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In this paper we consider geometrical two-photon optics of Bessel-Gaussian modes generated
in spontaneous parameteric down-conversion of a Gaussian pump beam. We provide a general
theoretical expression for the orbital angular momentum (OAM) spectrum and Schmidt number in
this basis and show how this may be varied by control over the radial degree of freedom, a continuous
parameter in Bessel-Gaussian modes. As a test we first implement a back-projection technique to
classically predict, by experiment, the quantum correlations for Bessel-Gaussian modes produced
by three holographic masks, a blazed axicon, binary axicon and a binary Bessel function. We
then proceed to test the theory on the down-converted photons using the binary Bessel mask. We
experimentally quantify the number of usable OAM modes and confirm the theoretical prediction of
a flattening in the OAM spectrum and a concomitant increase in the OAM bandwidth. The results
have implications for the control of dimensionality in quantum states.

PACS numbers: 03.65.Ud, 02.30.Gp, 42.40.Jv

I. INTRODUCTION

Quantum entanglement has formed the basis of several
quantum information technologies, including quantum
computing and quantum communication. Such exam-
ples include quantum ghost imaging [1], quantum cryp-
tography [2, 3], and quantum computing algorithms [4].
The amount of information in an entangled state depends
on the dimension of its associated Hilbert space. Pho-
tonic quantum information is often encoded in photon
polarisation, which is constrained in a two-dimensional
Hilbert space. In contrast, the spatial degrees of freedom
(transverse spatial modal profile) of a photon has an in-
finite dimensional Hilbert space. Researchers are there-
fore focussing on the spatial modes of paraxial optical
beams to increase the information capacity per photon.
To this end, the most commonly used basis is that of the
Laguerre-Gaussian (LG) modes.
It was shown that the LG modes are orbital angular mo-
mentum (OAM) eigenstates of photons [5]. Each photon
in such a beam carries an amount of OAM equal to ℓ~,
where ℓ is the azimuthal index of the LG mode. OAM
is conserved in spontaneous parametric down-conversion
(SPDC); this has been demonstrated both theoretically
[6, 7] and experimentally [8]. The implication thereof is
that a pair of down-converted photons are naturally en-
tangled in terms of the OAM eigenstates. Although LG
modes are also characterised by a radial index p this is
often set to zero as higher radial indices require complex
amplitude modulation (intensity masking) [9], which re-
sults in the loss of optical power.
By approximating the phase matching condition with a
Gaussian function, it was shown [10] that the Schmidt
basis for the quantum state produced in SPDC is the
LG modes. Without this approximation, the LG modes

∗ Corresponding author: aforbes1@csir.co.za

are still close to being the Schmidt basis [11]. Thus,
the LG modes are not only entangled in the azimuthal
index, but also in terms of the radial index. As the az-
imuthal component of LG modes is orthogonal in ℓ and
OAM is conserved in SPDC, the exact Schmidt basis for
the down-converted quantum state would be a basis of
OAM eigenstates. High-dimensional entanglement is de-
pendent on the number of usable OAMmodes in the state
[12]. However, the experimental parameters (e.g. mode
size of single-mode fiber) involved in the detection of the
spectrum of LG modes place restrictions on the control
one has over the bandwidth of OAM components in the
entangled state.
The LG modes are not the only OAM basis. Higher-
order Bessel beams [13, 14] and Bessel-Gaussian (BG)
beams [15] also have helical wavefronts and carry OAM.
The spatial modal bases are related by unitary transfor-
mations such that the down-converted quantum states
are also entangled in terms of the BG modes. The BG
modes allow for additional control over quantum state
preparation as they have a continuous radial scale pa-
rameter that distinguishes different modes, instead of a
discrete radial index as in LG modes.
OAM entanglement in the BG basis has already been
successfully demonstrated [16]. In this paper we examine
the methods in which OAM entanglement may be mea-
sured in the BG basis. We introduce back-projection as
a tool to study BG projective measurements, using two-
photon geometric optics to predict the strength of the
coincidence correlations. We also quantify the number
of measurable OAM modes by calculating the Schmidt
number, and demonstrate a clear dependence on the ra-
dial component. This suggests a means to increase the
dimensionality of entangled states.

