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Two-photon parametric pumping versus two-photon absorption: A quantum jump approach
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We show that it is possible to produce superpositions of distinct coherent @aégsor odd coherent stajes

in a cavity where the field is pumped by two-photon parametric amplification and simultaneously undergoes
two-photon absorption by a beam of three-level atoms that travel through the cavity interacting with the cavity
field. Previous studies modeled the absorber with an effective Hamiltonian without involving real atomic
excitation or entanglement, a procedure justified only for weak coupling of the two-photon absorbing atoms.
We examine the validity of this assumption by modeling the atomic absorber dynamics from the onset. In order
to study the system numerically we make use of a Monte Carlo wave-function method in which the two-photon
absorbing atoms can interact with the cavity and evolve with large Rabi af§E350-294@7)01405-4

PACS numbd(s): 42.50.Dv, 42.50.Lc

I. INTRODUCTION sible to realize experimentally. An example is the possibility
of manipulating intracavity fields and of producing fields
The interaction of matter and radiation can change thevith special quantum features. The interaction of a single
statistical properties of the electromagnetic field and generatatom with a single quantized cavity field mode has been
fields with special quantum features. Nonlinear processes irmuch studied 8] and is one particular way of building up
volving two-photon transitions play an important role in the such fields. Micromasef®] and microlaserfl0] are experi-
production of nonclassical light and have long been utilizedmental realizations of such systems. In those systems the
as a way of producing squeezed lighi. In particular two-  high cavity quality factor Q) permits the production of
photon parametric pumping has been shown to be an impofields with very peculiar, or quantum, features and with only
tant source of squeezed ligi#]. It has also been shown that one atom interacting with the cavity field at a time. This is
interactions involving two-photon transitions can generate oguite contrary to a typical laser or a system in which the field
preserve quantum features. For example, the one-photon apropagates through two-photon absorbing media, where we
sorption proces$a linear interactiondestroys quantum fea- have a large number of atoms interacting with the field. A
tures of the field rapidly, whereas two-photon absorptionfurther example of a situation in which “two-photon(ac-
processega nonlinear interactiorcan build up quantum fea- tually “two-phonon”) processes can dominate is that of a
tures[3]. laser-cooled, trapped ion with vibrational states that can be
The two-photon absorption process that a field undergoesanipulated using sequencesmiulses driving vibrational
when traveling through a two-photon absorbing medium hasidebands. For such ionic motions dissipation is very weak,
been studied in Ref§3—6]. The time evolution of the field and in this way cavity QED can be realized without a cavity
reduced density matrix for such a process is described by [ 1]. Indeed it is straightforward to translate cavity QED
master equation where the change in the field reduced dermesults(such as oupsinto a direct ion trap equivalent, which
sity matrix is obtained by applying a Liouvillian superopera- may well be easier to realid 2,13.
tor to the initial reduced density matrix of the fidld]. The Our aim in this paper is to study the field produced inside
analytical solution of this master equation has been obtained cavity pumped by a two-photon parametric process and
[3] and the dynamic behavior as well as the steady state a§ubjected to two-photon absorption. The absorption results in
the system has been studied. If a field is pumped by a twothe relaxation of the cavity field and is caused by a stream of
photon parametric process and the losses are due only three-level atoms that enter the cavity in the lower state.
two-photon absorption then, depending on the initial stateFigure 1 shows a sketch of the kind of system we will study.
the field can evolve into Schdinger cat states, specifically Previous studies modeled the absorber with an effective
the even coherent state and the odd coherent [&#@p The  Hamiltonian without involving real atomic excitation or en-
dynamics of these systems was studied in detail in Refsanglement, a procedure justified only for weak coupling. We
[5,6]. will examine the validity of this assumption by modeling the
Recent technological achievements have made possiblietail of the atomic absorber dynamics from the outset. We
the construction of electromagnetic cavities with very highassume that the cavity has an extremely h@Hactor and
quality factors Q) [7]. This has led to the development of we neglect one-photon losses, although such losses can eas-
cavity QED, and many interesting problems that in the pasily be included. Generally, one-photon losses destroy the
were mere theoretical idealizations now are perfectly posguantum features that we seek to demonstrate here. For the
case of weak coupling to the three-level atoms, we have
already studied these detrimental effects in R&f. We will
*Present address: Instituto de Fisica, Universidade Federal do Rioot pursue thérealistig inclusion of these processes here in
de Janeiro, Caixa Postal 68528, Rio de Janeiro BR-21945-970, Riorder to focus on the principal results from our model. Thus
de Janeiro, Brazil. we assume that the atoms do not decay during their passage
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vV =fi\(A?[a)(c|+AT?c)(al), 3
12—
A | where we have assumead,.=2w. We expand the time-
L L. LK dependent state vector in the superposition
—
Jo

¢y ‘= m=¥meninn.

| (i +tin)) = % [Can(tittig)|a)+Cen(tittind|c)]N),
(4)

FIG. 1. The system considered in this paper consists of a para-

metric oscillator driving a single-mode cavity field that is addition- . . . . .
ally pumped by a beam of three-level atoms that crosses the cavit hereti. IS the.tlme at which theth atom enters the cavity
ndt;, is the time the atom has spent in the cavity.

as shown on the left-hand side of the figure. The parametric drivin I .
will try to create a squeezed state in the cavity, while the beam of The derivation of the master equati¢f) below can be

atoms provides a dissipative mechanism of an unusual kind. On th@ade by following the method used to obtain the one-photon

right-hand side we show the energy-level scheme with atomic levl0SS process master equation presented in [R€f. By solv-
els|a), |b), and|c) and detunings\; andA,. ing the Schrdinger equation and making the assumption of
small Rabi angles, in order to expand the amplitude coeffi-

through the cavity. Therefore, the mean lifetime of the atomgients in the vector state of the atom-field system, we obtain
must be much larger than the interaction time. As we will see
it is possible to generate Scldioger cat states in such sys- p()=rL p(t)
tems. ¢

