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TWO-PION CORRELATIONS IN HEAVY ION COLLISIONS

by

William Allen Zajc

ABSTRACT

-An application of intensity interferometry to relativistic heavy
ion collisions is reported. Specifically, the correlation between
two like-charged pions is used to study the reactions Ar+KCl—92nt +X
and Ne+NaF—>2n- +X. Source sizes are obtaiﬁed that are coasistent
With_a simple geometric interpretation. Lifetimes are less well
detérminéd but are indicative of a faster pion production process
than predicted by Monte Carlo cascade calculations. There appears to
be a suﬁstantial coherent component of the piomn source; although
measurement is cqmplicated by the presencevof final state interac-

tionse.
3

Additionally, the generation of spectra of uncorrelated events

is discussed. In particular, the influence of the correlation func-

tion on the background spectrum is analyzed,vand a prescription for

. removal of this influence is given. A formulation to describe the

‘statistical errors in the background is also presented.

Finally, drawing from the available literature, a self-contained

‘iﬁtroduction to Bose-Einstein correlations and the Hanbury-Brown--



Twiss effect is provided, with an emphasis on points of contact

between classical and quantum mechanical descriptions.
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CHAPTER 1

INTRODUCTION |

A. Objectives of Relativistic Heavy Ion Physics

The systematic study of relativistic heavy ion collisions (RHIC)
became possible in41974; with the advent of the Berkeley Bevalac.
Prior to this, cosmic rays provided the only source of relativistic
nuclei, which made experimenfal control of the energy and mass of the
projectile impossible. The Bevalac provided experimenters with beams

up to A = 57, with energies ranging from 50-2100 A*MeV.

It was expected that a number of unusual phenomena could be
observed with this new facility. For example, the first three papers
of the HighaEnergf Heavy Ioﬁ.Summer Study of 19741 discuss shock
waves; highly excited nuclear matter, and density isomers. It was
also hoped that one could determine the nuclear equation‘of state,
fhereby obtaining the energy per nucleon W(P,T) for densities p‘
exceeding normal nuclear density and for temperatures T>0. In addi-
tion to the intrinsic interest in W(p,T), knowledge of this quantity

is essential to theoretical studies of subernovae and neutron stars.

vFurther'practical benefits were predicted for such fields as cosmic

rays (of cdurse), atomic physics at high Z, creation of neutron rich

~

isotopes, etce.

In the ensuing years of experimentation and theoretical study,

many of these practical results have indeed been obtained. However,.



the search for exotic physics has been largely unrewarded. Single-
particle spectra of all reaction products are smoothly varying, with
the excepﬁion of the well-understood Coulomb enhancement of n yield
observed near beam velocity by Sullivan et al-2 Determination of the
nuclear equation of state has thus far proved impossible, due to fin-
ite particle effects, incomplete equilibration, large single-
scattering components, etc. Furthermore, vastly different assump-
tions regarding the reaction dynamics lead to quite similar final
states, thus allowing a variety of models to predict single—particle
cross—-sections to withih a factor of two. As emphasized in a recent
review by Nagémiya and Gyulass‘y,3 the actual physics for single-
.particle observables lies in understanding and reducing this' factor

of two.

An altérnative (and complementary) épproach to the refinement of
existing single—particle measurements is the study of multi-particle
spectra and correlations. For example, the in-plane/out-of-plane
two-proton correlation has proven valuable in resolving the various
processes that produce protons in a given phase Spacé region.4 Other
forms of two-proton analysis may probe the size and shape of the.
vmid-rapidity,proton source.5’6 The ultimate limit of multi-particle
measurements is the global analysis of all (charged) particles. For
instance, the authofs of Ref. 7 show that the eigenvalues of the

kinetic flow tensor

=\ L on (1
Fij = zmp pi(ﬂ) pj(ﬂ)

are useful parameters to describe the flow patterns of heavy-ion
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AW,

collisions. (Here m, and pi(p) are the mass and i-th momentum com-

B

ponent, respectively, of the B-th particle.)

A particularly interesting two-particle state is that for two
like-charged pions. Because two like pions’ obey Bose.statistics, the
two-pion relative momentum spectrum provides a sensitive tool for
exploring the properties of the pion source. This thesis describes a
series of experiments designed to determine the pion source parame-

ters through the use of intensity interferometry. In the next sec-

tion, we begin by considering the pion production mechanism in RHIC.