http://arxiv.org/abs/1306.2767v1
mailto:aforbes1@csir.co.za
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II. THEORY

The probability for the biphoton quantum state af-
ter the SPDC process to contain a particular measure-
ment state ρm = |Ψs〉 |Ψi〉 〈Ψs| 〈Ψi|, is given by the trace

Tr{ρρm} = |M|
2
, where M is the scattering ampli-

tude. For monochromatic paraxial pump, signal and idler
beams in a degenerate collinear SPDC process with type
I phase matching, the scattering amplitude is given by
[17]

M = Ω0

∫

M∗
s (K1)M

∗
i (K2)Mp(K1 +K2)

×P (∆kz)
d2k1
(2π)2

d2k2
(2π)2

, (1)

whereMs(K), Mi(K) andMp(K) are the Fourier spectra
of the two-dimensional mode profiles for the signal, idler
and pump beams, respectively; K represents the coor-
dinate vector in the two-dimensional transverse Fourier
domain; Ω0 is a constant that determines the overall con-
version efficiency; and P (∆kz) is a function that repre-
sents the phase matching condition.
The phase matching condition is given in terms of a sinc-
function

P (∆kz) = sinc

(

∆kzL

2π

)

= sinc
(

ζ |K1 −K2|
2
)

, (2)

where

ζ =
noλpL

8π2
, (3)

with no being the ordinary refractive index of the non-
linear crystal, λp being the wavelength of the pump and
L being the crystal length. Assuming the pump wave-
length is much smaller than any of the other dimension
parameters, the width of the sinc-function in Eq. (3), as
determined by ζ−1/2, is much larger than the widths of
the angular spectra of the pump, signal or idler beams
[12]. Hence, one can approximate P = 1 and the Fourier
integral in Eq. (1) can be transformed into a spatial do-
main given by

M = Ω0

∫

m∗
s(x)m

∗
i (x)mp(x)d

2x, (4)

where ms(x), mi(x) and mp(x) are the two-dimensional
mode profile functions for the signal, idler and pump
beams, respectively. The pump beam has a mode profile
described by a Gaussian function, which is expressed as

mp =
1

ω0

√

2

π
exp

[

−
(x2 + y2)

ω2
0

]

, (5)

where the radius of the mode profile of the pump beam is
given by ω0. We consider the case where the signal and
idler beams are BG modes with azimuthal indices ℓ and
−ℓ, respectively, and with scaling parameters kr1 and
kr2, respectively. For simplicity we assume that kr1 =

FIG. 1. Comparison of the OAM spectra for the LG modes
(kr = 0) and BG modes (kr = 20, 40, 60, 80 rad/mm) using
Eqs. (9) and (8), respectively, with ω0 = 0.5 mm and ω1 =
0.23 mm. The number of usable OAM modes increases with
the radial wavevector kr.

kr2 = kr. A BG mode with a specific ℓ-value is produced
by evaluating the following integral,

MBG
ℓ =

1

2π

∫ 2π

0

G exp(−iℓβ) dβ. (6)

The generating function, G for BG modes at z = 0 is
then given by

G =

√

2

π

1

ω1
exp{ikr[y cos(β) − x sin(β)]}

× exp

[

−
(x2 + y2)

ω2
1

]

, (7)

where the radius of the Gaussian envelope of the mode
is ω1 and β is an angular generating parameter.
The coefficients for any given value of the azimuthal index
ℓ (with opposite signs for the signal and idler beams,
respectively) can be extracted by substituting Eq. (5)
and Eq. (7) into Eq. (4), and solving the integral. The
OAM spectrum, represented by these coefficients, is given
by

Cℓ = (−1)ℓ
√

2

π

2Ω0ω
2
0

2ω2
0 + ω2

1

× exp

[

−k2rω
4
1

4(2ω2
0 + ω2

1)

