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Two-photon parametric pumping versus two-photon absorption: A quantum jump approach

E. S. Guerra,* B. M. Garraway, and P. L. Knight
Optics Section, The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom

~Received 7 November 1996!

We show that it is possible to produce superpositions of distinct coherent states~even or odd coherent states!
in a cavity where the field is pumped by two-photon parametric amplification and simultaneously undergoes
two-photon absorption by a beam of three-level atoms that travel through the cavity interacting with the cavity
field. Previous studies modeled the absorber with an effective Hamiltonian without involving real atomic
excitation or entanglement, a procedure justified only for weak coupling of the two-photon absorbing atoms.
We examine the validity of this assumption by modeling the atomic absorber dynamics from the onset. In order
to study the system numerically we make use of a Monte Carlo wave-function method in which the two-photon
absorbing atoms can interact with the cavity and evolve with large Rabi angles.@S1050-2947~97!01405-4#

PACS number~s!: 42.50.Dv, 42.50.Lc
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I. INTRODUCTION

The interaction of matter and radiation can change
statistical properties of the electromagnetic field and gene
fields with special quantum features. Nonlinear processes
volving two-photon transitions play an important role in t
production of nonclassical light and have long been utiliz
as a way of producing squeezed light@1#. In particular two-
photon parametric pumping has been shown to be an im
tant source of squeezed light@2#. It has also been shown tha
interactions involving two-photon transitions can generate
preserve quantum features. For example, the one-photon
sorption process~a linear interaction! destroys quantum fea
tures of the field rapidly, whereas two-photon absorpt
processes~a nonlinear interaction! can build up quantum fea
tures@3#.

The two-photon absorption process that a field underg
when traveling through a two-photon absorbing medium
been studied in Refs.@3–6#. The time evolution of the field
reduced density matrix for such a process is described b
master equation where the change in the field reduced
sity matrix is obtained by applying a Liouvillian superoper
tor to the initial reduced density matrix of the field@4#. The
analytical solution of this master equation has been obta
@3# and the dynamic behavior as well as the steady stat
the system has been studied. If a field is pumped by a t
photon parametric process and the losses are due on
two-photon absorption then, depending on the initial sta
the field can evolve into Schro¨dinger cat states, specificall
the even coherent state and the odd coherent state@5,6#. The
dynamics of these systems was studied in detail in R
@5,6#.

Recent technological achievements have made pos
the construction of electromagnetic cavities with very hi
quality factors (Q) @7#. This has led to the development o
cavity QED, and many interesting problems that in the p
were mere theoretical idealizations now are perfectly p
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sible to realize experimentally. An example is the possibil
of manipulating intracavity fields and of producing field
with special quantum features. The interaction of a sin
atom with a single quantized cavity field mode has be
much studied@8# and is one particular way of building u
such fields. Micromasers@9# and microlasers@10# are experi-
mental realizations of such systems. In those systems
high cavity quality factor (Q) permits the production of
fields with very peculiar, or quantum, features and with on
one atom interacting with the cavity field at a time. This
quite contrary to a typical laser or a system in which the fi
propagates through two-photon absorbing media, where
have a large number of atoms interacting with the field.
further example of a situation in which ‘‘two-photon’’~ac-
tually ‘‘two-phonon’’! processes can dominate is that of
laser-cooled, trapped ion with vibrational states that can
manipulated using sequences ofp pulses driving vibrational
sidebands. For such ionic motions dissipation is very we
and in this way cavity QED can be realized without a cav
@11#. Indeed it is straightforward to translate cavity QE
results~such as ours! into a direct ion trap equivalent, which
may well be easier to realize@12,13#.

Our aim in this paper is to study the field produced ins
a cavity pumped by a two-photon parametric process
subjected to two-photon absorption. The absorption result
the relaxation of the cavity field and is caused by a stream
three-level atoms that enter the cavity in the lower sta
Figure 1 shows a sketch of the kind of system we will stud
Previous studies modeled the absorber with an effec
Hamiltonian without involving real atomic excitation or en
tanglement, a procedure justified only for weak coupling. W
will examine the validity of this assumption by modeling th
detail of the atomic absorber dynamics from the outset.
assume that the cavity has an extremely highQ factor and
we neglect one-photon losses, although such losses can
ily be included. Generally, one-photon losses destroy
quantum features that we seek to demonstrate here. Fo
case of weak coupling to the three-level atoms, we h
already studied these detrimental effects in Ref.@6#. We will
not pursue the~realistic! inclusion of these processes here
order to focus on the principal results from our model. Th
we assume that the atoms do not decay during their pas

io
io
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55 3843TWO-PHOTON PARAMETRIC PUMPING VERSUS TWO- . . .
through the cavity. Therefore, the mean lifetime of the atom
must be much larger than the interaction time. As we will s
it is possible to generate Schro¨dinger cat states in such sys
tems.

The outline of this paper is as follows. In Sec. II w
obtain the master equation for the two-photon absorpti
process. In Sec. III we take into account two-photon pa
metric pumping and show that the competition between t
parametric pumping and the two-photon absorption gen
ates a steady-state field that is an odd or an even cohe
state if the coupling constant of the two-photon absorbi
atoms are small. In Sec. IV we relax the assumption of sm
Rabi angles for the two-photon absorbing atoms and deriv
more general master equation, which becomes the focus
the rest of the paper. In Sec. V we show how the mas
equation obtained in Sec. IV can be studied using a Mo
Carlo quantum jump approach@14,15#. In Sec. VI we present
and interpret our numerical results. Finally, in Sec. VII w
conclude and summarize our results.

II. TWO-PHOTON ABSORPTION MASTER EQUATION

The two-photon absorption master equation for light tra
eling through a two-photon absorbing medium has been
rived in Ref.@4#. Here we review the derivation of this mas
ter equation starting from a simple two-photon Hamiltonia
for an absorption process by a stream of atoms that p
through a cavity inside which we have a single domina
mode. The statesua& and uc& will stand for the upper and
lower atomic levels, respectively. The Hamiltonian for th
system may be written as

H5\vA†A1
\

2
vac~ ua&^au2uc&^cu!

