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Two-Photon X-Ray Diffraction
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The interference pattern of a circular photon source has long been used to define the optical
diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the
fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture.
When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident
intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and
the diffraction pattern becomes self-focussed beyond the diffraction limit. The case of cloned photon
pairs is compared to and distinguished from entangled photon pairs or biphotons.

The fundamental interactions of x-rays with mat-
ter, absorption, emission and scattering have historically
been treated in two different pictures. While x-ray ab-
sorption and emission are viewed quantum mechanically
in a photon-based picture as the irreversible transfer of
energy between photons and electrons, elastic x-ray scat-
tering and diffraction are treated classically in terms of
electromagnetic waves. The success of the classical treat-
ment of x-ray scattering and diffraction can be explained
by Dirac’s premise that diffraction occurs one-photon-at-
a-time [1], with the classical treatment simply expressing
the single photon field as a wave. This treatment has
served us well for the first one hundred years of x-ray
science since even for the brightest synchrotron radia-
tion sources, on average, less than a single photon was
present in a typical sample volume [2]. With the advent
of x-ray free electron lasers (XFELs) [3], conventional
diffraction theory has to be revisited due to the simul-
taneous presence of many indistinguishable (coherent)
photons corresponding to a photon degeneracy param-
eter ncoh ≫ 1. Fig. 1 shows the historical evolution of
x-ray source brightness, with the peak brightness Bpeak

directly linked to the photon degeneracy parameter ac-
cording to [4],

ncoh =
Bpeakλ

3

8 c
(1)

Here we address one of the most fundamental and im-
portant diffraction problems, the interference pattern of
a circular quasi-monochromatic source. This case is also
encountered in coherent x-ray imaging experiments [5, 6],
where a thin film in a coherently illuminated circular
aperture represents the “source”. When the intensity dis-
tribution is uniform (flat-top) across the circular source
area, the diffraction pattern is the well known Airy pat-
tern and the width of the central intensity peak defines
the fundamental diffraction limit.
We show the breakdown of conventional diffraction

theory at high incident intensities, when spontaneous
scattering is replaced by stimulated scattering in a film
source, leading to complete x-ray transparency [7, 8].
One would then expect that the stimulated Airy diffrac-
tion pattern is that of the aperture without the film. We
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FIG. 1: Historical and projected future increase in aver-
age brightness of storage rings (blue) and peak brightness
of XFELs (red). On the right we have also given in black
the number of photons per coherence volume or degeneracy
parameter, calculated from the peak brightness with (1) for a
wavelength of λ = 0.1 nm. In practice, the achievable degen-
eracy parameter is lowered by beam line losses

show that this is not the case. Instead, the stimulated
pattern becomes the square of the Airy pattern, with a
reduction of the diffraction-limited width of the central
peak and the effective disappearance of the outer Airy
rings. The new diffraction pattern arises from the coop-
erative interaction of two coherent photons in a resonant
scattering process. The cloned photon pairs, created by
impulsive stimulated emission, propagate together in the
forward direction.
Stimulation or cloning [9, 10] in the sample itself, dis-

cussed here, is shown to be related to the diffraction of
entangled photon pairs or biphotons [11, 12], which are
incident on the sample from a parametric down conver-
sion source [13–17]. While biphoton diffraction doubles
the spatial frequency [13, 16], cloned photon pairs are
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shown to lead to a squared intensity of the one-photon
pattern.
For the calculation of two-photon diffraction, we as-

sume that the fields incident on the circular aperture of
area As = πR2 are longitudinally coherent in the sense
that the coherence length ℓcoh = λ2/∆λ is much larger
than the film thickness d. This allows us to treat the film
response in terms of a two-dimensional sheet with atomic
area density Na/As = ρad, where ρa is the atomic volume
density. In the derivation of the diffraction pattern we
follow Fig. 2.
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FIG. 2: Assumed diffraction geometry. The incident fields
E(r1, 0) and E(r2, 0) in the sample plane constitute a two-
photon amplitude. The diffracted intensities I(ρ1, z0) and
I(ρ2, z0) are observed in coincidence in the distant detector
plane.