] Iℓ

[

k2

r
ω2

0
ω2

1

2(2ω2

0
+ω2

1
)

]

Iℓ

[

k2
r
ω2

1

4

] , (8)

where Iℓ(·) is the modified Bessel function of the first
kind [18]. The equivalent coefficients in the LG basis, for
zero radial index, are given by

Cℓ = Ω0

√

2

π

(

2ω2
0

2ω2
0 + ω2

1

)|ℓ|+1

. (9)

An estimate of the OAM bandwidth of this spectrum
can be calculated by computing the Schmidt number [10]
given by

K =

(

∑

ℓ

C2
ℓ

)2

∑

ℓ

C4
ℓ

. (10)



3

In the case where the OAM spectrum is computed in
terms of the BG modes, one cannot obtain a closed form
expression for the Schmidt number. However, one can
compute the Schmidt number numerically from the ana-
lytical result in Eq. (8) for any given value of kr. Figure. 1
shows the OAM spetra for the LG and BG modes. In the
case where Eq. (2) is not approximated as 1, the OAM
spectra are limited by the length of the non-linear crystal
[19].

III. SIMULATION OF ENTANGLEMENT WITH
CLASSICAL LIGHT

There has been a great deal of interest in mathemat-
ically determining a method to predict quantum corre-
lations in particular reference to quantum communica-
tion and imaging [20–22]. The measurable correlation of
the entangled photons in a typical SPDC experiment de-
pends on the quality of state generation (e.g. the range
of OAM states that SPDC actually produces) and the
state detection (e.g. the range of the OAM states that
can be detected by the measurement scheme). It is use-
ful to isolate the effect of generation from detection, and
vice versa. We are interested in investigating the quality
of our detection system, and so to this end, we introduce
a back-projection experiment inspired by the advanced-
wave representation of Klyshko [23].
The Klyshko picture is useful in assessing the conditional
probability distribution– the probability of detecting a
photon at detector B given that another photon is de-
tected at detector A. Klyshko considered the field de-
tected in arm A as propagating in reverse back to the
crystal plane where it reflects off the crystal to propagate
forward through the system to detector B. Using this pic-
ture and geometrical optics arguments, the two-photon
correlations measured in SPDC can be predicted, as in
the ghost imaging and two-photon optics experiments
in [1, 24]. More than a theoretical tool, the Klyshko
picture can also be applied experimentally. One of the
detectors can be replaced with a classical light source
and propagated through one arm back onto the crystal
plane, where a mirror has been placed (this corresponds
to the wave propagating in reverse). At the crystal, this
back-projected beam was reflected and propagated for-
ward onto the components of the other arm and onto
the other detector. The number of photons registered
by this detector can be optimised to ensure the stringent
alignment required by the system, and more importantly,
can be used to predict the expected behaviour of the two-
photon correlation. With these in mind, we implemented
a back-projection experiment. Figure 2(a) shows a sim-
ple schematic of an entanglement setup.

An unfolded setup of Fig. 2(a) is shown in Fig. 2(b).
A 710 nm diode laser with a Gaussian profile replaced
detector A and was connected to fiber A. The output
was imaged through the system to SLM A, which was
then imaged onto a mirror at plane of the crystal. From
here, the light was imaged onto SLM B, and SLM B is in

FIG. 2. (a) Schematic of an entanglement setup. The en-
tangled photon pairs were generated by the BBO crystal, the
combination of the SLMs and detectors projected the photon
pair into a particular state and the detection of the pairs was
measured with a coincidence counter. (b) Unfolded diagram
of (a), where the BBO crystal is replaced with a mirror such
that SLM A is imaged onto SLM B. Light from a 710 nm
diode laser was coupled into fiber A, where after it was im-
aged to SLM A followed by SLM B and then re-coupled into
fiber B. By placing a CCD camera at the plane of the BBO
crystal, we can guarantee that we are measuring BG fields.