1\l~A2ua&^cu1A†2uc&^au![H01HI , ~1!

whereA andA† are the field annihilation and creation op
erators. We note the absence of a Stark shift in this pheno
enological Hamiltonian. If we write

VI5eiH0t/\HIe
2 iH0t/\ ~2!

we have

FIG. 1. The system considered in this paper consists of a pa
metric oscillator driving a single-mode cavity field that is addition
ally pumped by a beam of three-level atoms that crosses the ca
as shown on the left-hand side of the figure. The parametric driv
will try to create a squeezed state in the cavity, while the beam
atoms provides a dissipative mechanism of an unusual kind. On
right-hand side we show the energy-level scheme with atomic l
els ua&, ub&, anduc& and detuningsD1 andD2.
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VI5\l~A2ua&^cu1A†2uc&^au!, ~3!

where we have assumedvac52v. We expand the time-
dependent state vector in the superposition

uc~ t i1t int!&5(
N

@Ca,N~ t i1t int!ua&1Cc,N~ t i1t int!uc&] uN&,

~4!

wheret i is the time at which thei th atom enters the cavity
and t int is the time the atom has spent in the cavity.

The derivation of the master equation~5! below can be
made by following the method used to obtain the one-pho
loss process master equation presented in Ref.@16#. By solv-
ing the Schro¨dinger equation and making the assumption
small Rabi angles, in order to expand the amplitude coe
cients in the vector state of the atom-field system, we ob

ṙ~ t !5rL cr~ t !

5KL$2A
2r~ t !A†22A†2A2r~ t !2r~ t !A†2A2%, ~5!

wherer is the average rate of atomic injection and we ha
defined the constant

KL5
rl2t int

2

2
, ~6!

where the constantKL is related to the two-photon absorp
tion coefficient@5,6#.

The two-photon absorption master equation~5! above was
obtained from a simple model in which we have assumed
field in the cavity interacts with a beam of two-level atom
that undergo small changes in the Rabi angle. Now we c
sider the more realistic situation in which the atomic be
source of absorption is properly modeled by three-level
oms ~such that two-photon interactions are dominant! and
where we do not assume small Rabi angles. We will s
assume that the density of the atomic beam is sufficie
low in order that only one atom interacts with the field a
time.

In this more detailed model, a flux of three-level atom
with statesua&, ub&, anduc&, is injected into a cavity tuned to
the frequencyv. The atomic statesua& anduc& are the upper
and lower states as above andub& is an intermediate state
with energy\vb nearly halfway between the energies\va
and\vc . We again assume that the atoms are injected
the cavity with an average rater and that the atomic beam i
monoenergetic, with the atoms spending a timet int inside the
cavity ~see Fig. 1!. The detuningsD15vab2v5va2vb
2v andD25vbc2v5vb2vc2v are chosen in such wa
as to enhance the two-photon transition probability while
the same time keeping negligible the resonant one-pho
cascadea→b→c.

The Hamiltonian that describes the dynamics of t
three-level system in the rotating-wave approximation
given by
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H5\vA†A1\vaua&^au1\vbub&^bu

1\vcuc&^cu1\gab~Aua&^bu1A†ub&^au!

1\gbc~Aub&^cu1A†uc&^bu!, ~7!

wheregab (gbc) are the one-photon Rabi frequencies rela
to the interactions between the levelsa andb (b andc) and
the operatorA (A†) is the annihilation~creation! operator for
the electromagnetic field mode of frequencyv. In the inter-
action picture the Hamiltonian becomes

VI5\gabe
iD1tAua&^bu1\gbce

iD2tAub&^cu1H.c. ~8!

Then the state of the system at an instantt i1t can be written
in the form

uC~ t i1t!&5(
N

@Ca,N~ t i1t!ua&1Cb,N~ t i1t!ub&

1Cc,N~ t i1t!uc&] uN&. ~9!

Substituting this state in the Schro¨dinger equation, we obtain

Ċa,N~ t i1t!52 igabe
iD1tAN11Cb,N11~ t i1t!,

Ċb,N11~ t i1t!52 igabe
2 iD1tAN11Ca,N~ t i1t!

2 igbce
iD2tAN12Cc,N12~ t i1t!,

Ċc,N12~ t i1t!52 igbce
2 iD2tAN12Cb,N11~ t i1t!,

~10!

where the overdot represents the derivatived/dt andt i is the
time at which thei th atom enters the cavity.

It is possible to solve the system of differential equatio
~10! approximately and to obtain the field reduced dens
matrix in the number representation after the passage
single atom through the cavity. In Appendix A we show th
we can do this if we make the assumption

gab
gbc

5
gab
g

511e2,

D1

D2
5

D

D2
5211e2, ~11!

wheree5g/D and

g2

D
!D. ~12!

If we make use of the approximate solution of Eq.~10!
obtained in Appendix A@see Eqs.~A33!#, the field reduced
density matrix after the passage of one atom through
cavity is given by
d

s
y
a
t

e

rN,M~ t i1t int!5e2 i ~N2M !~g2/D!t intFsinS QN

t int
2 D

3sinS QM

t int
2 D rN12,M12~ t i !

1cosS QN22

t int
2 D cosS QM22

t int
2 D rN,M~ t i !G ,

~13!

where the generalized Rabi frequencyQN is given by

QN52A~N11!~N12!
g2

D
. ~14!

For the populations we have

rN,N~ t i1t int!5aNrN12,N12~ t i !1~12aN22!rN,N~ t i !,
~15!

where

aN5sin2S QN

t int
2 D . ~16!

In the remainder of this section we focus on the wea
coupling limit where we can establish the connection w
the master equation~5!. We write g2/D5l and expand
sin(QNtint /2) up to first order and cos(QNtint /2) up to second
order to obtain

eiA
†Alt intr~ t i1t int!e

2 iA†Alt int5r~ t i !1
~lt int!

2

2
@2A2r~ t i !A

†2

2A†2A2r~ t i !2r~ t i !A
†2A2#.

~17!

Now, if we multiply both sides of Eq.~17! by eiA
†Alt i on the

left ande2 iA†Alt i on the right and define

eiA
†Altr~ t !e2 iA†Alt5 r̃~ t !, ~18!

we can follow the same procedure as in Ref.@16# and set
t5t i so that

D̄r̃~ t !5 r̄~ t1Dt !2 r̄~ t !5rDtLcr̃~ t !. ~19!