The outline of this paper is as follows. In Sec. I we =KL{ZAZp(t)ATZ—A*ZAZp(t)—p(t)ATZAZ}, (5)
obtain the master equation for the two-photon absorption
process. In Sec. lll we take into account two-photon para- ] o
metric pumping and show that the competition between thgvh(_arer is the average rate of atomic injection and we have
parametric pumping and the two-photon absorption generd€fined the constant
ates a steady-state field that is an odd or an even coherent
state if the coupling constant of the two-photon absorbing r\2t2

. int

atoms are small. In Sec. IV we relax the assumption of small KL= > (6)
Rabi angles for the two-photon absorbing atoms and derive a
more general master equation, which becomes the focus for
the rest of the paper. In Sec. V we show how the mastehere the constari, is related to the two-photon absorp-
equation obtained in Sec. IV can be studied using a Montgion coefficient[5,6].
Carlo quantum jump approa¢i4,15. In Sec. Vliwe present  The two-photon absorption master equatihabove was
and interpret our numerical results. Finally, in Sec. VII we obtained from a simple model in which we have assumed the

conclude and summarize our results. field in the cavity interacts with a beam of two-level atoms
that undergo small changes in the Rabi angle. Now we con-
Il. TWO-PHOTON ABSORPTION MASTER EQUATION sider the more realistic situation in which the atomic beam

) ) ) source of absorption is properly modeled by three-level at-
_The two-photon absorption master equation for light trav-g g (such that two-photon interactions are dominamtd
eling through a two-photon absorbing medium has been d&ghere we do not assume small Rabi angles. We will still

rived in Ref.[4]. Here we review the derivation of this mas- sgume that the density of the atomic beam is sufficiently
ter equation starting from a simple two-photon Hamiltonian|qyy in order that only one atom interacts with the field at a
for an absorption process by a stream of atoms that pasgne.

through a cavity inside which we have a single dominant |, this more detailed model, a flux of three-level atoms,
mode. The statefa) and |c) will stand for the upper and ity stateda), |b), and|c), is injected into a cavity tuned to
lower atomic levels, respectively. The Hamiltonian for the frequencyw. The atomic statela) and|c) are the upper
system may be written as and lower states as above affi) is an intermediate state

with energy? w, nearly halfway between the energigs,

H=7wATA+ éwac(la)(al —|e){c|) andzw.. We again assume that the atoms are injected into
2 the cavity with an average rateand that the atomic beam is
+hN(A2]a)(c| +AT2|C><a|)E Ho+H, (1) monoenergetic, with the atoms spending a tipdnside the

cavity (see Fig. 1L The detuningsA ;= w,p— 0= w,— wy

where A and A" are the field annihilation and creation op- ~ @ andA,=wy.— 0= w,— .~ w are chosen in such way
erators. We note the absence of a Stark shift in this phenonfs to enhance the two-photon transition probability while at

enological Hamiltonian. If we write the same time keeping negligible the resonant one-photon
cascadea—b—c.
V, =gty e Hot/A 2 The Hamiltonian that describes the dynamics of this

three-level system in the rotating-wave approximation is
we have given by
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H=AhwA'A+%Lo,a)(a|+ ko, b) (b
+haogc)(c|+higap(Ala)(b|+AT[b)(al)
+hgnc(Alb){c|+ATle) (b)), (7)

prm(ti+ ting = €T N MG 4

sm(@N ;t>

. tint
Xsin ®M7 pn+2m+2(1)

whereg,;, (dpc) are the one-photon Rabi frequencies related ting tint

to the interactions between the levalandb (b andc) and +co{ On_ o= 5 )cos( Op_s 5 )pN m(ti 1,
the operatoA (A') is the annihilatior(creation operator for

the electromagnetic field mode of frequensy In the inter- (13

action picture the Hamiltonian becomes . . .
P where the generalized Rabi frequer@y; is given by

V,=%gape'*17Ala)(b| + g, 427Alb)(c|+ H.c. (8) 2
e { oe ®N=2\/(N+1)(N+2)QK. (14)
Then the state of the system at an instaiitr can be written
in the form For the populations we have

PNt tind = anpnan2(t) T (1= an-2) pan(ti),
[W(ti+7)=2 [Can(tit Dla)+Con(ti+7)b)
where
+Cen(ti+7)[C)]N). €)
. aN=Sin2( ®N Im) (16)

Substituting this state in the Scldioger equation, we obtain 2
) _ In the remainder of this section we focus on the weak-
Can(ti+ 7)=—igape 21" YN+ 1Cp N1 1(ti+7), coupling limit where we can establish the connection with

the master equatiof5). We write g/ A=\ and expand

) ) . sin(@ptin:/2) up to first order and co®ti,:/2) up to second
Cb,N+1(ti+7'):_|gabe IAlT\/N_"lca,N(ti'i"7') order tlcr; obtain "

_igbceiAzTVN+2Cc,N+2(ti+7)1 ( |nt)

eiATA)\timp(ti + tint)e7 iATA)‘tint: p(tl) +— [2A2 (t )ATZ

C ti+7)=—igpe 22"yN+2C
C,N+2( i T) Ohnc bN+1 T) (10) —ATZAzp(ti)—p(ti)ATzAz].