turn imaged onto the facet of single-mode fiber B. The
fiber was coupled to detector B which registered the sin-
gle photon count rate. In order to have significant single
photon counts, a careful choice of each phase pattern
must be made. These patterns should ensure the fun-
damental mode from fiber A is coupled into fiber B. To
illustrate this, if a positive lens function is encoded onto
SLM A, a negative lens function must be encoded onto
SLM B to produce a Gaussian mode which can only then
be coupled into fiber B. This can be seen mathematically
using ABCD matrices [25]:

[

x2

α2

]

=

[

1 0
−1/f2 1

] [

−1 0
1/f1 −1

] [

x1

α1

]

=

[

−1 0
(1/f2 + 1/f1) −1

] [

x1

α1

]

(11)

When f1 = −f2 the transverse and angular positions of
the initial and final beam remain the same. However,
identical focal lengths result in a change in the angular
position, producing a divergent beam at fiber B and thus
reducing the coupling efficiency. In the context of the
spatial modes, which we are trying to measure, maxi-
mum coupling of the light from fiber A to fiber B occurs
when the transmission functions encoded on the SLMs
are phase-conjugates of each other.

IV. BACK-PROJECTION RESULTS

OAM entanglement is typically measured in the LG
basis by encoding only the azimuthal phase term onto an
SLM, described by the transmission function:

T (φ) = exp(iℓφ), (12)
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where φ is the azimuthal angle. Depending on the az-
imuthal index ℓ an incoming Gaussian mode is trans-
formed into an approximated LG mode carrying OAM of
ℓ~ per photon. This is only an approximation as the ra-
dial components of the LG function have been neglected
in favour of efficiency [11]. As this process is reversible,
a mode generated in SPDC may be converted into a
Gaussian mode using the same transmission function in
Eq. (12). Due to the omitted radial modes, some light is
lost from scattering into higher-order modes [17]. By se-
lecting the BG basis in which to measure OAM entangle-
ment, we have access to a continuous scaling parameter
for the radial component of the BG modes. We con-
sider blazed axicons, which have been well documented
for producing Bessel-Gauss beams, binary axicons and
binary Bessel functions.

A. Blazed axicon

The first phase pattern investigated was that of an
axicon described by a blazed (kinoform element) func-
tion, first described by Turunen et al. [26], Cottrell et al.
[27]. The conversion from Gaussian to BG mode was per-
formed using the phase-only hologram described by the
transmission function

T1(kr, φ) = exp(ikrr) exp(iℓφ), (13)

where kr is the radial wavevector and ℓ is the azimuthal
index. The number of rings of the BG beam increases
with kr. This kinoform diffracts approximately 100% of
the incoming light into the first order. Figure 3(a) shows
an example of such a phase pattern for kr = 21 rad/mm
and ℓ = 1. By placing a CCD camera in the plane of
the crystal, we were able to view the mode at this plane.
The shape of the beam imaged from the blazed axicon
for kr = 21 rad/mm and ℓ = 1 is shown in Fig. 3(b).
The image does not exhibit a well-defined Bessel beam.
A distinct BG beam will typically form after propagat-
ing some distance after an axicon, while Fig. 3(b) only
shows the beginning of the BG beam, before propaga-
tion. However, a spot of zero intensity can be clearly
seen, indicative of an azimuthal phase term of non-zero
ℓ. This is more clearly illustrated in Fig. 4.
Figure 3(c) shows the experimental measurements of
the single counts measured at detector B. The counts
recorded show a strong correlation along the diagonal
corresponding to values of kr of equal magnitude but op-
posite sign. The single counts level was significant only
when the system consisted of a positive radial wavevec-
tor kr on one SLM with the corresponding negative ra-
dial wavevector −kr on the other (although the radial
wavevector is a positive entity, we assign a negative value
to kr to represent the conjugate phase). This translates
to a positive axicon imaged onto a negative axicon, to
produce a Gaussian beam, which is analogous to the lens
functions in Eq. (11). As kr is a continuous variable,
we expected a gradual decrease in the count rate moving
away from the diagonal elements. The OAM correla-

FIG. 3. (a) Phase pattern used to define an axicon of kr = 21
rad/mm and ℓ = 1. (b) CCD image of a BG beam generated
from a blazed axicon function of kr = 21 rad/mm and ℓ = 1
at the plane of the crystal. (c) Density plot of the single count
rates measured in back-projection for different blazed axicon
phase patterns; varying kr with ℓ = 0. (d) Density plot of the
single count rates measured in back-projection for a particular
blazed axicon; kr = 21 rad/mm and varying ℓ.