For our discussion and distinction of one- and two-
photon diffraction, we associate a real field with each
individual photon according to,

E(r, t) = E0

[

ei(k·r−ωt)+ e−i(k·r−ωt)
]

= 2E0 cos(k·r− ωt) (2)

where the field amplitude of a single photon in wavevector
mode k is given by the quantized field expression,

E0 =

√

~ωk

2ǫ0Vk

, Vk =
8π3

k2∆k
(3)

The number of photons of a given polarization in the
coherence or mode volume Vk is the photon degeneracy
parameter plotted in Fig. 1. The incident intensity per
photon is given by a two-field correlation function whose
time average is given by,

I0=ǫ0c〈E2(r, t)〉=4ǫ0cE0〈cos2(k·r−ωt)〉=2ǫ0cE
2
0 (4)

where ǫ0 the dielectric constant of the vacuum and c is
the speed of light. The total incident intensity of a beam
of n0 photons is then given by n0I0.
Below we treat the diffraction of photons by an aper-

ture which may contain a thin film, assumed to be non-
magnetic and of uniform charge distribution without ori-
entational order. The atomic resonant scattering is then
independent of polarization and simply determined by
the atomic charge. We distinguish the conventional one-
photon-at-a-time diffraction pattern from the pattern

where two coherent photons are simultaneously present
in the sample plane at z=0. We describe the two-photon
probability amplitude in the sample plane as [16],

F (r1, r2) = E(r1, 0)E(r2, 0) g(r1, r2) (5)

The function g(r1, r2) characterizes the spatial correla-
tion between the single photon fields at lateral points r1
and r2, as shown in Fig. 2.
The diffraction pattern in a distant detector plane orig-

inating from a coherently illuminated sample (see Fig. 2)
is typically calculated in a classical picture based on the
interference of electromagnetic waves (EM) by use of the
Rayleigh-Sommerfeld diffraction formula in the Fraun-
hofer approximation [18]. Since interference occurs by a
single photon field with itself, the diffracted intensity is
then related to the one-photon field (2) at a point (ρ, z0)
in the detector plane by,

I(1)(ρ, z0) = 2ǫ0cE
2(ρ, z0) (6)

where the superscript indicates the one-photon nature.
If all n0 incident photons are coherent they produce
the same pattern and the diffraction pattern is given by
n0I

(1). The granular diffraction pattern consists of sin-
gle photon counts per pixel, which is statistically filled-in
with increasing number n0, as beautifully demonstrated
by diffraction experiments with single electrons [19]. If
the incident photons are laterally incoherent, the single-
photon diffraction patterns, which add on an intensity
basis, average to a broad incoherent intensity distribu-
tion in the detector plane. Remarkably, the Van-Cittert-
Zernike theorem [20] can pick-out the coherent part of
the intensity through the coincident detection of photons
at two separate points in the detector plane.
In contrast to the one-photon coherent case, the

diffracted two-photon intensity is defined through a four-
field or two-intensity correlation function as [15],

I(2)(ρ1,ρ2, z0)= ǫ20c
2
〈

E2
1(ρ1, z0)E

2
2(ρ2, z0)

〉

(7)

In the Fraunhofer approximation, the diffracted two-
photon intensity is given by [15, 16]

I(2)(ρ1,ρ2, z0) =
ǫ20 c

2 C2

λ4z40

∣

∣

∣

∣

∫∫∫∫

∞

−∞

E(r1, 0)E(r2, 0) g(r1, r2)

×exp

[

−i
2π

λz0
(r1 ·ρ1+r2 ·ρ2)

]

dr1 dr2

∣

∣

∣

∣

2

(8)

The constant C is determined by considering power con-
servation. For a transparent uniformly illuminated aper-
ture of size As, for example, the incident power I0As has
to be equal to the total diffracted power in the detector
plane so that,

1

2

∫∫

∞

−∞

I(2)(ρ, z0) dρ = I0As (9)
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where the factor 1/2 accounts for the two-photons in I(2).
With time, the diffraction pattern will form through the
addition of n0/2 two-photon diffraction patterns.
The two-photon formalism can be used to describe

stimulated diffraction by a film in an aperture. While
diffraction by a hole alone or spontaneous diffraction
by a film in a hole, can be described by spherical wave
emission from each point or atom in the aperture plane,
the famous Huygens-Fresnel principle, this description
breaks down for stimulated atomic scattering. In this
case, the atoms in the film no longer spontaneously scat-
ter photons into random directions, which on average
is well modeled by the Huygens-Fresnel spherical waves.
Rather, the stimulating (idler) photons imprint their inci-
dent wavevector direction (mode) on the photon created
in the stimulated decay. At saturation stimulation, the
film becomes transparent [7, 8].
The limit of complete stimulation is described by (8)

with ρ1=ρ2=ρ and g(r1, r2)=1, meaning that the two-
photon amplitude given by (5) is separable into individ-
ual photon contributions which are coherent but quan-
tum mechanically unentangled. The integrals in (8) can
then be independently evaluated to give,

I(2)(ρ, z0)=
ǫ20 c

2 C2

λ4z40

∣

∣

∣

∣

∫∫

∞

−∞

E(r) exp

[

−i
2π

λz0
r ·ρ

]

dr

∣

∣

∣

∣

4

(10)

