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Abstract

Two-photon microscopy is a key imaging technique in life sciences due to its superior

deep-tissue imaging capabilities. Light-weight and compact two-photon microscopes are of

great interest because of their applications for in vivo deep brain imaging. Recently, dielectric

metasurfaces have enabled a new category of small and light-weight optical elements, includ-

ing objective lenses. Here we experimentally demonstrate two-photon microscopy using a
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double-wavelength metasurface lens. It is specifically designed to focus 820-nm and 605-nm

light, corresponding to the excitation and emission wavelengths of the measured fluorophors,

to the same focal distance. The captured two-photon images are qualitatively comparable to

the ones taken by a conventional objective lens. Our metasurface lens can enable ultra-compact

two-photon microscopes with similar performance compared to current systems that are usu-

ally based on graded-index-lenses. In addition, further development of tunable metasurface

lenses will enable fast axial scanning for volumetric imaging.

Keywords

Optical metasurface, flat optics, multi-wavelength lens, two-photon microscopy

Two-photon microscopy is widely used for deep tissue imaging in various areas of life sci-

ences.1–4 The method utilizes the lower scattering of near-IR light inside tissues, the higher trans-

verse and lateral resolution, and the lower level of background fluorescence in two-photon excita-

tion to form high-quality images hundreds of microns deep inside tissues.3,4 Development of com-

pact low-weight two-photon microscopes for in vivo imaging of brain activity has been of great

interest in recent years.5–10 For compactness and low-weight, most of these systems use graded

index objective lenses with optical qualities inferior to the conventional refractive objectives.

Dielectric metasurfaces are a recent category of diffractive devices11–13 that enable high-end

optical elements like blazed gratings14 and lenses15–18 with high efficiencies, and with a thin and

light-weight form factor. Metasurface devices integrated in thin layers19,20 and on membranes21

have milligram and microgram weights. Therefore, the weight of optics will not be a signifi-

cant factor in the total weight of systems that employ metasurface optics. In addition, because of

their novel capabilities22–30 and manufacturability with conventional nano-fabrication techniques,

metasurfaces have attracted a great deal of attention in the past few years, especially for imaging

applications.16,17,31 Fluorescence microscopy is an especially suitable area for meta-lenses as the

fluorescence bandwidth is usually limited and predetermined. For instance, meta-lenses have re-

cently been utilized to capture single-photon fluorescence images of diamond nano-crystals with
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embedded silicon vacancy emitters where the effects of the finite fluorescence bandwidth were also

studied.18 Despite this, meta-lenses have not previously been employed for multi-photon fluores-

cence microscopy. The reason lies in the fact that they are conventionally designed for a single

operation wavelength, while in fluorescence microscopy the focal positions at the excitation and

emission wavelengths can be far apart due to the chromatic dispersion.32–35 This can significantly

reduce the excitation−collection efficiency in the system.

Here we propose and experimentally demonstrate two-photon fluorescence microscopy with

a double-wavelength meta-lens (DW-ML) working as the objective lens. We use a birefringent

dichroic dielectric metasurface platform to make the DW-ML that is designed to have the same

focal distance at the excitation and emission wavelengths. We show that the DW-ML forms images

that are qualitatively comparable to those taken with a refractive objective.

A simplified schematic of a two-photon microscope employing the DW-ML is shown in Figure

1a. “Long-wavelength” light from a high–peak power pulsed laser is collimated using the excita-

tion optics, passes through a dichroic mirror and is focused inside the fluorescent sample using the

DW-ML. At the focal point inside the fluorescent sample, “short-wavelength” photons are emitted

upon the absorption of pairs of the long-wavelength photons. The DW-ML collimates the emitted

fluorescent light which is then reflected off the dichroic mirror and detected by a photodetector

through the collection optics. The DW-ML should be designed to focus both the excitation and

emission wavelengths to the same distance. To achieve this goal, we use the birefringent dichroic

meta-atom technique introduced before.36 This is schematically shown in Figure 1b, where the

DW-ML focuses horizontally polarized light at the long wavelength, and vertically polarized light

at the short wavelength to the same focal distance, f .