(17

where the overdot represents the derivatiér andt; is the

time at which theith atom enters the cavity. Now, if we muItlpIy both sides of Eq(17) by e ‘on the
It is possible to solve the system of differential equationgeft ande™ AN on the right and define

(10) approximately and to obtain the field reduced density . o _

matrix in the number representation after the passage of a eh MMp(t)e A AN=T5(1), (18

single atom through the cavity. In Appendix A we show that

we can do this if we make the assumption

iATAN;

we can follow the same procedure as in Rdf6] and set

t=t; so that
Gab_Gab_, o AD(D)=p(t+At)—p(t)=rAtL p(1). (19)
Gpc O Then, by dropping the overbar so as to simplify notation, we
obtain
A A
3,5, e w G
2 72 —gr = KU2AZB(DAT2 = AT2AZ5(1) ~ (1) AT?A%),
wheree=g/A and (20
, whereK, is given by Eq.(6). We can rewrite Eq(20) as
g
—<A. (12 do(t
A %= —IN[ATA, p(1) ]+ K [2A2p(1)AT2— AT2AZp(1)
If we make use of the approximate solution of Efj0) —p()AT2A?]. (22)

obtained in Appendix Asee Eqs(A33)], the field reduced
density matrix after the passage of one atom through th&/e notice that apart from the first term on the right-hand
cavity is given by side in Eq.(22) this equation is exactly the same as E5).
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The first term arises because of the dynamic Stark shift thagtate is, for example, the one-photon Fock state, then the
appears automatically once the three-level dynamics is desteady state of the field is the odd coherent St&é]

scribed from first principles.
la)o={2[1-exp(—2a)]} Y|a)=|-a)]. (28
Ill. PRODUCTION OF SCHRO DINGER CAT STATES
The two components of the even and odd coherent states
In this section we introduce the parametric pumping and«) and|— «) can be quite distinct if the amplitude has a
determine the steady state of the quadratically pumped angngth rather greater than unity. As a result, the combination
damped cavity field for small Rabi angles of the dampingof parametric pumping and two-photon dissipatigvhich,
atoms. The Hamiltonian that describes the parametric pran this case, is provided by an atomic beam of three-level
cess may be written in the rotating-wave approximation as atomg can be said to produce Sckiinger cat stategs,6].
_ t —2iwty AT2 ¢k 2wt p2
He=hwA'A-h(e EATHEGeTAY), (22 IV. MASTER EQUATION FOR RABI ANGLES

where w is the frequency of the cavity field angl; is the OF ARBITRARY MAGNITUDE

parametric coupling constant. Our previous results in Sec. Il |n this section we follow a more rigorous procedure than
are given in the interaction picture and so we perform ahat in Sec. Il in order to obtain the master equation describ-
change of basis such that E@2) becomes ing the competition between the parametric pumping process
. 42 a2 and the two-photon absorption process we are considering

Ve=itKg(A™*—A%), (23 here (a stream of three-level two-photon absorbing atoms
, . _ _ , _ As we shall see, under certain conditions we can relax the
whereée=iKg andég=—iKg. (This choice oK is made  555umption of small Rabi angles used in the preceding sec-
to ensure slightly simpler equations for the steady state anon_[The master equation obtained in this section reduces to

the quantum jump simulatior)sThl_Js, for the parametric pro- Eq. (26) if we assume small Rabi anglésThe derivation

cess alone, we obtain the equation of motion for the densityg|qw, besides being a generalization of the derivation of Eq.

matrix in the interaction picture as (26), will serve to shed some light on the system being stud-
do(t ied here and on the approach proposed in Sec. V.
ﬂ — t2_ a2 As we have seen, our system consists of a resonant cavity
Kl (A™“=A%),p(1)]. (24) >
dt mode of the electromagnetic field pumped externally by a

] _two-photon parametric process. A stream of three-level at-

Now, since we assume that the two-photon parametrigms enter the cavity in their lower levét). These atoms
pumping and two-photon absorption processes are indepeptay the role of the two-photon absorber; before they enter
dent we simply add the rates of change in the density matrixhe cavity we assume that a regular stream of the atoms
for the two processes. Therefore, taking into account EqSyasses through an excitation region where the lower state

(21) and(24), we can write |c) is created with a probability from some ground-state
q level below|c). (In the case of Rydberg atoni8] |a), |b),
ﬂ=—i)\[ATA,p(t)]JrKL[ZAzp(t)ATz—ATzAzp(t) and |c) will be highly excited Rydberg states lying well

dt above the ground stajélVe note that whep is very small,

the arrival statistics of atoms in the lower stitg is Pois-

sonian [17] (and see also the Poissonian limit of Refs.
[18,19). If the rate at which the atoms arrive at the excita-
tion region isR=1/t,, then the average rate of injection of

—p(1)AT2AZ]+ K[ (AT2—A2) p(1)]. (25)

Now, we again make use of E¢L8) and

dp(t) e e the atoms in the state) into the cavity isr=pR.
T=K,_[ZAAE(t)ATAT—ATATAAZ(t)—E(t)ATATAA] In order to derive a master equation for the field reduced
density matrix, let us assume that during the short time that
+KG[(K*KT—Z\K),F(U], (26) each atom spends in the cavity;, the change in the field

reduced density matrix due to the parametric pumping is
negligible. This is true if we assume thidgt;,<1.