Then, by dropping the overbar so as to simplify notation,
obtain

dr̃~ t !

dt
5KL@2A

2r̃~ t !A†22A†2A2r̃~ t !2 r̃~ t !A†2A2#,

~20!

whereKL is given by Eq.~6!. We can rewrite Eq.~20! as

dr~ t !

dt
52 il@A†A,r~ t !#1KL@2A

2r~ t !A†22A†2A2r~ t !

2r~ t !A†2A2#. ~21!

We notice that apart from the first term on the right-ha
side in Eq.~21! this equation is exactly the same as Eq.~5!.
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The first term arises because of the dynamic Stark shift
appears automatically once the three-level dynamics is
scribed from first principles.

III. PRODUCTION OF SCHRÖ DINGER CAT STATES

In this section we introduce the parametric pumping a
determine the steady state of the quadratically pumped
damped cavity field for small Rabi angles of the damp
atoms. The Hamiltonian that describes the parametric p
cess may be written in the rotating-wave approximation

HG5\vA†A2\~e22ivtjGA
†21jG* e

2ivtA2!, ~22!

wherev is the frequency of the cavity field andjG is the
parametric coupling constant. Our previous results in Sec
are given in the interaction picture and so we perform
change of basis such that Eq.~22! becomes

VG5 i\KG~A†22A2!, ~23!

wherejG5 iKG andjG*52 iKG . ~This choice ofKG is made
to ensure slightly simpler equations for the steady state
the quantum jump simulations.! Thus, for the parametric pro
cess alone, we obtain the equation of motion for the den
matrix in the interaction picture as

dr~ t !

dt
5KG@~A†22A2!,r~ t !#. ~24!

Now, since we assume that the two-photon parame
pumping and two-photon absorption processes are inde
dent we simply add the rates of change in the density ma
for the two processes. Therefore, taking into account E
~21! and ~24!, we can write

dr~ t !

dt
52 il@A†A,r~ t !#1KL@2A

2r~ t !A†22A†2A2r~ t !

2r~ t !A†2A2#1KG@~A†22A2!,r~ t !#. ~25!

Now, we again make use of Eq.~18! and

dr̃~ t !

dt
5KL@2ÃÃr̃~ t !Ã†Ã†2Ã†Ã†ÃÃr̃~ t !2 r̃~ t !Ã†Ã†ÃÃ#

1KG@~Ã†Ã†2ÃÃ!,r̃~ t !#, ~26!

where Ã5e2 iA†AltAeiA
†Alt5eiltA ~in the following sec-

tions we drop the tilde in order to simplify notation!.
The steady state of Eq.~26! can be obtained easily@5,6#,

and if we writea5AKG /KL, the steady-state solution is a
even coherent state

ua&e5$2@11exp~22a2!#%21/2@ ua&1u2a&# ~27!

if the initial state of the field is comprised of even phot
numbers only@5,6# ~such as the vacuum state!. This is be-
cause the density matrix equation~26! consists entirely of
two-photon processes and so for an initial state comprise
only even photon numbers the evolution of the density m
trix will never produce any odd photon numbers. If the init
at
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state is, for example, the one-photon Fock state, then
steady state of the field is the odd coherent state@5,6#

ua&o5$2@12exp~22a2!#%21/2@ ua&2u2a&#. ~28!

The two components of the even and odd coherent st
ua& and u2a& can be quite distinct if the amplitudea has a
length rather greater than unity. As a result, the combina
of parametric pumping and two-photon dissipation~which,
in this case, is provided by an atomic beam of three-le
atoms! can be said to produce Schro¨dinger cat states@5,6#.

IV. MASTER EQUATION FOR RABI ANGLES
OF ARBITRARY MAGNITUDE

In this section we follow a more rigorous procedure th
that in Sec. III in order to obtain the master equation desc
ing the competition between the parametric pumping proc
and the two-photon absorption process we are conside
here ~a stream of three-level two-photon absorbing atom!.
As we shall see, under certain conditions we can relax
assumption of small Rabi angles used in the preceding
tion. @The master equation obtained in this section reduce
Eq. ~26! if we assume small Rabi angles.# The derivation
below, besides being a generalization of the derivation of
~26!, will serve to shed some light on the system being st
ied here and on the approach proposed in Sec. V.

As we have seen, our system consists of a resonant ca
mode of the electromagnetic field pumped externally by
two-photon parametric process. A stream of three-level
oms enter the cavity in their lower leveluc&. These atoms
play the role of the two-photon absorber; before they en
the cavity we assume that a regular stream of the ato
passes through an excitation region where the lower s
uc& is created with a probabilityp from some ground-state
level belowuc&. ~In the case of Rydberg atoms@9# ua&, ub&,
and uc& will be highly excited Rydberg states lying we
above the ground state.! We note that whenp is very small,
the arrival statistics of atoms in the lower stateuc& is Pois-
sonian @17# ~and see also the Poissonian limit of Re
@18,19#!. If the rate at which the atoms arrive at the excit
tion region isR51/tat, then the average rate of injection o
the atoms in the stateuc& into the cavity isr5pR.

In order to derive a master equation for the field reduc
density matrix, let us assume that during the short time t
each atom spends in the cavityt int , the change in the field
reduced density matrix due to the parametric pumping
negligible. This is true if we assume thatKGt int!1.

The change in the field reduced density matrix due to
parametric pumping process only is

r~ t1Dt !5U~Dt !r~ t !U†~Dt ![MG~Dt !r~ t !, ~29!

where

U~Dt !5expS 2
i

\
VGDt D . ~30!

The part of the change in the field reduced density ma
due to only the interaction with one two-photon absorbi
atom is given by
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r~ t1t int!5Ŝr~ t !Ŝ†1Ĉr~ t !Ĉ†[ML~ t int!r~ t !, ~31!

where

Ŝ5A2
sinFAN̂~N̂21!t G

AN̂~N̂21!
, ~32!

Ĉ5cosFAN̂~N̂21!t G , ~33!

and t5lt int @see Eqs.~13!–~16!#. Therefore, we can write
for the change in the field reduced density matrix af
K5RDt atoms have passed through the cavity

r~ t1Dt !5@~12p!MG~ tat!1pMG~ tat!ML~ t int!#
Kr~ t !