Considering the available pulsed laser, the two-photon fluorescence microscopy setup, and

the fluorescent molecules used, we chose the operation wavelengths to be 820 nm for excitation

and 605 nm for emission (see Methods and Supporting Information Figure 1 for specifics of the

measurements and the two-photon setup). Although materials such as TiO2 might be suitable

for a visible lens, the requirement of operation at the 820 nm near-IR wavelength necessitates a
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high-index material such as silicon. To implement the DW-ML, we used polycrystalline silicon

(p-Si) because it has a high-index and a low loss at the chosen operation wavelengths. Therefore,

the metasurface is composed of p-Si nano-posts with a rectangular cross section, located at the

vertices of a square lattice on a fused silica substrate. As schematically shown in Figure 2a, the

structure is covered by an SU-8 polymer capping layer which provides mechanical robustness and

protects the metasurface. The asymmetric rectangular cross-section of the nano-posts generates

an effective structural birefringence, resulting in different transmission phases and amplitudes for

x- and y-polarized light.22 For proper choices of the nano-post height and lattice constant, the

two phases along the two meta-atom axes can be controlled fully and independently. Therefore,

the metasurface can be designed to perform two independent functions for the two orthogonal

input polarizations. As we have previously shown, the same holds true even if the two orthogonal

input polarizations have different wavelengths.36 To provide the full 2π phase coverage at both

wavelengths, the nano-post height was chosen to be 407 nm, and the lattice constant was set to

310 nm. The transmission amplitude and phase at both wavelengths are plotted in Supporting

Information Figure 2 as a function of the widths of the nano-posts, wx and wy. As seen in these

figures, with a proper choice of values for wx and wy (i.e., the in-plane dimensions of the nano-

posts), a complete and independent phase coverage for the two polarizations is possible. Here, to

find the nano-post that best provides a desired transmission phase, we have found the post sizes

that minimize the weighted complex transmission errors for the two wavelengths (see Methods for

more details). The chosen values for wx and wy are plotted in Figure 2b and Figure 2c versus the

required phases at 820 nm and 605 nm.

Using the data in Figure 2b and Figure 2c, we designed the DW-ML with a diameter of

1.6 mm, and a numerical aperture (NA) of 0.5 (with a focal distance f ∼1.386 mm at 820 nm

and 605 nm wavelengths). The 0.5 NA value is chosen to match that of the conventional objective

lens used in the two-photon microscopy measurements. The lens is designed to focus light at both

wavelengths to a tight spot without spherical aberrations. Figure 3a shows a scanning electron

micrograph of a part of the fabricated DW-ML, before capping with the SU-8 layer. An optical
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image of the finished device is shown in the inset of Figure 3a.

To characterize the DW-ML we used a measurement setup and procedure similar to the ones

used in our previous report.36 The lens was illuminated by a collimated laser beam, and the optical

intensity distribution was captured in several planes parallel to the focal plane using a custom-built

microscope (for details of the measurement procedure and setup see Methods and Supporting In-

formation Figure 3). For characterization at the two wavelengths of interest we used two different

light sources. An 822-nm laser diode was used as the excitation close to 820 nm, and a supercon-

tinuum laser with a bandpass filter centered at 600 nm and a 10-nm full width at half maximum

(FWHM) was used for the measurements close to 605 nm. The measured intensity distributions in

the axial and focal planes are shown in Figure 3b and Figure 3c for the long and short wavelengths,

respectively. The measured FWHMs in the focal plane are ∼0.93 µm and ∼0.68 µm at 822 nm

and 600 nm. They are both close to their corresponding diffraction limited values of 0.85 µm and

0.62 µm. The DW-ML shows similar focal lengths at both wavelengths, with maximum intensities

in the 1376 µm and 1380 µm planes at 822 nm and 600 nm, respectively. These values are close

to the designed focal distance of ∼1386 µm. The long depth of focus and the elevated background

in Figure 3c (for the 600-nm case) are caused by the considerable bandwidth of the source, and

the diffractive chromatic dispersion of the metasurface lens.35,37 Resulting from this chromatic dis-

persion, the difference between the focal distance at the side wavelengths of 595 nm and 605 nm

(corresponding to the measurement bandwidth) is about 20 µm. This causes a significant portion

of the total light power to be out of focus in each plane around the focal distance.