The change in the field reduced density matrix due to the
parametric pumping process only is

where A=e IATAMAGATAMZ 6iMA (in the following sec-
tions we drop the tilde in order to simplify notatipn

The steady state of E¢26) can be obtained easi[{,6],
and if we writea= K¢ /K, the steady-state solution is an
even coherent ‘S“tate Gt Y p(t+ A =UA) p(HOU (A =Mg(At)p(t), (29

|a)e={2[1+exp —2a7) ]} Y |a)+|—a)] (27) Where

if the initial state of the field is comprised of even photon _ o )
numbers only{5,6] (such as the vacuum statéhis is be- UAY exp{ VeAt). (30
cause the density matrix equatid®6) consists entirely of

two-photon processes and so for an initial state comprised afhe part of the change in the field reduced density matrix
only even photon numbers the evolution of the density madue to only the interaction with one two-photon absorbing
trix will never produce any odd photon numbers. If the initial atom is given by
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p(t+t; t)=§p(t)§T+ép(t)éTEML(t- Jp(t), (3D simulation procedure by rewriting the master equaiid6)
" " ’ in terms of the very small time steft:
where

i V
p(t+ot)=p(t)— ;,l—f &[Teyp(t) F1OtM (tin) — 1]p(1).

su-{ VR(N=1)7 - @

VR(RI-1) We assume Poissonian statistics for the incoming atoms and

we rewrite here the expression fibt, ,
&=cog VRR-1)7,

and 7= \t;, [see Eqs(13)—(16)]. Therefore, we can write
for the change in the field reduced density matrix after
K=RAt atoms have passed through the cavity

33 A ay A A
®3 M (tin) p(t) =Sp(t) ST+ Cp(H)CT, (39)

whereS and C are given by Eqs(32) and (33). For small
"Rabi angles it is easy to verify that we recover E%).from

Eq. (38) (with p—[M (ti) — 1]1p(t)/t;n). Now we notice

p(t+At)=[(1-p)Mg(ta) + PMg(tad M (tin) 1p(t) that
=[(1—p)Mg(p/r)+pMg(p/r)M(tin) 4P §'5+¢tc=1 (39)
Xp(t), (34 and Eq.(37) can be cast in the form
where i Vg
p(t+dt)=— 7o ——.p(t) | +p(1)

Mg(ta)p(t)= exl{ - Keg(ATZ—AZ)}p(t)
+rét

IV S 1 ...
Sp(1)S'— Es*sp(t) - Ep(t)STS}
(35

xex;{ KG$(AT2—A2)
+rét

R U 1 aa
Cp(t)CT— ECTCp(t)— Ep(t)CTC}
and we have uset,=R '=p/r. (Note the exchange of
roles between pumping and damping compared to the con- (40
ventional theory as in, e.d.18,19.) We show in Appendix
B that when we coarse grain the master equation we obtai
in the limit p—0,

ﬁl’he dissipative part of this master equation is now in the
Lindblad form[20] and so the whole master equation can be
unraveled 14] into individual trajectories as shown below.

dp i Following the state vector Monte Carlo method presented
a7 NVe.p(O]+rIM=1]p(D), (36 in Refs.[14,15, we define the state vector
. .. . . . —(i/f)rH g6t
which is in form of the master equation for Poissonian |¢(1)(t+&)>:e l(t)) (41)
pumping statistic§17] (see the Poissonian limit in Refs. J1— 6P ’
[18,19).
where

V. QUANTUM JUMP APPROACH Ko o , 4 ol A

In this section we use the Monte Carlo wave-function Heﬁ_'hT(A —AY)-I 2(SSHC 2 (42
methods[14,15 to simulate the dissipative process for the
large Rabi angle case. The quantum simulation describes ti@d we further define the time evolved state vectors
time evolution of a single realization subjected to quantum &
jumps when dissipative processes take place. We start from a 2 _
“mesoscopic” point of view where the system is described |95+ o) = Jé W(t»ﬂ’ 43
by the coarse-grained master equation obtained in the pre-
ceding section. [

We defined in Sec. IV the average rate of atomic injection |y (t+ 6t))= ly(t))\r 8t (44)
r=pR. The probability of finding a single atom in an infini- \/5_'38
tesimal interval't,t+ 6t] is then given bysP=r 6t. Let us
take the master equatia6), but with At replaced by the
very small time intervalst such thatr st<1. [This differs
from Eq. (B3) because we are now considering a small time,
step for the coarse-grained master equatidie will see
below that in this limit we can identify 5t as the probability SPs+ SPc=SP=r&t. (45)
for a quantum jump to occur as a result of performing a
selective measurement of the atomic state after the atom We now use Eqsi41)—(44) again and define the relative
leaves the cavity. We now begin our derivation of a quantunprobabilities

One of these state vectors will be chosen at every time step
in the simulation. If we make use of Eq&ll)—(44) we can
show that, to first order it, the “jump probabilities” for

the operators andC satisfy
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5Pg A In order to simulate the time evolution of the system we
Hszﬁ=<¢(t)|§3| P(1)), choose the values afP=r6t, 7=Atj,, and a®=Kg/K .
We then calculaté<, =r72/2 and Kg=a?K, and at each
time step we find the random numberand

SPc o
le=—5"=(¥(|CClu(v). (46)
Hs:% [(N+2[ (1)) Pery,

Using the above definitions we can show that the weighted
random choice of the state vectdes* %)) is equivalent to

the master equatiofB7). In order to do so, we first make
some definitions. We defineas the ensemble index and for
the ensemble membe, k.=1,2,3 depending on whether . . o
state| (M), |4?)), or | ¥} is chosen in the simulations that vectors(42)—(44) in the Fock basis and, taking into account
will be discussed below. If the number of members of theEqs'(4l)_(44)’ we choose the state of the system according

ensemble id.,s then the ensemble-averaged density opera!0 the following rules() If oP<y,

Me=1-1ls, (50

where ay is given by Eq.(16). Then we write the state

tor is
Kgot
L e (N4 80) = (N]p(0)+ === IN(N=T)
p(tdend=3— 2 W)WM, (47
ense=1 X(N=2|g(t))— V(N+1)(N+2)
where |%(t))(yk(t)| is a conditioned density operator X (N+2|y(t))}. (52)
[14] and expressiof47) is the average over the members of
our representative ensemble at tim&hen, at time+ st the  (b) If SP=y and(i) if sPs<v,
ensemble average gives (8 the limit Jg,s— )
- 1
p(t+0t) = (1— 6P)| D (t+ o))V (t+ ot)| <M¢ma+&»=QﬁdminﬂN—lhRM¢ﬂ»
C
+ SP[IIg @ (t+ 6t) W P (t+ 6t)| (52)