5@~12p!MG~p/r !1pMG~p/r !ML~ t int!#
rDt/p

3r~ t !, ~34!

where

MG~ tat!r~ t !5expF2KG

p

r
~A†22A2!Gr~ t !

3expFKG

p

r
~A†22A2!G ~35!

and we have usedtat5R215p/r . ~Note the exchange o
roles between pumping and damping compared to the c
ventional theory as in, e.g.,@18,19#.! We show in Appendix
B that when we coarse grain the master equation we ob
in the limit p→0,

dr

dt
52

i

\
@VG ,r~ t !#1r @ML21#r~ t !, ~36!

which is in form of the master equation for Poissoni
pumping statistics@17# ~see the Poissonian limit in Refs
@18,19#!.

V. QUANTUM JUMP APPROACH

In this section we use the Monte Carlo wave-functi
methods@14,15# to simulate the dissipative process for t
large Rabi angle case. The quantum simulation describes
time evolution of a single realization subjected to quant
jumps when dissipative processes take place. We start fro
‘‘mesoscopic’’ point of view where the system is describ
by the coarse-grained master equation obtained in the
ceding section.

We defined in Sec. IV the average rate of atomic inject
r5pR. The probability of finding a single atom in an infin
tesimal interval@ t,t1dt# is then given bydP5rdt. Let us
take the master equation~36!, but with Dt replaced by the
very small time intervaldt such thatrdt!1. @This differs
from Eq. ~B3! because we are now considering a small ti
step for the coarse-grained master equation.# We will see
below that in this limit we can identifyrdt as the probability
for a quantum jump to occur as a result of performing
selective measurement of the atomic state after the a
leaves the cavity. We now begin our derivation of a quant
r
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simulation procedure by rewriting the master equation~36!
in terms of the very small time stepdt:

r~ t1dt !5r~ t !2
i

\
rdtFVG

r
,r~ t !G1rdt@ML~ t int!21#r~ t !.

~37!

We assume Poissonian statistics for the incoming atoms
we rewrite here the expression forML ,

ML~ t int!r~ t !5Ŝr~ t !Ŝ†1Ĉr~ t !Ĉ†, ~38!

where Ŝ and Ĉ are given by Eqs.~32! and ~33!. For small
Rabi angles it is easy to verify that we recover Eq.~5! from
Eq. ~38! „with ṙ→@ML(t int)21#r(t)/t int…. Now we notice
that

Ŝ†Ŝ1Ĉ†Ĉ51 ~39!

and Eq.~37! can be cast in the form

r~ t1dt !52
i

\
rdtFVG

r
,r~ t !G1r~ t !

1rdtF Ŝr~ t !Ŝ†2
1

2
Ŝ†Ŝr~ t !2

1

2
r~ t !Ŝ†ŜG

1rdtF Ĉr~ t !Ĉ†2
1

2
Ĉ†Ĉr~ t !2

1

2
r~ t !Ĉ†ĈG .

~40!

The dissipative part of this master equation is now in
Lindblad form@20# and so the whole master equation can
unraveled@14# into individual trajectories as shown below

Following the state vector Monte Carlo method presen
in Refs.@14,15#, we define the state vector

uc~1!~ t1dt !&5
e2~ i /\!rHeffdt

A12dP
uc~ t !&, ~41!

where

Heff5 i\
KG

r
~A†22A2!2 i

\

2
~Ŝ†Ŝ1Ĉ†Ĉ!, ~42!

and we further define the time evolved state vectors

uc~2!~ t1dt !&5
Ĉ

AdPC

uc~ t !&Ardt, ~43!

uc~3!~ t1dt !&5
Ŝ

AdPS

uc~ t !&Ardt. ~44!

One of these state vectors will be chosen at every time
in the simulation. If we make use of Eqs.~41!–~44! we can
show that, to first order indt, the ‘‘jump probabilities’’ for
the operatorsŜ and Ĉ satisfy

dPS1dPC5dP5rdt. ~45!

We now use Eqs.~41!–~44! again and define the relativ
probabilities
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PS5
dPS

dP
5^c~ t !uŜ†Ŝuc~ t !&,

PC5
dPC

dP
5^c~ t !uĈ†Ĉuc~ t !&. ~46!

Using the above definitions we can show that the weigh
random choice of the state vectorsuc (123)& is equivalent to
the master equation~37!. In order to do so, we first mak
some definitions. We definee as the ensemble index and fo
the ensemble membere, ke51,2,3 depending on whethe
stateuc (1)&, uc (2)&, or uc (3)& is chosen in the simulations tha
will be discussed below. If the number of members of t
ensemble isJens, then the ensemble-averaged density ope
tor is

r~ t,Jens!5
1

Jens
(
e51

Jens

uc~ke!~ t !&^c~ke!~ t !u, ~47!

where uc (ke)(t)&^c (ke)(t)u is a conditioned density operato
@14# and expression~47! is the average over the members
our representative ensemble at timet. Then, at timet1dt the
ensemble average gives us~in the limit Jens→`)

r~ t1dt !5~12dP!uc~1!~ t1dt !&^c~1!~ t1dt !u

1dP@PSuc~2!~ t1dt !&^c~2!~ t1dt !u

1PCuc~3!~ t1dt !&^c~3!~ t1dt !u#

5uc~ t !&^c~ t !u1rdt

3FKG

r
~A†22A2!,uc~ t !&^c~ t !uG1rdt@Ŝuc~ t !&

3^c~ t !uŜ†1Ĉuc~ t !&^c~ t !uĈ†2uc~ t !&^c~ t !u#.

~48!

Then we finally can write

dr~ t !

dt
52

i

\
r FVG

r
,r~ t !G1r @ML~ t int!21#r~ t !, ~49!

which is equivalent to Eq.~37! if we write r(t)5r(t). In
this way we have obtained the correct master equation
describes the competition between parametric pumping
two-photon absorption due to the three-level atoms that e
the cavity with a statistics characterized by the param
p, where now the Rabi angles of the two-photon absorb
atoms can be large.