To measure the focusing efficiency, we used the setup shown in Supporting Information Fig-

ure 3b. To block the out-of-focus light, irises with ∼1.1 mm and ∼0.55 mm diameters (for 822 nm

and 600 nm wavelengths, respectively) were placed in front of the photodetector in the image plane

of the microscope. These correspond to 10-µm and 5-µm diameter apertures in the focal plane of

the DW-ML, respectively. The focusing efficiencies, defined as the ratio of the power passing

through the irises to the total incident power, were measured to be 61% and 27% at 822 nm and

600 nm, respectively. We should mention here that the 10-nm bandwidth of the 600-nm mea-
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surement source resulted in the reduced measured efficiency through the enhanced depth of focus.

The measured 27% “broadband” efficiency would correspond to a single-wavelength efficiency of

∼45% around 600 nm (see Supporting Information Section 1 for discussion and simulation results

of the efficiency).

Finally, we characterized the operation of the DW-ML by using it as the objective in a two-

photon microscope for imaging a fluorophore-coated polyethylene microsphere ∼90 µm in di-

ameter (see Methods and Supporting Information Figure 1 for the microscope setup and details).

Figure 4a shows a regular image of the microsphere captured with the conventional objective. The

two-photon fluorescent images captured by the DW-ML and the conventional objective are shown

in Figure 4b and Figure 4c, respectively.

The two images are qualitatively similar and almost all fluorescent clusters visible in Figure 4c

can also be seen in Figure 4b. The exact focal planes in the two setups might be slightly different,

and this may account for some of the discrepancies between the two images. In addition, there

are some important differences that are innate to the use of the DW-ML. The collected photon

count is about 15× lower for the DW-ML (the colormaps in Figure 4b and Figure 4c are in

the same unit), while the excitation beam power for the DW-ML was ∼4.7× larger than for the

conventional objective. A few factors contribute to the effectively lower efficiency of the DW-ML

for the combined excitation–collection process. First, the excitation efficiency is lower because

of the lower focusing efficiency of the DW-ML at 820 nm (∼61%). The collection efficiency is

also limited by the 45% focusing efficiency close to 605 nm. For the unpolarized light emitted by

the fluorophores, the collection efficiency is reduced to half of this value (∼22.5%). In addition,

the chromatic dispersion of the DW-ML results in lower peak intensity in focus, which further

reduces the two-photon fluorescence rate (see Supporting Information Section 1). Finally, the

broad emission bandwidth of the fluorescence emission and the chromatic dispersion result in a

lower collection efficiency, arising from the emitting molecule being out-of-focus because it has a

wavelength other than 605 nm.

As discussed above, a few different factors determine the efficiency of two-photon microscopy
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with the DW-ML. The single-wavelength focusing efficiencies at the excitation and emission spec-

tra limit the collected power. As previously demonstrated,36 using a high-index material with lower

loss that has a larger index contrast with the capping layer results in higher focusing efficiencies.

Moreover, employing more advanced optimization and design methods38 can help realize higher

focusing efficiencies. The diffractive chromatic dispersion of the DW-ML is another factor that

decreases both the peak excitation intensity and the collection efficiency. We should note that the

absolute value of chromatic dispersion (that is the absolute change in the focal distance for a given

change in the operation wavelength) is linearly proportional to the focal distance. Therefore, a

metasurface lens with the same NA but shorter focal distance has a wider operation bandwidth.31

Moreover, the resolution and the collection efficiency only depend on the numerical aperture, not

the absolute physical aperture size or the focal distance. Therefore, metasurface lenses are more

suited for two-photon applications with shorter focal distances and smaller apertures (keeping

the NA constant). Such characteristics are very attractive for miniaturized two-photon micro-

scopes.5–10 Moreover, the ability to independently control the function of the DW-ML at the two

operation wavelengths allows for integration of the lens and the dichroic mirror in the same device.