+1Lc| @ (t+ o)) (3 (t+ ov)|] and (i) if SPs=,

=[g(t))(p(1)|+r bt 1
<M¢@u+50%>Trgq«N+1xN+szN+a¢a»,
S

(53

X

K N
(A= 2) [O)(g()] | +r LS u(D)

XS+ Clp(OWWOICT=[p(O))(D]].  where Kgdt= 8Pa?7%/2. This simulation, once averaged
(48) over many realizations, will then reproduce the results of the
master equation&t0) and (48).
Then we finally can write We next need to calculate the behavior of observable
quantities from these simulations. The ensemble-averaged

d_t) Vg - L density operator is
—— == 71— p() |+ r[ML(ti) —1]p(t), (49
dt f r 1 Jens
o , o pltden=3— 2 [ )y ). (59
which is equivalent to Eq(37) if we write p(t)=p(t). In ense=1

this way we have obtained the correct master equation that ]
describes the competition between parametric pumping angrom the above expression we can calculate the mean photon
two-photon absorption due to the three-level atoms that entdfumber
the cavity with a statistics characterized by the parameter .
p, where now the Rabi angles of the two-photon absorbing (N)(t,dend =TI Np(t,Jend ]
atoms can be large.
To perform the Monte Carlo wave function simulation,
we choose a random number which is uniformly distrib-
uted between 0 and 1, and compare it wiR. If 6P is
smaller thary, no quantum jump is deemed to have occurredthe variance
and the state of the systemtat 6t is given by Eq.(41). If
SP is larger thany-a quarjtum jump occurs. Then, if E(t’Jens):<N2>(taJens)_<N>2(tv‘]ens):Tr[Nzﬁt-Jens)]
6Pg=11g6P= 1y, the jump will be an 'S jump” and the L
state of the system at+ St will be given by Eq.(44). If —{TrNp(t,Jend 1}2, (56)
6Pg<y the jump will be a ‘C jump” and the state of the
system will be given by Eq43). and any other observable that we desire.

Jens

1 -
=32 (WRINOw), (59
ense=1
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VI. NUMERICAL RESULTS “bars” across the figure; however, the selection |gf>)

In this section we present the numerical results obtaine§an Pe clearly seen. As we see, the mgre_drastlc jumps hap-
following the procedure described in Sec. V. In Figgy2 ~ Pen when the stochastic wave functiai®) is chosen. The
2(f) we show our numerical results far?=Kg/K =4, reason for these jumps being more accentuated is that the
SP=r&t=10"2, r=\t;,=10"2, andr=10" for a cavity atoms enter the cavity in the lower state and as the selection

field starting from the vacuum. The ordinate akig repre-  of state|y$) corresponds to the detection of the atoms in
sents the number of iterations of the scheme given by Eqdhe upper state, we observe a more drastic change in the state
(51)—(53). In Fig. 2a) we show the mean photon number of the system whenev¢¢§)) is selected. In Figs.(2)—2(f)

(N) and photon number varianc=(N?)—(N)? for only ~ we show our results for I1dotted curvg 10 (dash-dotted
one member of the ensemble. In this figure we can see jumpsurve), and 30(full curve) samples of the system represen-
in (N) andZ that finally converge to a value of about 4.0, tative ensemble. In all the graphs we see the jumps wash out
but with only small fluctuations around the final value. Al- when we take more and more members of the ensemble into
though there are still some residual fluctuations, we noticeccount. In Fig. &) we plot the cavity field quadrature vari-
that both mean photon number and photon number variancgnce AX,= \(X2)—(X,)? and note this result agrees with
evolve together, experiencing the same small fluctuations fothat obtained in Refl21]. Figure 2Ze) shows the quadrature
large enough timesfor Ny larger than~1.5x10°). This fiuctuationsAX; = (X2 —(X1)2. In Fig. Ag) we depict an
confirms that the steady state is an even coherent state. Figggication of the cavity field purity Tr%. As we see, the field

ure 2b) shows the same results as those presented in Figyolves first to a statistical mixture and then, in the steady
2(a); however, we have now superposed these with the hissiate, becomes a pure stfigs even coherent state which is
tory of the system time evolutioftriangles. In this case the ¢jose to Eq(27) because of the small value of. In Fig. 3
values 1, 2, and 3 are selected when the state végoh, e show a three-dimensional plot of the Wigner function for
|3y, or |4 is chosen, respectivelgf. Eqs.(41)—(44)].  the same values of the parameters as in Fig. 2 and for
The frequent selection ¢f{") and| ) results in the solid  N;=2.0x1° corresponding to the steady state in Fig. 2.
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FIG. 2. Our numerical results far?=4, sP=102, r=10"?, andr = 10? starting from the vacuum. These results were calculated using
the quantum-jump approach of Sec. V. The ordinate Blxisepresents the number of interactions of the scheme shown byHgs(53).
We have results for a single sample (@ and (b) and show(a) the mean photon numbéN) and varianceS =(N2)—(N)2 and (b) the
locations of the jumps into the sta@®) are indicated with the triangles superimposed on the resul@.oh (c)—(f) we show our results
for 1 (dotted curvg 10 (dash-dotted curye and 30(full curve) samples:(c) mean photon numbefN), (d) photon number variance
3 =(N?)—(N)2, (e) varianceAX,, and(f) varianceA X,. In (g) we show the purity of the state % with 30 samples.
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FIG. 2. (Continued.