B. The Pion Source in RHIC

Pion production in relativistic heavy ion collisions has been
extensively studied, both experimentally and theoretically. (See'.
Ref. 3 and the papers cited therein.) There are several reasons for
this atteﬁtion. First, pions are produced in abundance at RHIC ener-
gies ( 0.5-2.1 A*GeV ). For example, at 1.8 A°GeV, nearly 60% of the
NN total cross seétion goes into pion production. Secondly, both
pion ﬁroduction via the dominant (resonant) reaction‘NN->Mﬁ and the
plon-nucleon interaction nN->nN are well understood at a (nearly)
fundémental level. Furthermqre, the 6-model, a phenomenological
prescripﬁion for incorporating the effects of higher-order meson
exchange and chiial ihvgriance, has led t0'the‘prediction of novel
states of nuclear matter,8 and of the pion field (See, e.g., the
results of Ref. 9 ) Finally, since m"<§-mN » and since pions are
bosons, one is led to consider the possibility of coherent pion radi-

ation,lo i.e., the creation of a "classical" pion field through



bremmstrahlung of the nucleons. This would be an interesting object
indeed! Since two-pion interferometry is capable of measuring both
the space-time extent of pion production and the degree of coherence
of the pion field, it is a valuable method fof clarifying pion pro- -

duction processes in RHIC.

C. Organization of this Thesis

Chapter IL contéins an explication of intensity interferometry.
Since this technique is often "explained" by reference to the
.ﬁanbury-Brown—-Twiss effect, and since the HBT effect itself is often
the subject of considerable confusion, a fairly extensive discussion
is devoted to the oriéins of the Bdse-Einstein interference and to
classical explanations of the HBT effect, as well as its application
to particle physics. Chapter III describes the experimental
appa:atué used to measure our two-pion events, while Chapter IV
details the analysis of these data. Results are presented in Chapter
V, with conclusions and directions for future research given in
Chapter VIi. There are several appendices containing detailed

descriptions of various results, methods, and calculations.

Unless otherwise noted, natural units are used in this work,

that is, h=c=l.



CHAPTER II -

INTENSITY INTERFEROMETRY

A. Introduction

Intensity interferometry uses the correlations betweep identical
particles (usually bosons) to determine properties of the particle -
source and/or emission process. In‘optics, thisvtechnique is often
referred to as thé Hanbury-Brown--Iwiss (HBT) effect; in particie
physics it isvknown as the Goldhaber—Goldhabef—Lee-Pais (GGLP)
effect. This chapter is iptended to provide a roughly (but not |
'rigorously) historical introduction to these methods by emphasizing

the physical origins of like-particle interference.

We begin by considering intensity fluctuations since the need

for Bose-Einstein statistics (it and Fermi-Dirac statistics are the
ultimate source of all multi-particle interference phenomepa) first
arose from such considerations. Much of the next‘section is taken

11

directly from the excellent article by A. Pais = entitled "Einstein

and the Quantum Theory."

B. The Origins of Bose-Einstein Statistics

Note: this section uses units such that h and c appear explicitly.

The systematic study of fluctuation phenomena in statistical

" mechanics was pioneered by Einstein. In 1904, he applied his result



for the mean-square fluctuation in energy

2\ _ ,.20E
((AE) > = kT§7 , (II.1)
to the total energy of a blackbody oven at temperature T with volume
v,
E(D) = Vp(V,T)dy = 46TV , (11.2)
to obtain '
(@E)?) = 16kovT® . (I1.3)

(Here & is the Stefan—-Boltzmann constant.) The meaning of this result

becomes apparent when we use Wien’s displacement law hc/)\max = pkT ;

3~ 2.8 , to express §, the relative energy fluctuations, in terms of

Amax’ the most probable wave-length in the blackbody spectrum:

2 3 3
= <(AE) ) - 6053 }‘max ~ l.)‘max , (I1.4)
(E(TNH2 & YV 2V |

Thus, for small T, it is possible for g to be arbitrarily large.