One method of implementing this is through separating the excitation and collection paths by de-

signing the lens to collimate the emitted light in an off-axis direction. This can further reduce the

total weight, size, complexity, and cost of the two-photon microscopy.

The DW-ML can be tuned using various techniques19–21,39 to enable axial scanning for fast

three-dimensional scanning. In addition, the singlet DW-ML has large off-axis geometric aberra-

tions that limit its field of view significantly. To mitigate this problem, the corrected metasurface

doublet scheme can be employed.31,40

Most fluorophores have higher emission efficiency if the two-photon excitation wavelength

is slightly shorter than twice their emission spectrum peak. However, it is very challenging to

design high efficiency DW-MLs where the two wavelengths are far apart using the birefringent

meta-atoms utilized here. In such cases the meta-molecule method,41 the spatial multiplexing

technique,42–44 or the topological optimization method38 might be more promising.
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Using the metasurface lens with high power pulsed laser sources can raise a few different

issues. First, the high power might damage the metasurface. Here, we utilized the maximum

available power of the pulsed laser (∼1 W) for the two-photon imaging experiments and did not

observe any detectable difference in the performance or appearance of the metasurface lens after

exposure to the high-power laser. Nevertheless, further investigation of the maximum intensity and

power that the metasurface lenses can withstand could be of interest. Another issue concerns the

nonlinear processes that can be more significant with higher excitation intensities. For instance,

it would be of value to study the effect of the input power on the level of two-photon absorption

in the metasurface lens and how it might impact the overall device efficiency. Other nonlinear

phenomena, such as second harmonic generation, can also be of interest as they have been observed

in silicon-based metasurfaces.45 We should note here, however, that in the two-photon imaging

measurements performed in this manuscript we didn’t observe an increased background level when

using the metasurface lens [Figure 4b and Figure 4c].

In conclusion, we used the birefringent dichroic dielectric metasurface platform to realize a

DW-ML. Using the DW-ML as the objective lens, we demonstrated two-photon microscopy with

image qualities comparable to a conventional microscope objective. The effect of the large diffrac-

tive chromatic dispersion of the DW-ML was considered and discussed. As a proof of concept,

this work demonstrates the capabilities and limitations of the dielectric metasurface platform in

multi-photon microscopy. With the great interest in the development of more compact two-photon

microscopes, we believe metasurfaces can play a significant role in this field.
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Figure 1: Schematic illustration of two-photon microscopy with a metasurface objective lens. (a)

Schematics of a two-photon microscope employing a metasurface objective. A pulsed laser source

is focused inside a sample using the excitation optics and a metasurface objective. The same

metasurface lens along with the collection optics collects the light that is emitted by the sample

through a two-photon fluorescence process. DM: Dichroic mirror; DW-ML: Double-wavelength

metasurface lens. (b) Schematic illustration of a conventional metasurface lens focusing light

with different wavelengths to distinct focal lengths, and the DW-ML designed to focus 820-nm

x-polarized light and 605-nm y-polarized light to the same focal distance of f .
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Figure 2: Meta-atom design. (a) Schematic illustration of the meta-atom, consisting of a p-Si

nano-post with a rectangular cross-section sitting on a fused silica substrate and covered by an SU-

8 layer. Top and side views of the nano-posts showing the dimensions and illumination conditions.