The interference fringes in the Wigner function indicate thesP=10"2, 7=10 2, andr=10?, but now with the field in
coherence between the two components of even coheretife state[cos(/2)|0)+sin(¢/2)|1)] for ¢=m/4. This ad-
state. mits odd Fock states as well as even Fock states. As we see

In Figs. 4a-4(d) we present results fora®=4, in Fig. 4d), the field steady state generated from this seed
state is no longer a pure state. In Figéa)55(d) we show
our results for the same parameters as in Figg—4i(d), but
for ¢=/2. In Fig. 5d) we see that the deviation from a
pure state is larger in this last case. This is because the initial
state contains an equal superposition of even and odd Fock
statequnlike Fig. 4 where the even states dominated this
leads to a balanced statistical mixture of the even and odd
coherent states.

In Figs. Ga)—6(f) we increase the Rabi angle of the ab-
sorbing atoms and present our numerical resultsafor 4,
5P=10"2, r=10"1, andr =107 calculated by the quantum-
jump approach. Figures(® and &b) show, respectively,

(N) and X for only one member of the ensemble. In Figs.
6(c) and &d) we employ the same parameters as in Fi¢a). 6

and @b) but we show the results from an average over 100
samples. If we compare these results with those shown in
Figs. 4c) and 2d) we see that the fluctuations {iN) and

3 in the steady state have increased and also that the steady
state is reached quickly. This happens because in this case
the coupling constants of the three-level atoms are larger,
which corresponds to larger Rabi angles such that these two-
photon absorbing atoms are less efficient as pure absorbers

FIG. 3. Three-dimensional plot of the Wigner function for the and allow the photon distribution to be pushed towards larger
same values of the parameters as in Fig. 2 and\fer 2Xx 10°. photon numbers due to the parametric pumping process. In
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FIG. 4. Results for a?=4, 6P=10"2 7=102 and r=10° with 100 samples. The initial state of the field is
cos(/2)|0)+sin(g/2)|1) for ¢=m/4. We show(a) and (b) the mean photon numbéN) and variances =(N2)—(N)?2 for 1 and 100
samples, respectivelyg) variancesA X; andAX, (with 100 samplels and(d) the purity of the state T (with 100 samples

Fig. 6(f) we see that the steady state so obtained is not a pudescribe two-photon absorption of the cavity field. In this
state. limit we have seen that if we parametrically pump the cavity
In the previous figures we saw that the dynamics of theield the steady state becomes an even coherent (sthen
system is strongly affected by a change in the coupling conthe cavity is initially empty.
stant of the two-photon absorbing atoms. In order to demon- Our principle goal has been to develop a master equation
strate this feature of the system more clearly, we depict ino describe the absorption process when the interaction be-
Figs. Ma)—7(e) our results for(N), 3, AX;, AX,, and tween the absorbing atoms and the cavity is weak or strong.
Trp? for 7=1x10 2, 2.5x10 2, and 5< 10 2. Aswe see in By assuming Poissonian statistics for the incoming absorbing
these figures, when we increase the value,aofie reach the atoms we find the master equatié®6) where the decay of
steady state more quickly. We notice also that comparing théhe field is seen to be controlled by two operatBrand C
results forr=1x10"2 and 2.5<107%, in the steady state, [Egs.(32) and(33)], which depend nonlinearly on the inter-
the deviation from a pure state of the system for this last casgction timet;,,. The master equation could be solved directly
is not very large and the system reaches the steady stajy numerical methods, but we have chosen to explore the

much more quickly than in the previous case. possibility of a state vector Monte Carlo simulatipBgs.
(51)—(53)]. This is possible because the master equaBén
VIl. CONCLUSION [and the decay pail, —1; see Eq(31)] can be written in

the Lindblad form[see Eq(40)] allowing an unraveling into

We began this article with a simple heuristic derivation ofthree processes: a8 jump, aC jump, and no jump. The
the small Rabi angle master equati®h describing a process simulation of the master equation using the stochastic trajec-
of cavity field decay taking place two photons at a time. Wetories of an ensemble of state vectors has the advantage of
then justified this with a more rigorous model based on thaising less computer memory than a direct integration of the
idea of a stream of three-level atoms passing through a cawdensity matrix.
ity. The atoms act as an absorber of photons from the cavity The numerical results have utilized the quantum-jump
field because the atoms all enter in their ground state. Thegimulations of Sec. V. For weak interactiogsmall Rabi
act as two-photon absorbers because the cavity-atom interagngle we have shown that we obtain the expected steady-
tion is at two-photon resonance. In the weak-coupling limitstate limit (starting with an unexcited cavity statea pure
(small Rabi angleswe derived the master equatié®l) to  even coherent state as in Eg7). Such a cavity field state is
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FIG. 5. Results for the same parameters as in Fig@—4(d), but for ¢= /2. We show(a) and(b) the mean photon numbéN) and
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Trp? (with 100 samples

a microscopic superposition of two differefmonoverlap- e M7C, ()= —,C (7)

ping) coherent states that is generated here by the interaction an TEbNFLLED

of the parametric pumping and the absorbing atoms with the

cavity. However, we have seen that when the initial cavity e27C 1 o( )= — EoCp naa(T),

state is changed to a superposition of even and odd Fock ' ’

states we lose the purity of the steady state. Likewise, as the

interaction time of the absorbing atoms is increa8ecdreas- Cpns1(7)=— 8187 MTC, N(7) — £26#27Co s o( 7).

ing the Rabi angle of the interactipthe purity of the final ' ’ ’ (A2)
state decreases.