FIG. 4. (a) Formation of a Bessel-Gaussian beam using a
standard blazed axicon. The CCD image shows the plane of
initial formation (illustrated by the dashed black line), where
no rings are seen. (b) Formation of a Bessel-Gaussian mode
using a binary axicon. The CCD image shows the initial
plane (illustrated by the dashed black line) where a Bessel-
like beam is observed. However, it is not a true BG beam as
the interference is only between the diffraction orders of the
binary hologram.

tions for a particular blazed axicon function are shown
in Fig. 3(d).

B. Binary axicon

One can question whether the OAM modes are truly
measured in the BG basis with a blazed axicon, as the im-
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age at the crystal plane did not resemble a Bessel beam.
This issue can be remedied by using a different approxi-
mation to an axicon function. That is, the second phase
pattern studied also incorporated the axicon function,
but as a binary function:

T2(r, φ) = sign {exp(ikrr)} exp(iℓφ), (14)

where sign{·} denotes the sign-function. The kinoform
initially used to approximate an axicon was replaced with
a two-level binary approximation. The efficiency of a
kinoform DOE into the first diffraction order is almost
100%, while the efficiency of a binary function is about
half that; 42% in both the m = ±1 orders. The binary
hologram deflects both diffraction orders symmetrically
such that they interfere with each other and produce a
Bessel-like region immediately after the SLM in Fig. 4(b).
By filtering the higher diffraction orders, a clear image
of a BG mode was recorded at the crystal plane, see
Fig. 5(b).

FIG. 5. (a) Phase pattern used to define a binary axicon of
kr = 21 rad/mm and ℓ = 1. (b) CCD image of a BG beam
generated from a binary axicon function of kr = 21 rad/mm
and ℓ = 1 at the plane of the crystal. (c) Density plot of the
single count rates measured in back-projection for different
binary axicon phase patterns; varying kr with ℓ = 0. The
photons from SLM A assume a value of either positive or
negative kr from the binary function. SLM B was encoded
with the same function, which allowed BG modes of either
positive or negative radial wavevectors to be converted to a
Gaussian mode. (d) Density plot of the single count rates
measured in back-projection for a particular binary axicon;
kr = 21 rad/mm and varying ℓ.

Similar to the previous case, an incoming Gaussian beam
can be converted into a mode with a radial wavevector of
either kr or −kr. The recorded single count rate shown
in Fig. 5(c) illustrates a distinct difference between the
blazed and binary axicon functions. The binary function
on SLM A transforms the incoming Gaussian mode into
a BG mode with radial wavevector of either kr or −kr,
such that there is an equal probability of generating a

photon with a positive or negative kr value. Subsequently
SLM B, encoded with the same function, is also able to
convert both radial vector modes into a Gaussian mode.
As a result, single count rates were observed for kAr = kBr
and kAr = −kBr . The OAM correlations for a particular
binary axicon function are shown in Fig. 5(d).

C. Binary Bessel function

The implementation of the binary axicon function con-
firmed that we indeed measured BG modes. However,
the axicon function acts only as an approximation to the
Bessel function. Therefore, the final phase pattern con-
sidered was that of a binary Bessel function:

T3(r, φ) = sign {Jℓ(krr)} exp(iℓφ). (15)

Here Jℓ(·) is the Bessel function of the first kind.
Although very similar to the binary axicon function,
Eq. (15) provides a more accurate description of an ideal
Bessel beam. The spacing between the rings of a Bessel
beam generated from an axicon remain constant with
radial position, while the spaces of a theoretical Bessel
beam vary in size as we move radially outward from
the centre, and subsequently depend on kr. The phase
pattern and CCD image of a binary Bessel function are
shown in Fig. 6.