If the two intensities in (7) are temporally uncorrelated,

we have I(1)=
√
I(2) and with C=1 we recover from (10)

the one-photon Fraunhofer diffraction formula.
For the case of a circular aperture of area As = πR2,

the field of each incident photon is uniform and given by

E(r, 0) =

{

E0 −R<r<+R
0 otherwise

(11)

In this case the diffracted one-photon intensity takes the
form of the Airy pattern, which as a function of momen-
tum transfer q = kρ/z0 is given by [18],

I(1)(q, z0)=I0
A2

s

λ2z20

[

2J1(qR)

qR

]2

(12)

The corresponding spontaneous diffraction pattern in the
presence of the film is simply the Airy pattern of the hole,
attenuated according to the Beer-Lambert law,

Ispon = I(1)(q, z0) e
−2β0kd (13)

where β0 is the optical absorption constant [7, 21].
The two-photon intensity for the case of saturation

stimulation is naturally coincident and consists of two-
photon events at all points in the detector plane. By
evaluating (7) as I(2) = 4ǫ20c

2E4 and determining C in
(10) with (9), we obtain,

Istim=I(2)(q, z0)=I0
1

1−16/(3π2)

A2
s

λ2z20

[

2J1(qR)

qR

]4

(14)

The two-photon coincidence pattern differs from the one-
photon pattern through the power conserving prefactor
1/(1−16/(3π2)) = 2.17 and, most importantly, it is the
squared one-photon Airy distribution. The power in the
detector plane, given by the area integrals of I(1) and
I(2), is the same.
Fig. 3 compares the diffraction patterns for a circular

aperture for the parameters of the experiment reported
in Ref. [8], λ= 1.6 nm (Co L3 resonance) and a circular
aperture hole of R=725nm. The intensity is plotted as a
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FIG. 3: (a) Airy diffraction intensity as a function of normal-
ized momentum transfer q/q0, where q0=1.22π/R is the first
node of the Airy pattern. We have assumed λ= 1.6 nm (Co
L3 resonance) and a circular hole of radius R=725 nm in an
aperture. The pattern of the hole (black) is given by (12), the
spontaneous diffraction pattern for an inserted 20 nm thick Co
film (blue) is given by (13), and the stimulated two-photon
diffraction pattern (red) is given by (14). (b) Enlarged pat-
tern around the optical axis (q = 0), revealing the reduction
of the width of the stimulated pattern.

function of momentum transfer q/q0, where q0=1.22π/R
is the first node of the Airy pattern. The conventional
Airy pattern of the hole, given by (12) and shown as a
black curve, contains 83.8% of the power in the central
disc. The stimulated pattern, given by (14) and shown in
red, contains 99.8% of the power in the central disk, so
that the outer Airy rings have negligible intensity. The
spontaneous Airy pattern given by (13) is shown in blue,
assuming the presence of a d=20nm thick Co film with
optical constant β0 = 0.0075. In this case the power is
reduced by a factor of ≃ 3 through absorption in the
film. Fig. 3 (b) reveals the narrowing of the central Airy
disc from the full width half maximum (FWHM) value
0.844 q0 for the hole (black) and spontaneous film (blue)
patterns, to 0.606 q0 for the stimulated film (red).
Our above discussion was restricted to the case of com-

plete (saturation) stimulation. In order to derive the
evolution with incident intensity from the blue sponta-
neous pattern in Fig. 3 to the red stimulated pattern, we
describe the response of the film in terms of the spon-
taneous, β0, and non-linear, βNL, optical parameters as
done in Ref. [8]. The pattern in the presence of sponta-
neous and stimulated scattering is obtained by consider-
ing that the total diffracted power in the detector plane
has to be equal to the transmitted power in the exit plane
of the sample. The total intensity-dependent diffraction
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pattern is obtained as,

Itot(q, z0) =
1− e−2(β0+βNL)kd

1− e−2β0kd
Ispon(q, z0)

+
e−2βNLkd − 1

e2β0kd − 1
Istim(q, z0) (15)

with Ispon given by (13) and Istim by (14).
In Fig. 4 we plot the change in the Airy diffraction

pattern with increasing x-ray intensity for the example
of a 20 nm thick Co film in a circular aperture, calculated
with (15) and use of the optical parameters of Refs. [7, 8].

0 1 2 3 4 5

-1.0 -0.5 0 0.5 1.0
0

0.5

1.0

1.5

2.0

10
-4

0.1

1

R
e
la

ti
v
e

A
ir
y
  
in

te
n
s
it
y

10
-3

10
-2

Rel. momentum transfer /q  q0

2  J/cm /50fs2

100 J/cm /50fs2

0.4 J/cm /50fs2

spontaneous
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transfer, calculated with (15) for a circular hole of area As =
πR2 with R = 725 nm containing a 20 nm thick Co film and
assuming Co L3 (λ = 1.6 nm) resonant excitation. The blue
curve is the same as in Fig. 3, and the other curves are for
different intensities of a 50 fs SASE pulse consisting of two
20 fs coherent sub-pulses. The momentum transfer is scaled
relative to the first node of the Airy pattern at q0 = 1.22π/R.
The inset shows the enlarged pattern around the optical axis
(q=0), revealing the intensity change in the central Airy disk.