To perform the Monte Carlo wave function simulatio
we choose a random numberg, which is uniformly distrib-
uted between 0 and 1, and compare it withdP. If dP is
smaller thang, no quantum jump is deemed to have occurr
and the state of the system att1dt is given by Eq.~41!. If
dP is larger thang a quantum jump occurs. Then,
dPS5PSdP>g, the jump will be an ‘‘S jump’’ and the
state of the system att1dt will be given by Eq.~44!. If
dPS,g the jump will be a ‘‘C jump’’ and the state of the
system will be given by Eq.~43!.
d

e
-

at
nd
er
er
g

d

In order to simulate the time evolution of the system w
choose the values ofdP5rdt, t5lt int , anda25KG /KL .
We then calculateKL5r t2/2 andKG5a2KL and at each
time step we find the random numberg and

PS5(
N

z^N12uc~ t !& z2aN ,

PC512PS , ~50!

where aN is given by Eq.~16!. Then we write the state
vectors~42!–~44! in the Fock basis and, taking into accou
Eqs.~41!–~44!, we choose the state of the system accord
to the following rules.~a! If dP,g,

^Nuc~1!~ t1dt !&5^Nuc~ t !&1
KGdt

A12dP
$AN~N21!

3^N22uc~ t !&2A~N11!~N12!

3^N12uc~ t !&%. ~51!

~b! If dP>g and ~i! if dPS,g,

^Nuc~2!~ t1dt !&5
1

APC

cos@A~N!~N21!t#^Nuc~ t !&,

~52!

and ~ii ! if dPS>g,

^Nuc~3!~ t1dt !&5
1

APS

sin@A~N11!~N12!t#^N12uc~ t !&,

~53!

where KGdt5dPa2t2/2. This simulation, once average
over many realizations, will then reproduce the results of
master equations~40! and ~48!.

We next need to calculate the behavior of observa
quantities from these simulations. The ensemble-avera
density operator is

r̄~ t,Jens!5
1

Jens
(
e51

Jens

uc~ke!~ t !&^c~ke!~ t !u. ~54!

From the above expression we can calculate the mean ph
number

^N&~ t,Jens!5Tr@N̂r̄~ t,Jens!#

5
1

Jens
(
e51

Jens

^c~ke!~ t !uN̂uc~ke!~ t !&, ~55!

the variance

S~ t,Jens!5^N̂2&~ t,Jens!2^N̂&2~ t,Jens!5Tr@N̂2r̄~ t,Jens!#

2$Tr@N̂r̄~ t,Jens!#%
2, ~56!

and any other observable that we desire.
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VI. NUMERICAL RESULTS

In this section we present the numerical results obtai
following the procedure described in Sec. V. In Figs. 2~a!–
2~f! we show our numerical results fora25KG /KL54,
dP5rdt51022, t5lt int51022, and r5102 for a cavity
field starting from the vacuum. The ordinate axisNit repre-
sents the number of iterations of the scheme given by E
~51!–~53!. In Fig. 2~a! we show the mean photon numb
^N& and photon number varianceS5^N2&2^N&2 for only
one member of the ensemble. In this figure we can see ju
in ^N& andS that finally converge to a value of about 4.
but with only small fluctuations around the final value. A
though there are still some residual fluctuations, we no
that both mean photon number and photon number varia
evolve together, experiencing the same small fluctuations
large enough times~for Nit larger than'1.53106). This
confirms that the steady state is an even coherent state.
ure 2~b! shows the same results as those presented in
2~a!; however, we have now superposed these with the
tory of the system time evolution~triangles!. In this case the
values 1, 2, and 3 are selected when the state vectoruce

(1)&,
uce

(2)&, or uce
(3)& is chosen, respectively@cf. Eqs.~41!–~44!#.

The frequent selection ofuce
(1)& anduce

(2)& results in the solid
d

s.

ps

e
ce
or

ig-
ig.
s-

‘‘bars’’ across the figure; however, the selection ofuce
(3)&

can be clearly seen. As we see, the more drastic jumps
pen when the stochastic wave functionuce

(3)& is chosen. The
reason for these jumps being more accentuated is that
atoms enter the cavity in the lower state and as the selec
of stateuce

(3)& corresponds to the detection of the atoms
the upper state, we observe a more drastic change in the
of the system wheneveruce

(3)& is selected. In Figs. 2~c!–2~f!
we show our results for 1~dotted curve!, 10 ~dash-dotted
curve!, and 30~full curve! samples of the system represe
tative ensemble. In all the graphs we see the jumps wash
when we take more and more members of the ensemble
account. In Fig. 2~f! we plot the cavity field quadrature var
anceDX25A^X2

2&2^X2&
2 and note this result agrees wit

that obtained in Ref.@21#. Figure 2~e! shows the quadrature
fluctuationsDX15A^X1

2&2^X1&
2. In Fig. 2~g! we depict an

indication of the cavity field purity Trr2. As we see, the field
evolves first to a statistical mixture and then, in the stea
state, becomes a pure state@an even coherent state which
close to Eq.~27! because of the small value oft#. In Fig. 3
we show a three-dimensional plot of the Wigner function
the same values of the parameters as in Fig. 2 and
Nit52.03106 corresponding to the steady state in Fig.
sing
FIG. 2. Our numerical results fora254, dP51022, t51022, andr5102 starting from the vacuum. These results were calculated u
the quantum-jump approach of Sec. V. The ordinate axisNit represents the number of interactions of the scheme shown by Eqs.~51!–~53!.
We have results for a single sample in~a! and ~b! and show~a! the mean photon number^N& and varianceS5^N2&2^N&2 and ~b! the
locations of the jumps into the stateuc (3)& are indicated with the triangles superimposed on the results of~a!. In ~c!–~f! we show our results
for 1 ~dotted curve!, 10 ~dash-dotted curve!, and 30~full curve! samples:~c! mean photon number̂N&, ~d! photon number variance
S5^N2&2^N&2, ~e! varianceDX1, and~f! varianceDX2. In ~g! we show the purity of the state Trr2 with 30 samples.
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FIG. 2. ~Continued!.
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The interference fringes in the Wigner function indicate t
coherence between the two components of even cohe
state.