This should be contrasted with the case for an ideal (classical) gas

of N particles, where E(T) = %NkT implies ¢ = 3%-” 0(%0, independent

.of temperature. As one might guess from the presence of Amax in Eq.
II.4, the large fluctuations for the blackbody results from the wave
nature of the photons. This may not appear suprising until ome
recalls that the usual derivation of the Planck’s law requires attri-
buting particle-like properties to the radiation field..'This, one of
the first hints at complementarity, was further elucidated in 1909 by
Einstein, again by considering the fluctuations of blackbody radia-

tion. This time he restricted the analysis to the fluctuations of

e



the energy density P(V,T)vd» within a small sub-volume v and fre-
quency interval V). Here we present a slightly simplified argument by

examining the mean-square dispersion in photon number for one cavity

" mode k. In equilibrium we have

1
n S ————— it .
<€ .
k a2 1 (II.5)

where < = h»k. One may then readily calculate (Qﬁnk)2>, either by
relating ;£ to the mean energy of the mode and using eqn II.1 or by

explicitly calculating

(@?) = (a2) - 32

for a quantized oscillator. 1In either'case, one obtains

2 - =2 | (11.6)
<(A“k)> % M | -
which is the essential result of this section.
As we shall see, the two terms on the RHS of Eqn. 1I.6 reflect
the particle and wave aspects, respectively, of photon number fluc-
tuétions. The first term is preciéely what one would obtain from a

distribution of classical particles with mean H obeying Poisson

statisticé, i.e., <Qﬁp)2> = ;; The second term, ;2, is proportional

to the number density squared and thus is an interference term, as

expected from a wave interpretation.12

While we have derived this result for blackbody radiation, the
form is a general one. To see how it arises in a different context,

consider a phototube with efficiency § illuminated by a light beam of



fixed (for now) intensity I. The mean number of counts n in an
interval T is then n = §IT. Since we have somehow fixed the inten-
sity, n is constant in time, so the distribution of actual counts m

detected in time T is given by a Poisson distribution:

m

P(m}n) =”Sﬁ%ﬁe—n;

In practice, however, one (usually) finds that the intensity I, and
thus n, are themselves fluctuating quantities. Thus to find the
total dispersion in the number of counts m, we must also average over
the distribution of n”s. Denoting such double averaging by <<...>>,
and using the'results for the first two moments of a Poisson distri-

bution with fixed n, viz. (m) = n, and <m2> = a? + n, we.qbtain
((@m?)) = ((a”)) - ((m))* LD
(atea)-(a)

=7+ [nz -;2],

where a bar indicates the result of averaging over the distribution

of n. Rewriting in terms of intensity, this result is

O =3+ §2T2[<12(t)> - Tz] | (11.8) e

-

Thus far, the only content of Eqns. II1.7 and II.8 is mathemati-
cal; they simply reflect the results of performing a double average.
We now introduce the physics of the argument by exploring the origin

of the intensity fluctuations. First note that if I(t) is



produced by the output of one oscillator,

(.imot + ig(t)) 2

I(t) = Vzéoc Eoe ,

then, regardless of the variation of the p(t), the intensity is

fixed, (Iz(t)> = 52, and we recover the counting statistics of a sim-
ple Poisson. This is not an artificial example, e.g., a gain-
stabilized laser is well approximated by such a description. If,
however, I(t) is formed by the-superposition of ﬁany sources j
=N (tmye + dp (0) )2
J

L(e) = Iy <4c jEIEOe - | (11.9)

and if the ¢j's are time-varying in a mutually incoherent fashion (as
iﬁ collision broadening, for example), then the relative phases add
in random walk fashion, there are large fluctuations in intensity
(over the time scale of the ¢j's variation), and one can easily

show13 that (Ik(t)> = k!'ik. In this case, we have Qﬁm)z =n+ ;2,

in accord wiﬁh Eqn. II.6. Since this limit depends essentially on
the linear addition of the electric fields, the use of the expression

*wave noise’ for the second term is justified.

We now return to our chronological development. In 1924, Bose
showéd that eqn. II.5 could be derived through the machinery of con-
ventional‘statistical mechanics, provided one regarded the photons as
indistingﬁishabie particles.. In the same year, Einstein boldly
extended Bose’s result to the molecular gas, by using the density of |

states approporiate for massive (non—relativistic) particles and
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requiring particle conservation. He showed in 192514 that these

modifications did not affect the (particle + wave) form of the fluc-

tuations. Therefore, he concluded that this must

.express indirectly a certain hypothesis on a mutual influence
of the molecules which for the time being is of a quite mys-
terious nature... '

One can interpret part of the fluctuations in an analo-
gous way by attributing to a gas some kind of radiation in a
suitable way, and by calculating the interference fluctua-
tions. I go into further details because I believe that this
is more than an analogy. :

Mr. L. de Broglie has shown, in a very remarkable
thesis, how one can attribute a wave field to a material par-
ticle... '

Thus, for Einstein, Bose statistics implied wave mechanics, not vice

versae.