Tuning the nano-post dimensions, wx and wy, allows for independent control of transmission phase

of x-polarized light at 820 nm and y-polarized light at 605 nm. (b) The chosen values of wx and

(c) wy versus the required phases for the two wavelengths. The nano-posts height is 407 nm and

the lattice constant is 310 nm.
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Figure 3: Characterization of the metasurface lens. (a) Scanning electron micrograph of a portion

of the fabricated DW-ML. Inset: Optical image of a few fabricated lenses. Scale bar: 2 mm.

(b) Measured light intensity in the axial (left) and focal (right) planes for x-polarized 822-nm

illumination. (c) Same results as (b) for a y-polarized light source with a center wavelength of

600 nm and full width at half maximum of approximately 10 nm.
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Figure 4: Two-photon microscopy with the DW-ML. (a) Regular microscope image of a fluores-

cent polyethylene microsphere. (b) Two-photon fluorescent microscope image of the microsphere

in (a) captured using the DW-ML, and (c) captured using a conventional refractive objective. Scale

bars: 10 µm.
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Methods

Simulation. The transmission amplitude and phase of the nano-posts [Supporting Information Fig.

2] were acquired by simulating a uniform array of nano-posts on a square lattice using the rigorous

coupled wave analysis technique.46 The p-Si nano-posts were 407 nm tall, the lattice constant was

310 nm, and the refractive index of p-Si was 3.7231+0.0078i at 820 nm, and 3.9984+0.0282i at

605 nm. For the SU-8 layer, we used refractive index values of 1.58 and 1.595 at 820 nm and

605 nm, respectively. A normally incident plane-wave was used as the excitation. The simulations

of Supporting Information Section 1 were performed using the calculated transmission mask of the

lens, and the plane-wave expansion method.

Sample fabrication. A 458-nm thick layer of hydrogenated α-Si was deposited on a 1-mm-thick

fused silica substrate using the plasma enhanced chemical vapor deposition technique. The layer

was then annealed in a furnace to form the 407-nm-thick p-Si layer. The metasurface patterns

were generated with electron-beam lithography in a positive electron-beam resist. An aluminum

oxide layer was deposited on the generated pattern after development, and was used to reverse the

pattern through lift-off. The patterned aluminum oxide layer was then used as a hard mask in the

dry etching process of the p-Si layer. Finally, a ∼2-µm-thick layer of SU-8 was spin coated on the

metasurface, and a gold aperture was deposited around the lens to reduce the background light.

Measurement procedure. The setup in Supporting Information Fig. 3 was used for the DW-

ML characterization measurements. A collimated beam was used to illuminate the DW-ML and

the intensity distribution was imaged at multiple planes around the focal plane and parallel to

it. These images were compiled to form the axial intensity distribution profiles of Figure 3b

and Figure 3c. The two-photon image in Figure 4b is captured by replacing the objective lens

in a two-photon microscope by the DW-ML. The DW-ML was oriented in such a way that the

excitation axis of the metasurface (corresponding to the 820-nm wavelength) overlapped with the

polarization direction of the excitation laser. The details of the two-photon microscope are shown

in Supporting Information Fig. 1. A photomultiplier tube is used for detection of the emitted

photons, and the image is captured by scanning the excitation focal spot of the lens using the
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galvanometer scanning mirror. The final image is then generated by combining the collected signal

for each excitation point. Using this method, the field of view of the microscope is limited by two

different factors: first, the available angular scanning range of the excitation optics, and second,

the off-axis aberrations of the meta-lens. In our case, the large off-axis aberrations of the meta-

lens31 limit the field of view to about ±2.5◦, which corresponds to about 120 µm. Both the DW-

ML and the refractive objective are used to image a polyethylene microsphere about 90 µm in

diameter and coated with a fluorophore (UVPMS-BR-0.995 10-90m µm, Cospheric). This specific

fluorophore was chosen because its excitation and emission wavelengths are compatible with the p-

Si material system, and the birefringent meta-atom strategy used to design the DW-ML. In addition,

the specific fluorophore-coated microspheres were used because they are commercially available

samples coated with the right fluorophores.
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