In Figs. 4~a!–4~d! we present results fora254,

FIG. 3. Three-dimensional plot of the Wigner function for th
same values of the parameters as in Fig. 2 and forNit523106.
nt
dP51022, t51022, and r5102, but now with the field in
the state@cos(w/2)u0&1sin(w/2)u1&] for w5p/4. This ad-
mits odd Fock states as well as even Fock states. As we
in Fig. 4~d!, the field steady state generated from this se
state is no longer a pure state. In Figs. 5~a!–5~d! we show
our results for the same parameters as in Figs. 4~a!–4~d!, but
for w5p/2. In Fig. 5~d! we see that the deviation from
pure state is larger in this last case. This is because the in
state contains an equal superposition of even and odd F
states~unlike Fig. 4 where the even states dominate! and this
leads to a balanced statistical mixture of the even and
coherent states.

In Figs. 6~a!–6~f! we increase the Rabi angle of the a
sorbing atoms and present our numerical results fora254,
dP51022, t51021, andr5102 calculated by the quantum
jump approach. Figures 6~a! and 6~b! show, respectively,
^N& andS for only one member of the ensemble. In Fig
6~c! and 6~d! we employ the same parameters as in Figs. 6~a!
and 6~b! but we show the results from an average over 1
samples. If we compare these results with those shown
Figs. 2~c! and 2~d! we see that the fluctuations in̂N& and
S in the steady state have increased and also that the st
state is reached quickly. This happens because in this
the coupling constants of the three-level atoms are lar
which corresponds to larger Rabi angles such that these
photon absorbing atoms are less efficient as pure absor
and allow the photon distribution to be pushed towards lar
photon numbers due to the parametric pumping process
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FIG. 4. Results for a254, dP51022, t51022, and r5102 with 100 samples. The initial state of the field
cos(w/2)u0&1sin(w/2)u1& for w5p/4. We show~a! and ~b! the mean photon number^N& and varianceS5^N2&2^N&2 for 1 and 100
samples, respectively,~c! variancesDX1 andDX2 ~with 100 samples!, and~d! the purity of the state Trr2 ~with 100 samples!.
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Fig. 6~f! we see that the steady state so obtained is not a
state.

In the previous figures we saw that the dynamics of
system is strongly affected by a change in the coupling c
stant of the two-photon absorbing atoms. In order to dem
strate this feature of the system more clearly, we depic
Figs. 7~a!–7~e! our results for ^N&, S, DX1, DX2, and
Trr2 for t5131022, 2.531022, and 531022. As we see in
these figures, when we increase the value oft, we reach the
steady state more quickly. We notice also that comparing
results fort5131022 and 2.531022, in the steady state
the deviation from a pure state of the system for this last c
is not very large and the system reaches the steady
much more quickly than in the previous case.

VII. CONCLUSION

We began this article with a simple heuristic derivation
the small Rabi angle master equation~5! describing a proces
of cavity field decay taking place two photons at a time. W
then justified this with a more rigorous model based on
idea of a stream of three-level atoms passing through a
ity. The atoms act as an absorber of photons from the ca
field because the atoms all enter in their ground state. T
act as two-photon absorbers because the cavity-atom inte
tion is at two-photon resonance. In the weak-coupling lim
~small Rabi angles! we derived the master equation~21! to
re

e
n-
n-
in

e

se
ate

f

e
e
v-
ty
ey
ac-
t

describe two-photon absorption of the cavity field. In th
limit we have seen that if we parametrically pump the cav
field the steady state becomes an even coherent state~when
the cavity is initially empty!.

Our principle goal has been to develop a master equa
to describe the absorption process when the interaction
tween the absorbing atoms and the cavity is weak or stro
By assuming Poissonian statistics for the incoming absorb
atoms we find the master equation~36! where the decay of
the field is seen to be controlled by two operatorsŜ and Ĉ
@Eqs.~32! and~33!#, which depend nonlinearly on the inte
action timet int . The master equation could be solved direc
by numerical methods, but we have chosen to explore
possibility of a state vector Monte Carlo simulation@Eqs.
~51!–~53!#. This is possible because the master equation~36!
@and the decay partML21; see Eq.~31!# can be written in
the Lindblad form@see Eq.~40!# allowing an unraveling into
three processes: anS jump, aC jump, and no jump. The
simulation of the master equation using the stochastic tra
tories of an ensemble of state vectors has the advantag
using less computer memory than a direct integration of
density matrix.

The numerical results have utilized the quantum-jum
simulations of Sec. V. For weak interactions~small Rabi
angle! we have shown that we obtain the expected stea
state limit ~starting with an unexcited cavity state!: a pure
even coherent state as in Eq.~27!. Such a cavity field state is
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FIG. 5. Results for the same parameters as in Figs. 4~a!–4~d!, but for w5p/2. We show~a! and ~b! the mean photon number^N& and
varianceS5^N2&2^N&2 for 1 and 100 samples, respectively,~c! variancesDX1 andDX2 ~with 100 samples!, and~d! the purity of the state
Trr2 ~with 100 samples!.
ti
th
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a microscopic superposition of two different~nonoverlap-
ping! coherent states that is generated here by the interac
of the parametric pumping and the absorbing atoms with
cavity. However, we have seen that when the initial cav
state is changed to a superposition of even and odd F
states we lose the purity of the steady state. Likewise, as
interaction time of the absorbing atoms is increased~increas-
ing the Rabi angle of the interaction! the purity of the final
state decreases.
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APPENDIX A: SOLUTION OF THE SYSTEM
OF DIFFERENTIAL EQUATIONS „10…

If we define

z15 igabAN11, z15 igbcAN12,

m15 iD1 , m25 iD2 , ~A1!

the system of differential equations~10! can be written as
on
e
y
ck
he

-

l

e2m1tĊa,N~t!52z1Cb,N11~t!,

em2tĊc,N12~t!52z2Cb,N11~t!,

Ċb,N11~t!52z1e
2m1tCa,N~t!2z2e

m2tCc,N12~t!.
~A2!

Now, if we use a Laplace transformation, the system of d
ferential equations~A2! reduces to the set of algebraic equ
tions

~z1m1!C̃a,N~z1m1!2Ca,N~ t i !52z1C̃b,N11~z!,

~z2m2!C̃c,N12~z2m2!2Cc,N12~ t i !52z2C̃b,N11~z!,

zC̃b,N11~z!2Cb,N11~ t i !52z1C̃a,N~z1m1!