For the calculation of βNL, which depends both on the
incident intensity I0 and the sample thickness d, we in-
cluded the change of the intensity through the 20 nm Co
film, which is approximately given by the analytical ex-
pression in [8] with the replacement of I0 by I0/2.
In Fig. 5 we have plotted as a thick gray curve the

intensity-dependent contrast of the outer Airy rings given
by,

Itot(q≫q0, z0)

Ispon(q≫q0, z0)
=

1− e−2(β0+βNL)kd

1− e−2β0kd
. (16)

There is excellent agreement with the available exper-
imental data points (red circles) of Ref. [8], extending
to I0 ≤ 340mJ/cm2/50 fs. Higher intensities could be
achieved by reducing the focus spot size below the used
value of 10µm.
Our complete description of the change of the Airy

pattern in the presence of stimulation overcomes the un-
satisfactory ad hoc division of the pattern into regions
q > q0 and q < q0 assumed in Ref. [8]. In particular,
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FIG. 5: Comparison of the observed Airy diffraction contrast
relative to spontaneous contrast (red circles) as a function of
incident intensity for monochromatized 50 fs SASE pulses [8]
and calculated change (thick gray line) upon stimulation using
(15). The vertical lines indicate the three intensity values used
in Fig. 4.

we find that the stimulated pattern corresponds to the
squared one-photon pattern, which effectively eliminates
out-of-beam diffraction at the expense of intensity pile
up in the forward direction around q=0.
The case of biphoton diffraction by an aperture alone is

also described by (8). The entanglement of the biphotons
used to illuminate the diffracting aperture is generated
in the parametric down conversion source and may be
represented by g(r1, r2)=δ(r1−r2) in the aperture plane
[16]. In the momentum transfer notation q = kρ/z0,
the two-photon coincidence intensity given by (8) with
ρ1=ρ2 becomes,

I(2)(q, z0)=
ǫ20 c

2 C2

λ4z40

∣

∣

∣

∣

∫∫

∞

−∞

|E(r, 0)|2 exp[−i r ·(q+q)]dr

∣

∣

∣

∣

2

(17)

This is the biphoton version of the van Cittert–Zernike
theorem [15]. Now the total momentum transferQ=q+q
that determines the diffracted intensity corresponds to
that of the original beam that generated the two para-
metric down converted photons.
For a given field distribution E(r, 0), the constant C

is again determined by requiring power conservation ac-
cording to (9), and for a circular aperture, (17) is evalu-
ated as,

I(2)(ρ, z0)=2I0
A2

s

λ2z20

[

2J1(2qR)

2qR

]2

(18)

The diffraction patterns thus corresponds to Q = 2q or
a wavelength of λ/2 as observed experimentally in the
optical regime [13, 16]. For the circular hole case, the
pattern has twice the periodicity in the detector plane as
illustrated by the green curve in Fig. 6 (a).
In particular, the width of the central Airy disk is re-

duced by a factor of two as illustrated in Fig. 6 (b). Since
this width defines the diffraction limit according to the
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tion around the optical axis. The hole pattern has a FWHM
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Rayleigh criterion, the use of biphotons or even multipho-
tons [12] has attracted much interest and called “quan-
tum lithography” [14, 22]. Parametric down conversion
has also been demonstrated in the x-ray regime [23, 24],
and the increased brightness of XFELs now opens the
door for diffraction experiments with x-ray biphotons.
In summary, we show that the conventional one-

photon-at-a-time diffraction pattern of a thin film in an
aperture is changed through impulsive stimulation by the
incident beam. The stimulated intensity pattern, cre-
ated by cloned photon pairs, is the square of the one-
photon pattern and is self-focussed beyond the diffrac-
tion limit. The increased concentration in the forward
direction leads to a loss of out-of-beam diffraction.
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[21] J. Stöhr and H. C. Siegmann, Magnetism: From Funda-

mentals to Nanoscale Dynamics, (Springer, Heidelberg,
2006).

[22] M. DAngelo, M. V. Chekhova, and Y. Shih, Phys. Rev.
Lett., 87 013602 (2001).

[23] K. Tamasaku, K. Sawada, E. Nishibori, and T. Ishikawa,
Nature Phys. (London) 7, 705 (2011).

[24] S. Shwartz et al., Phys. Rev. Lett. 109, 013602 (2012).