FIG. 6. (a) Phase pattern used to define a binary Bessel
function of kr = 21 rad/mm and ℓ = 1. (b) CCD image of a
BG beam generated from a binary Bessel function of kr = 21
rad/mm and ℓ = 1 at the plane of the crystal. (c) Density
plot of the single count rates measured in back-projection for
different binary Bessel phase patterns; varying kr with ℓ = 0.
(d) Density plot of the single count rates measured in back-
projection for a particular binary Bessel function; kr = 21
rad/mm and varying ℓ.

A measurable count rate is again obtained along the
diagonal where kAr = ±kBr . However, the off-diagonal
crosstalk is now less prominent, when compared with
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Fig. 5(c), particularly surrounding kA,B
r = 0. We have

generated a BG mode with a better radial approxima-
tion, thus creating less overlap between the different ra-
dial wavevectors. The OAM correlations for a particular
binary Bessel function are shown in Fig. 6(d).

V. DOWN-CONVERSION EXPERIMENT AND
RESULTS

In spontaneous parametric down-conversion (SPDC),
a nonlinear crystal pumped with a laser beam generates
pairs of entangled photons, which are then separately
detected. Because we are interested in measuring spa-
tial transverse profiles, we use a spatial light modulator
(SLM) which allows arbitrary phase transformations to
be performed on an incident beam. The transmission
functions required in our experiment are conveniently
programmed into SLMs. Moreover, the SLMs work in
both the single-photon (as in SPDC) and classical (as in
back-projection) regimes.

FIG. 7. Experimental setup used to detect the OAM eigen-
state after SPDC. The plane of the crystal was relay imaged
onto two separate SLMs using lenses, L1 and L2 (f1 = 200
mm and f2 = 400 mm), where the BG modes were selected.
Lenses L3 and L4 (f3 = 500 mm and f4 = 2 mm) were used
to relay image the SLM planes through 10 nm bandwidth in-
terference filters (IF) to the inputs of the single-mode fibers
(SMF).

Our SPDC setup is shown in Fig. 7. A mode-locked
laser source (Gaussian mode) with a wavelength of 355
nm and an average power of 350 mW was used to pump
a 3-mm-thick type I BBO crystal to produce collinear,
degenerate entangled photon pairs via SPDC. Using a
4f telescope, the plane of the crystal was imaged (2×)
onto two separate SLMs which are encoded with the BG
transmission functions. The SLM planes were re-imaged
(0.4×) by a 4f telescope and coupled into single-mode
fibers, which support only the fundamental Gaussian
mode. The fibers were connected to avalanche photo-
diodes, the outputs of which are connected to a circuit
that gives the coincidence count rate.

The OAM bandwidth (also referred to as the spiral
bandwidth) was measured as a function of the different
BG phase patterns, and compared with the spiral band-
width measured in the LG basis. Due to conservation

of angular momentum [8], a coincidence can only be ob-
served for ℓA+ℓB = 0, where ℓA and ℓB are the azimuthal
indices of the functions encoded in SLM A and B, respec-
tively. These results are shown in Fig. 8.

FIG. 8. Graph of the measured coincidence count rate as
a function of OAM for four different measurement schemes.
The BG measurements were all measured for kr = 21
rad/mm. The empty orange circles represent the measure-
ments recorded for LG modes. The blue squares represent
the measurements recorded using a blazed axicon function.
The binary axicon function is represented by the green trian-
gles and the measurements from the binary Bessel function
are illustrated by red circles.

The inefficiency of the binary phase pattern results in a
decrease in the count rate for both binary phase patterns.
Our results show that the binary Bessel phase pattern
produces the largest full-width-half-maximum (FWHM)
value of 21. The binary axicon function gave a FWHM
value of 17, while both the blazed axicon and vortex func-
tions produced OAM spectra with FWHM values of 15.
These graphs were all measured for a particular value of
kr = 21 rad/mm.