2z2C̃c,N12~z2m2!. ~A3!

Solving Eq.~A3! for C̃b,N11(z) we find
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C̃b,N11~z!5
~z1m1!~z2m2!Cb,N11~ t i !2z1~z2m2!Ca,N~ t i !2z2~z1m1!Cc,N12~ t i !

z~z1m1!~z2m2!2z1
2~z2m2!2z2

2~z1m1!
~A4!

and for the case in whichCb,N11(t i)5Ca,N(t i)50, Eq. ~A4! simplifies to

C̃b,N11~z!5
2Cc,N12~ t i !z2~z1m1!

z~z1m1!~z2m2!2z1
2~z2m2!2z2

2~z1m1!
. ~A5!

If z1,N , z2,N , andz3,N are the roots of the denominator of Eq.~A5! and we use the inverse Laplace transformation, the solu
of Eq. ~A2! can be written

FIG. 6. Results fora254, dP51022, t51021, andr5102 calculated by the quantum-jump approach.~a! and ~b!, respectively, show
^N& andS for only one member of the ensemble. In~c! and~d! we show^N& andS for 100 samples. In~e! we show the variancesDX1 and
DX2 ~with 100 samples!. In ~f! we display the purity of the state Trr2 ~with 100 samples!.
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Ca,N~ t i1t!5Cc,N12~ t i !z1z2H e~z1,N1m1!t

~z1,N2z2,N!~z1,N2z3,N!
2

e~z2,N1m1!t

~z1,N2z2,N!~z2,N2z3,N!
1

e~z1,N1m1!t

~z2,N2z3,N!~z1,N2z3,N! J ,
Cb,N11~ t i1t!52Cc,N12~ t i !z2H ~z1,N1m1!e

z1,Nt

~z1,N2z2,N!~z1,N2z3,N!
2

~z2,N1m1!e
z2,Nt

~z1,N2z2,N!~z2,N2z3,N!
1

~z3,N1m1!e
z1,Nt

~z2,N2z3,N!~z1,N2z3,N! J ,
Cc,N12~ t i1t!5Cc,N12~ t i !z2

2H ~z1,N1m1!e
~z1,N1m1!t

~z1,N2z2,N!~z1,N2z3,N!~z1,N2m2!
2

~z2,N1m1!e
~z2,N1m1!t

~z1,N2z2,N!~z2,N2z3,N!~z2,N2m2!

1
~z3,N1m1!e

~z1,N1m1!t

~z2,N2z3,N!~z1,N2z3,N!~z3,N2m2!
J . ~A6!

FIG. 7. ~a! ^N&, ~b! S, ~c! DX1, ~d! DX2, and~e! Trr2 for t5131022, 2.531022, and 531022 and other parameters as in Fig. 6~with
100 samples!.
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Now we assume

gab
gbc

5
gab
g

511e2 ~A7!

and

D1

D2
5

D

D2
5211e2, ~A8!

wheree5g/D. In order that the two-photon transitions a
dominant, one-photon transitions must be suppressed
therefore the detuningD has to be large compared to th
coupling constants between the energy levels. We will st
the cases in which

gab ,gbc!D. ~A9!

Therefore,e!1 and

g2

D
!D. ~A10!

There is no need to solve the cubic equation in the deno
nator of Eq.~A5! exactly. We can find the rootsz1,N , z2,N ,
andz3,N perturbatively under the assumptions~A6!–~A10!.

We have to find the roots of the denominator of Eq.~A4!,
i.e., the roots of

f ~z!5z~z1m1!~z2m2!2j1
2~z2m2!2j2

2~z1m1!,
~A11!

which we will call z1, z2, andz3. Let us define

r5
D2

D1
, q5

gab
gbc

, p5qr5
gab /D1

gbc /D2
, ~A12!

whereD15D, gbc5g, and ur u, upu, and uqu are of the order
of 1. Therefore,D25rD and gab5qg. We definex5z/D
ande5g/D, and then Eq.~A11! can written as

f ~x!5x31 isx21@r2fe2#x1 ia2e
2, ~A13!

where

f52@q2~N11!2~N12!# ~A14!

and

a252@rq2~n11!2~n12!#. ~A15!

The solution of Eq.~A13! can be obtained more easily if w
write

f ~x!5~x2x1!~x
21ax1b!, ~A16!

where

a5 is1x1 ~A17!

and

b5ax11r2fe2. ~A18!
nd

y

i-

If we obtainx1 the other two roots are

x25
1

2
@2a1r N#, x35

1

2
@2a2r N#, ~A19!

where

r N5Aa224b. ~A20!

In order to obtainx1 we write

x15c01c1e1c2e
21c3e

31c4e
4. ~A21!

If we substitute Eq.~A21! in Eq. ~A13! and collect terms of
ordere, then to satisfyf (x1)50 we choosec050. It follows
that c15c350,

c252 ia2 /r , ~A22!

and

c45 i Fa2~a2s2fr !

r 3 G . ~A23!

Substituting Eqs.~A17! and~A18! in Eq. ~A20! we obtain

r N
25

1

r 3
„N2e4~q2r21!@q2r 2~2r11!2~r12!#

12Ne2$e2@q4r 3~2r11!23q2r ~r 21r11!12~r12!#

2r 2~r11!~q2r11!%1e4~q2r22!@q2r 2~2r11!

2~2r12!#22r 2e2~r11!~q2r12!2r 3~r 21r11!….

~A24!

If we choose

r521, q521 ~A25!

andp521. Substituting Eq.~A25! in Eq. ~A24!, we obtain

r N
252~VN /D!2, ~A26!

where

VN5~2N13!
g2

D
. ~A27!

If we choose

r5211e2, q5211e2 ~A28!

andp'21. Substituting Eq.~A28! in Eq. ~A24!, we obtain

r N
252S QN

D D 2, ~A29!

where

QN52A~N11!~N12!
g2

D
. ~A30!

Now, making use ofz5xD we can write
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z1,N5 iVN,

z2,N52
i

2 H D2
g2

D
1VN1QNJ ,

z2,N52
i

2 H D2
g2

D
1VN2QNJ , ~A31!

or

z15 iVN ,

z252 i H D2
g2

2D
@12~AN112AN12!2#J ,

z352 i H D2
g2

2D
@12~AN111AN12!2#J . ~A32!