ACKNOWLEDGMENTS Now, _if we use a Laplace transformation, the system of dif-
ferential equation§A2) reduces to the set of algebraic equa-
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Sciences Research Council. (z+ 1) Can(z+ p1) = Con(ti) = — £1Cp n+1(2),
APPENDIX A: SOLUTION OF THE SYSTEM ~ ~
OF DIFFERENTIAL EQUATIONS (10 (2= p2)Cen+2(2— p2) = Ce nt2(t) = = $2Ch n+1(2),
If we define - -
) ) 2Cyn+1(2) = Cpnrati) == {1Can(Z+ 1)
{1=10apYN+1, {1=igpcyN+2, _
. _ —$Cent2(Z— o). (A3)
/L1:|Al, /L2:|A2, (Al)

the system of differential equatiori$0) can be written as Solving Eq.(A3) for Eb,NH(z) we find



3852 E. S. GUERRA, B. M. GARRAWAY, AND P. L. KNIGHT 55

16— T T T
12+ .
al ]
A [
P 8r — W [
V B
i 2r -
i ‘ i | | -
4 | |
| 1:— (d) i
| (a) [ :
0 i i 1 1 1 |6 1 1 1 1 |6 1 1 1 1 16 1 1 L s 0 I i i 1 1 16 1 1 1 1 16 I n n 1 16 1 I I 6
0 0.5x10 1.0x10 1.5x10 2.0x10 0 0.5x10 1.0x10 1.5x10 2.0x10
Nlt Nit
15 —r—r————"——"——F—T—"—T—T——T——"—
N L
3 15} .
T [
Al c [
© [
- 1.0_- ]
> [
4 L
0.5£
[ ©) AX,
0....|.6...|.6...|.... 0'....|....|....|....'
0 0.5x10 1.0x10 1.5x10° 2.0x10° 0 0.5x10° 1.0x10° 1.5x10° 2.0x10°
it Nit
1.00 ——r———————— 71—
0.95[ :
3r 7] o [
> i 2 o090}
V |
2; b -
; ] 0.85
T (0 ]
[ ] » ()
0'....|....|. M D R ogob—— e
0 0.5x10° 1.0x10° 1.5x10° 2.0x10° 0 0.5x10° 1.0x10° 1.5x10° 2.0x10°
Nit Nit
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(2 p1)(Z= p2) Cp N+ a(t) = §1(Z2— u2) Ca n(ti) — £a(Z+ 1) Ce i 2(ti)

C = Ad
oeal? 22+ uy) (2 o)~ 42— )~ 32+ 1) A
and for the case in whicl . 1(ti)) = Cy n(1)) =0, Eq. (A4) simplifies to
~ -C t.
Conea(2)= eN+2(ti) Ea(Zz+ pa) (A5)

2(z+ py)(2— po) — E(z— po) — (24 py)

If z;n, Zon, andzzy are the roots of the denominator of E45) and we use the inverse Laplace transformation, the solution
of Eq. (A2) can be written
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Now we assume If we obtainx, the other two roots are

Gab _ Gab 2 1 1
Jab_Fab_ 4.4 ¢ A7) Xo==[—a+ry], Xz3==[—a—ry\], (A19)
Obe g ( 2 2 N 3 2 N
and where
Ay A ) rn=Va’—4p. (A20)
A_:A_:_1+6’ (A8)
2 2 In order to obtainx; we write
wheree=g/A. In order that the two-photon transitions are X1=Co+ Cre+Cpe?+ Caed+Cyel. (A21)

dominant, one-photon transitions must be suppressed and

therefore the detunind has to be large compared to the |f we substitute Eq(A21) in Eq. (A13) and collect terms of
coupling constants between the energy levels. We will studyrdere, then to satisfyf (x;) =0 we choose,=0. It follows

the cases in which

9ab,Obc<A. (A9)
Therefore,e<1 and
g2
x <A. (A10)

thatc,=c3=0,

C,=—la,lr, (A22)
and
a,(a,s— ¢r
Cu=i # . (A23)

There is no need to solve the cubic equation in the denomi- Substituting EqstA17) and(A18) in Eq. (A20) we obtain

nator of Eq.(A5) exactly. We can find the roots \, z,y,
andzzy perturbatively under the assumptiof#s6)—(A10).

We have to find the roots of the denominator of Ey),
i.e., the roots of

f(2)=2(z+ p1)(2— po) — EX(z— py) — E5(2+ o),

(A11)
which we will call z;, z,, andz;. Let us define
A Jab Jab/A4
r=-—, q=—, p=Qqr=—7 -, Al12
A g PN gpern, A

whereA;=A, gy.=9, and|r|, |p|, and|qg| are of the order
of 1. Therefore,A,=rA and g,,=q9g. We definex=2z/A
ande=g/A, and then Eq(All) can written as

f(X)=x3+isx?+[r — ¢pe’]x+ia,e?, (A13)
where
¢=—-[q*(N+1)—(N+2)] (A14)
and
a,=—[rq%(n+1)—(n+2)]. (A15)

The solution of Eq(A13) can be obtained more easily if we

write
f(X)=(X—X1)(X2+ ax+ ), (A16)
where
a=is+x, (A17)
and
B=ax,+r— ¢e. (A18)

r,%,=r—1§(Nze4(q2r—1)[q2r2(2r+ 1)—(r+2)]

+2Ne?{e[g*r3(2r+1)—3g?r(r2+r+1)+2(r+2)]
—r2(r+1)(g%r+ 1)} +€X(g?r—2)[g%r?(2r+1)
—(2r+2)]-2r2e®(r+1)(g?r+2)—r3(r?+r+1)).
(A24)
If we choose
r=-1, g=-1 (A25)

andp=—1. Substituting Eq(A25) in Eq. (A24), we obtain

ri=—(Qn/A)?, (A26)
where
gz
On=(2N+3) % (A27)
If we choose
r=—1+¢% q=—1+¢ (A28)

andp~ — 1. Substituting Eq(A28) in Eq. (A24), we obtain

2
rﬁz—(%) , (A29)
where
2
®N=2\/(N+1)(N+2)QK. (A30)

Now, making use ofz=xA we can write
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Zl,N:iQN'
2