It is natural to ask "Why did Einstein not discover the HBT
effect?" (Here HBT effect is defined as the use of photon fluctua-
tions in a light beam to determine the size of the source.) Einstein
was obviously intimately acquainted with #ll details of photon fluc¥
tuation phenomena. In addition, much of his later life &as devoted
to pondering the apparent paradoxes of.quantum theory; the interfer;
ence of photons produced from opposite sides of a star is a (less
subtle) cousin to the.Einstein-Podolsky-Rosen paradox. Of course,
;his is the sort of question that will never be definitively
answered. One response,15 however, that is certainly consistent with
all known facts, is that Einstein was indeed aware of the HBT effect

but regarded it as a trivial comnsequence of photon statistics.

- &
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C. The Work of Hanbury~-Brown--Twiss

‘This Section-descfibes the application of intensity inter-
ferometry to astronomy, as pioneered by Hanbury-Brown and Twiss.
Also in this section we present a derivation of the HBT result based
solely on classical considerations, as well as an argument by Purcell
that clarifies the role of photon counting in the HBT effect.. An
extensive (and very readable) accournt bf the HBT technique may be

found in The Intensity Interferometer by Hanbury Brown.16

In 1949, Hanbury Brown, Jennison, and Das Guptal7'measured the
angular size of the radio sources Cygnus A and Cassiopeia A by com-

paring the noise correlations between two separated antennas. Since

" this method was based on firmly established radio frequency tech-

niques (the theory of bandwidth-limited Gaussian noise as detected by
a square-law detector, see, e.g. Lawson and Uhlenbeck18 ), their
result occasioned little cdntroversy. The exteusion_of these methods
to thevoptiéalvd@main, hewever, was quite a different matter.

‘The following objections (among others) were raised: l.) In his

19 Dirac states "Interference between two dif-

quantum mechanics text
ferent photons never occurs." 2.) Two laboratory experiments had been
performed that failed to observe correlations in the photon count

20,21 3.) For optical frequencies, the shot noise (i.e., the

rate.
particle-like photon number fluctuations) would far exceed the wave
noise. In the radio source case, the wave noise is the greater of

the two, and indeed is solely responsible for the noise correlations.
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It is instructive to examine these objections point by point.
The first criticism simply results from quoting out of context.
Dirac made this statement with reference to double-slit photon dif-
fraction experiments, to refute the erroneous inte;pretation that
diffraction results from the interference of two photon "waves". 1In
fact, the diffraction persists to intensities so low that the chance
of finding two photons simultanéously in the apparatus is negligi-

ble.22

The secoﬁd objection would appear to be more substantial, based
as it is on physical evidence. Here the fault is not a conceptual
one, rather it is an experimental one. While the data as reported by
these experiments are correct, iﬁ is possible to show (see, e.g. Pur-

cell2

3 ) from the stated values of the resolving time and bandwidth
(for both experiments), that their sensitivity is such that hundreds
of years of observation time would be required to see the HBT

enhancement.

The third point is a real omne, althohgh again it is dispénsed
with through suitable design of the measuring apparatus. It is cer-
tainly true that for visible light the shot noise is the dominant
source of fluctuations. .The "trick" lies in the construction of a
detector that is sensitive only to the wave noise; this is precisely

what Hanbury Brown and Twiss did.

Finally, one might attempt to meet all objections of principle
by the following reasoning (an argument by intimidation): First, the

existence of noise correlations was:established beyond doubt at radio

v
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frequencies. To apply the technique to electromagnetic radiation at
other frequencies (higher or lower) we simply note that, according to

Bohr,z4

The typical features of electromagnetic fields do not depend
on scale, since the two fundamental constants—- the velocity
of light ¢ and the quantum of action h- do not allow any fix-
ation of quantities of dimensions of a length or time inter-
val. :

(Emphasis added)