Then the approximate expressions for Eq.~A6! are

Ca,N~ t i1t!' ie2 i ~g2/D!~t/2!Cc,N12~ t i !e
2 iVN~t/2!sinS QN

t

2D ,
Cb,N11~ t i1t!'0,

Cc,N12~ t i1t!'Cc,N12~ t i !e
2 iVN~t/2!cosS QN

t

2D .
~A33!

Finally, let us assume thatgab andgbc5g are fixed and
p51. Thenr51/q5gbc /gab5g/gab is fixed. Therefore, for
D15D we have

gbc
gab

5
g

gab
5211S gD D 2. ~A34!

From Eq.~A34! we can obtain

D5gA gab
g2gab

~A35!

andD25rD5(g/gab)D.

APPENDIX B: DERIVATION OF THE MASTER
EQUATION „36…

We start with the short time evolution of the master eq
tion ~34!,

r~ t1Dt !5@~12p!MG~ tat!1pMG~ tat!ML~ t int!#
Kr~ t !

5@~12p!MG~p/r !1pMG~p/r !ML~ t int!#
rDt/p

3r~ t !, ~B1!

whereMG(tat) is given by Eq.~35!. Then, in order to write a
differential equation forr(t) we use@18,19#

r~ t1Dt !5expS rpDt ln$MG@11p~ML21!#% D r~ t ! ~B2!

and following the one-photon derivation of Ref.@19# we take
a time intervalDt such that
-

rDt@1 ~B3!

or, in other words,Dt is chosen such that many atoms e
cited to the stateuc& pass through the cavity during this tim
interval. This is necessary in order that the stepwise cha
of the cavity field can be treated as a continuous proc
Then we may write@19#

Dr

Dt
'
r

p
ln$MG@11p~ML21!#%r~ t ! ~B4!

if

r

p
Dtu ln$MG@11p~ML21!#%r~ t !u!1. ~B5!

In order to assume that Eq.~B3! is valid, the sufficient con-
ditions are

u@ML~ t int!21#r~ t !u!1 ~B6!

and ~for a generalr)

u ln@MG~ tat!#r~ t !u!1. ~B7!

The condition~B6! requires that the change in the fie
density matrix due to the passage of one two-photon abs
ing atom is small. In order to analyze condition~B7! we
write

ln$11@MG~p/r !21#%r~ t !5@MG~p/r !21#r~ t !

1@MG~p/r !21#2r~ t !1•••.

~B8!

If we assumeKGp/r!1, then

@MG~p/r !#r~ t !5F12
i

\

p

r
VG2

1

2\2

p2

r 2
VGGr~ t !

3F11
i

\

p

r
VG2

1

2\2

p2

r 2
VGG1•••.

~B9!

Therefore,

ln$11@MG~p/r !21#%r~ t !52
i

\

p

r
@VG ,r~ t !#

1
1

2\2

p2

r 2
@r~ t !VG

2 1VG
2 r~ t !#

2
i

\

p2

r 2
VGrVG. ~B10!

If p/r5R21!1 andKGp/r!1 we see that condition~B7! is
fulfilled.

We note that for Poissonian pumping (p→0) condition
~B7! is necessarily held and we need to retain only the fi
term on the right-hand side of Eq.~B10!, as we shall see
below. In Sec. V we interpret the quantityrDt as the prob-
ability of making a measurement and finding an atom in
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time interval@ t,t1Dt# and we shall takerDt!1. Of course,
in this case Eq.~B5! can be satisfied even if Eqs.~B6! and
~B7! are not.

Under the assumptions~B6! and ~B7! and approximating
the coarse-grainedDr/Dt by the time derivativedr/dt, we
obtain the master equation

dr

dt
5
r

p
ln$MG@11p~ML21!#%r~ t !. ~B11!

Now, following the procedure as in Ref.@19# we get

dr

dt
5
r

p
ln@MG#r~ t !1

r

p
ln@11p~ML21!#. ~B12!

If we neglect terms proportional top2 and higher power
terms in Eq.~B10!, we obtain@18,19#

dr

dt
52

i

\
@VG ,r~ t !#1

r

p
ln@11p~ML21!#r~ t !. ~B13!

This is the master equation that describes the compet
between two-photon parametric pumping and two-pho
absorption by a stream of three-level atoms. We sho
stress that if we assumerDt!1we can relax the assumptio
of small Rabi angles for the two-photon absorbing atoms

Now let us review some of the approximations involv
in the derivation of the above master equation. We h
approximated the coarse-grained quotient in Eq.~B4! by the
time derivative whereDt is such that several atoms in th
stateuc& pass through the cavity during this interval of tim
while the field reduced density matrix does not change
od

ar

pt
n
n
ld

e

-

preciably. This approximation can lead to incorrect resu
regarding the time evolution~or dynamic behavior! of the
system. However, for the steady state it is easy to show
such a differential equation yields the correct result@19#. We
have assumed thatMG andML act independently over the
time p/r5tat or, as the atoms spend a timet int!tat in the
cavity, we have assumed thatMG andML act independently
over the timet int . Such an approximation holds exactly fo
Poissonian statistics for the injection of absorbing atoms
cause

@~MG21!,p~ML21!#r~ t !

52
i

\

p2

r S @VG ,r̃~ t !#2
1

r
~ML21!@VP ,r~ t !# D1•••,

~B14!

where r̃(t)5(ML21)r(t) and we have used (MG
21)r(t)'2( i /\)(1/r )@VG ,r̃(t)#. We can do the same fo
other commutators that show up when we expand Eq.~B11!
@19#. Therefore, asr5pR,

dr

dt
52

i

\
@VG ,r~ t !#1r ~ML21!r~ t !

1~ terms proportional top!. ~B15!

Taking the limitp→0, Eq.~B13! becomes the master equ
tion for Poissonian pumping statistics discussed in the tex
Eq. ~36!. It is valid for KGp/r!1 and holds irrespective o
the magnitude of the Rabi angle of the two-photon abso
tion since, takingKG50 (MG51), p→0 guarantees tha
Eq. ~B5! is fulfilled.
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