[
ZZ,N:_E(A_%_FQN—{_@N

2

[
ZZ,N:_E{A_%—'_QN_@N]’ (A3l)
or
Zl:iQNl
[A— —(YN+1-N+2)7]¢,

[A— 9 - (NTI+ m)z]] (n32)
Then the approximate expressions for E46) are
Can(ti+ 7')“N“ie_i(gzm)(ﬂz)cc,mz(ti)e_m’\‘(ﬂz)sm( N%) ,
Cpn+1(tji+7)=~0,

. T
Censa(ti+ T)“Cc,N+2(ti)e_'QN(7/2>COS< ®N§) .
(A33)

Finally, let us assume that,, andg,.=g are fixed and
p=1. Thenr =1/9=gpc/9ap=9/dap IS fixed. Therefore, for
A;=A we have

Ue O 9)2
==+ . A34
Jab Gab A ( )
From Eq.(A34) we can obtain
Gab
A= —_— A35
g 9—0ab ( )

andA,=rA=(9/gap)A.

APPENDIX B: DERIVATION OF THE MASTER
EQUATION (36)

We start with the short time evolution of the master equa-

tion (34),

p(t+A)=[(1-p)Mg(ta) + PMg(tad M (tin) 1€p(t)
=[(1-p)Mg(p/r)+pMg(p/r)M (tin) ]2V
Xp(t), (B1)

whereM(t,) is given by Eq.(35). Then, in order to write a
differential equation fop(t) we use[18,19

p(t+At):exp(pAt|n{MG[1+p D p) (B2

and following the one-photon derivation of REE9] we take
a time intervalAt such that

3855

rat>1 (B3)

or, in other wordsAt is chosen such that many atoms ex-
cited to the statéc) pass through the cavity during this time
interval. This is necessary in order that the stepwise change
of the cavity field can be treated as a continuous process.
Then we may writg19]

Ap

Se- oM IR -] (B9
if

SAUINMG 1+ p(M - Dllp(0]<1. (B9

In order to assume that EB3) is valid, the sufficient con-
ditions are

[[M_(tin) —1]p(t)| <1 (B6)
and (for a generap)
IN[Mg(ta)Ip(t)|<1. (B7)

The condition(B6) requires that the change in the field
density matrix due to the passage of one two-photon absorb-
ing atom is small. In order to analyze conditioB7) we
write

In{1+[Mg(p/r)—1]}p(t) =[Mg(p/r)—1]p(t)
+[Mg(p/r)—11p(t)+ - - -
(B8)
If we assumeKgp/r<1, then
i p 1 p?
[Me(p/m)]p()=| 1=+ Ve=532 1z Ve |p(l)
ip, 1 p
It a Ve gz Vet
(B9)
Therefore,
In{1+[Mg(p/r)—1]}p(t)= _%F[VG p(t)]
1p° a2
+o52 12lp(UVG+Vep(D)]
i p?
If p/r=R 1<1 andKgp/r<1 we see that conditiofB7) is
fulfilled.

We note that for Poissonian pumping-¢0) condition
(B7) is necessarily held and we need to retain only the first
term on the right-hand side of E§B10), as we shall see
below. In Sec. V we interpret the quantitAt as the prob-
ability of making a measurement and finding an atom in the
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time interval[t,t + At] and we shall takeAt<1. Of course, preciably. This approximation can lead to incorrect results

in this case Eq(B5) can be satisfied even if EqE86) and  regarding the time evolutiofor dynamic behavigrof the

(B7) are not. system. However, for the steady state it is easy to show that
Under the assumption®6) and (B7) and approximating such a differential equation yields the correct refif]. We

the coarse-grained p/At by the time derivativadp/dt, we  have assumed thd#l; and M act independently over the

obtain the master equation time p/r=t, or, as the atoms spend a timg<<t, in the
cavity, we have assumed thilt; andM act independently
dp r over the timet;,;. Such an approximation holds exactly for
T BIn{MG[1+ p(M_—1)]}p(t). (B11) Poissonian statistics for the injection of absorbing atoms be-
cause

Now, following the procedure as in Rdfl9] we get
[(Mg—=1),p(M_—1)]p(t)
dp

r r
—=—In[Mglp(t)+ =In[1+p(M,_—1)]. (B12 i p? ~ 1
dt pn[ clp(t pn[ P(ML=1)]. (B2 %—pr [VG,p(t)]—F(ML—l)[VP,P(t)])'F-~',

If we neglect terms proportional tp? and higher power (B14)
terms in Eq.(B10), we obtain[18,19

where p(t)=(M_—1)p(t) and we have used Mg
q | ; —1)p(t)~—(i/4)(LIr)[Vgs,p(t)]. We can do the same for
p
_ g[Ve ,p(t)]+5ln[1+ p(M_—1)]p(1). (B13) other commutators that show up when we expand(Bg1)

dt [19]. Therefore, as =pR,

This is the master equation that describes the competition dp i

between two-photon parametric pumping and two-photon gt " 7Ve.pO1FT(ML—=D)p(1)
absorption by a stream of three-level atoms. We should

stress that if we assumdt<1we can relax the assumption + (terms proportional t@). (B15)

of small Rabi angles for the two-photon absorbing atoms.

Now let us review some of the approximations involved Taking the limitp— 0, Eq.(B13) becomes the master equa-
in the derivation of the above master equation. We havdion for Poissonian pumping statistics discussed in the text as
approximated the coarse-grained quotient in @4) by the  Eq. (36). It is valid for Kgp/r<1 and holds irrespective of
time derivative where\t is such that several atoms in the the magnitude of the Rabi angle of the two-photon absorp-
state|c) pass through the cavity during this interval of time, tion since, takingkg=0 (Mg=1), p—0 guarantees that
while the field reduced density matrix does not change apEq. (B5) is fulfilled.
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