs. It is worth mentioning 
that while PSS can help maintain the dispersion 
stability of GNRs in the short term, its adsorption 
to the CTAB-coated surface is not stable under 
shear conditions, indicating a need for more robust 
alternatives for GNR functionalization [36]. 

In previous studies, we have shown that the 
TPL from GNRs is most intense when the excitation 
wavelength overlaps with the LPR band, which 
implies a reduction in TPL activity at nonresonant 
wavelengths [8]. However, the very low auto-
fluorescence background intrinsic to multiphoton 
imaging may be sufficient to support TPL contrast 
even under off-resonant excitation conditions. To 
test this, PSS-stabilized GNRs with well-separated 
LPRs (λLPR = 715 and 835 nm) were deposited and 
immobilized onto mercaptopropylsiloxane-coated 
glass substrates [37], and subsequently exposed to 
pulsed NIR laser irradiation. As expected, the GNRs 
produced the maximum TPL contrast when excited 
at their respective LPR wavelengths, confi rming the 
plasmon-resonant nature of two-photon absorption 
(Figs. 3(a) and 3(d)), but the TPL signals produced 
at off-peak excitation were also signifi cant (Figs. 3(b) 
and 3(c)). This shows that the position of the LPR 
mode is not critical for generating TPL contrast with 
high signal-to-noise from GNRs.

PSS-coated GNRs were then functionalized 
with the cysteine-terminated homing peptide 
(NHFLPKVGGGC), which was recently established 
as a high-affi nity targeting ligand for Bacillus subtilis 
[22, 28].  Bacillus spores were incubated with the 
peptide-functionalized GNRs, then washed and 
examined by TPL microscopy using a confocal laser 
scanning microscope, with the Ti:sapphire laser 
tuned to the GNR plasmon resonance with an output 
power of 1 mW. The excitation beam was aligned 
for optimal generation of TPL signals, which are 
displayed as pseudocolor images (Fig. 4(a)). Spores 
labeled with the GNR-homing peptide conjugate 
were easily identified, whereas spores incubated 
with GNRs conjugated to the control peptide with 

Figure 3 Two-photon luminescence imaging of PSS-stabilized GNRs 
immobilized on thiol-derivatized glass coverslips. TPL signals were 
filtered through a bandpass filter with cutoffs above 500 nm and 
below 600 nm. (a), (c) λLPR = 715 nm; (b), (d) λLPR = 835 nm. (a), 
(b) TPL signals from GNRs using unpolarized excitation at 715 nm 
with an output power of 3 mW. (c), (d) TPL signals from GNRs using 
unpolarized excitation at 835 nm with an output power of 3 mW

scrambled sequence (LFNKHVPGGGC) did not 
produce detectable signals even with an output 
power of 30 mW, confirming the specific targeting 
and TPL signaling by the homing peptide and 
GNR, respectively (Fig. 4(b)). The TPL signal-
to-background ratios are on the order of several 
hundred, as evaluated from line intensity profiles 
(Figs. 4(c) and 4(d)). 

With respect to detection, spores at low particle 
counts (106 and 107 per mL) were dispersed with 
peptide-conjugated GNRs at concentrations ranging 
from 8 fmol/L to 8 pmol/L (5×1010 to 5×1013 GNRs 
per mL), then collected, washed, and examined by 
TPL and phase-contrast microscopy to determine 
labeling efficiency (selected images are shown in 
Fig. 5). A complete correlation between the TPL 
and brightfield images was observed in every case, 
demonstrating the high fidelity of targeting by the 
GNR–peptide labels. The targeting efficiency of 
the homing peptide for the spore surface compares 

（a） （b）

（c） （d）
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Figure 4 Two-photon luminescence imaging of peptide-functionalized GNRs on Bacillus subtilis spores. TPL signals were 
fi ltered through a bandpass fi lter with cutoffs at 500 and 600 nm: (a) pseudocolor TPL image of spores incubated with GNRs 
functionalized with homing peptide, excited by NIR laser pulses; (b) no TPL signals were produced by spores incubated with GNRs 
functionalized with control peptide, using similar excitation conditions; (c), (d) TPL intensity profi les corresponding to the white 
lines in TPL images (a) and (b), respectively. Color-coded scalebars in TPL images a and b correspond to the y-axis value in plot (c)

Figure 5 Targeting fi delity of Bacillus subtilis spores by peptide-functionalized GNRs. (a) (d) TPL images of GNR-labeled 

spores isolated from the following suspensions: (a) 106 spores/mL and 5×1010 GNRs/mL; (b) 106 spores/mL and 5×1011 
GNRs/mL; (c) 107 spores/mL and 5×1010 GNRs/mL; (d) 107 spores/mL and 5×1011 GNRs/mL; (e)–(h) brightfi eld images of GNR-
labeled spores corresponding to TPL images (a)–(d)

（a） （b）

（c） （d）

（a） （b） （c） （d）

（e） （f） （g） （h）
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well with that of folate for its cognate receptor 
(Kd ~10–10 mol/L) [38, 39]. A comparison of the TPL 
images reveals that the spore labeling density is 
quite uniform, suggesting that the spore surfaces are 
saturated even at the lowest GNR concentrations used.

3. Conclusions 

Bacterial spores are readily detected by TPL imaging 
using peptide-functionalized GNRs. The flexibility 
and high signal-to-background ratios afforded by 
TPL imaging and the chemical stability of GNRs 
make this system attractive for further development. 
Peptide-functionalized GNRs can also be employed 
as multifunctional imaging and therapeutic agents for 
the selective detection and photothermal destruction 
of pathogens, as was recently demonstrated by the 
targeted delivery of GNRs to parasitic protozoans [40] 
and other bacteria [41]. The photophysical properties 
of the GNRs, combined with the effi ciency of phage 
display methods for identifying peptide-based 
targeting ligands [28], provide the foundations for a 
new class of imaging agents with potential antibiotic 
activity.
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