FIG. 9. (a) Density plot of the modal spectrum in the BG
basis for kr and ℓ. The efficiency of the coincidence count
rate decreases as kr, however the FWHM of the bandwidth
increases with kr, seen more clearly in (b). The coloured
dashed lines in (a) correspond to the profiles plotted in (b)
for kr = 0 rad/mm (red), kr = 21 rad/mm (purple) and
kr = 35 rad/mm (green).

In investigating the effect of the radial wavevector on
the bandwidth, we focused only on the binary Bessel
function. We have previously demonstrated [16], proof
of entanglement of such beams, where we have shown
a violation of Bell’s inequality with the Bell parameter
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S = 2.78± 0.05 for the BG subspace of ℓ = 1.
We now illustrate the broadening and flattening of the
OAM spectra in the BG basis, as shown in Fig. 9. We
note that the broadening of the OAM spectrum is at
the expense of reducing the coincidence counts at low ℓ
values. This in turn decreases the heralding efficiency,
which has an effect on the security of quantum key dis-
tributions. We found, due to the spatial resolution of
the SLMs, that there was a maximum limit for which kr
could be chosen. We therefore varied the radial wavevec-
tor from 0 to 35 rad/mm. We compare the data in Fig. 9
to the theoretical Schmidt number of Eq. (8).

FIG. 10. Effect of the radial wavevector on the Schmidt num-
ber. For kr = 0, the transmission function corresponds to
that of a vortex mode. An increase in the number of avail-
able OAM modes is observed as the radial component is in-
creased. The experimental measurements (red dots) together
with a theoretical prediction (solid blue line) are plotted for
ω0 = 0.5 mm and ω1 = 0.23 mm.

In the case of BG modes, the Schmidt number is de-
pendent on the value of the radial wavevector, as seen
in Fig. 10. The experimental results are plotted to-
gether with a theoretical prediction based on Eq. (8)
and Eq. (10) for a collinear SPDC setup (ω0 = 0.50

mm, ω1 = 0.23 mm). It is clear that as the value of
the radial wavevector increases, so too, does the Schmidt
number. These results are reminiscent of entanglement
concentration, where maximally entangled states are ex-
tracted from non-maximally entangled pure states [28].
The increase in accessible OAM modes is advantageous
for high-dimensional entanglement, hence offering realis-
able applications in quantum information processing.

VI. CONCLUSION

We have used back-projection as an aid in designing
a measurement scheme for probing OAM correlations.
By propagating a classical beam from one of the detec-
tors onto the plane of the crystal, we were able to ex-
amine three transmission functions for generating and
measuring modes with both helical and radial struc-
tures. We investigated the efficacy of a blazed axicon,
a binary axicon and a binary Bessel function in gener-
ating BG modes. Only the binary Bessel function, re-
sulted into Bessel-Gauss modes at the plane of the crys-
tal. OAM correlations in photons generated via SPDC
were then measured using these three transmission func-
tions. The OAM bandwidth obtained from the use of
both the blazed and binary axicon transmission functions
were similar to the OAM bandwidth obtained when using
spiral phase masks, which measure LG modes. However,
using the binary Bessel transmission function to measure
BG modes, leads to a larger OAM bandwidth and more
usable OAM modes. The number of modes were shown
to increase in a tunable manner, with the minimum set
by the LG case. This is useful for quantum information
and communication applications requiring entanglement
in higher dimensions.

[1] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V.
Sergienko, Phys. Rev. A 52, R3429 (1995).

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev.

Mod. Phys. 74, 145 (2002).
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[5] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and
J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

[6] H. H. Arnaut and G. A. Barbosa, Phys. Rev. Lett. 85,
286 (2000).

[7] S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and
L. Allen, Phys. Rev. A 65(3), 033823 (2002).

[8] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature
412, 313 (2001).

[9] V. Arrizón, Opt. Lett. 28, 2521 (2003).
[10] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903

(2004).
[11] V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, Phys.
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