We now turn to a classical analysis of an idealized HBT experi-
ment, as given by Hanbury Brown.16 Consider the situation shown in
Fig. 1, where two sources Pl and P2 are‘separapgd by a distancé 2R.
They may be regarded, for instance, as two atoms emitting light omn
oéposite limbs of a star, radiating with frequencies uy and uh; and’
with random phases ¢l and ¢2, respectively. The light in each arm of
the detector first passes through a polarizer, so that we may add the
electric fields algebraically, not vectorially. This is simply for
mathematical convenience. It next strikes an optical filter such
that the light that is transmitted satisfies w, = ﬁﬁ = w ; the degfee
to which this condition is satisfied determines the spectrum of beat
frequencieé that our system must be capable of measuring. Assume

that the sum of their signals is detected at both points A and B;

both detectors are assumed to give an output proportional to the

local intensity of radiation, i.e., proportional to the square of the
electric field. (A phototube has this property.).The output of each

detector is passed through the low-pass filters fi; as we shall see,
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these filters must be designed to pass frequencies in the typical

range of w, - u, while rejecting both dc and high frequencies > ws

The photocurrent at A is then given by

1, = KA[Elsin(uxltA1+¢l) + Ezsin(mztAz.‘.,sz)]z. ’ (1I.10)

where»KA is some constant of proportionality incorporating all

relevant detector properties. Similarly,
_ B 72
1B = KB[Flsin(qhtBl+¢l) + Ezsin(u5t32+¢2{J
Writing uﬁtAl+¢fE Al, and'so.on, we may write iA as

fsinz(Al) + 2E1E sin(Al)sin(A2) + E

A5
2 . 2
K&{ Elsin (Al) + E

[y
[

2

gsinz(AZ)] (I1.11)

2sinz(AZ)

cos(Al-A2) - cos(Al+A2)] + E2

182

2

1 CMZQAE - 2E

cos?(2a1) - E2

E,cos(Al+A2)

1

g 2,52y -
/2KQ (Ej+E)) - E 2

+ ZElEzcos(Al-AZ)

This result contains five terms. The first is just the average dc
current from the two sources in the absence of interference. The
filter f can easily be designed so that this current is not passed.
The next three terms oscillate at the sﬁm frequencies of the two
sources and thus are of order 2ui a low pass filter will remove them.

The remaining term is the output current of f, denoted f(1 ; it has

A)
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a timg dependence ~ w - u, and thus may be regarded as 'a slowly
varying. beat frequency. A similar expression is obtained for f(iB)

by letting A—>B everywhere.

The key insight of Hanbury Brown and Twiss was to form the pro-.

duct of,f(iA) and f(iB)'in a correlator C, before performing any
further data processing. The correlator C produces an'output signal

proportional to the product of the two input currents. Therefore,

(II1.12)

[
|

= f(iA)_'-f(iB)

- 2.2[ oy _
KAKBEIEZ cos(Al-A2) cgs(Bl BZ)]

KAKBE'I'Eg cos[(Al-AZ) + (Bl-B2)] + cos[(Al—AZ) - (Bl-BZ)]

Expanding the arguments of the cosines,

(A1-A2) # (B1-B2) =wy(t, *t ) - w(t,, * cBZ) | (11.13)

. [(¢1-¢2) £ (¢1-¢2)]

Since the sources 1 and 2 are assumed indepéndént, g, and p, are
mutually random variables, so that an ensemble average over. terms . -
linearly proportional to them gives no contribution. Ther'efore., the
first term in eqn II.10, which from the results of eqn; II.11 con-

| tains a cosine of ¢l-¢2, must' vanish_ over long Aobs.ervation times. On

the other' hand, the second térm 1s' independent of .the phases! Thus,
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the time-averaged i is proportional to only this last term:

c

=8
1

22
c KAKBElEzcostul(tAl-tBl) - u.lz(tAz-th)]. (I1.14)

n

K,K_E

2
ARgE B

co “‘l_(tAl'tm)' - (tAz'tsz)_]

NN

Specializing for convenience to the specific geometry illustrated in
Fig. 1, where A is on a line perpendicular to the line joining Pl and
P2, and B is slightly displaced parallel to the same line, we find
for the quantiﬁy iﬁ square brackets above (the difference of the

differences in path length)

L(cAl—tBl) - (,tAZ_tBZ)J - L(tAl-tAZ) - (tm'th)J (I1.15)

( o0 - [\ID2+(d—R)2 - \ID2+(d+R)2]

d
ZRD

n

Therefore, one can write for the final form of i :

C.
1, ='Kcos(ur2%c-l-) = Keos(2n%d) | (11.16)

A
That is, the noise in the two channels will be correlated provided

o
%?-ﬁ 1, where 6 is the angular size of the star. For A = 5000 A,

this requires d'~ 100 m per msec of arc.

This argument, while straightforward, may be sufficiently com-
‘plicated algebraically that the physics is no longer manifest. Qual-

itatively, the HBT effect results as follows: A star consists of a
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macroscopicaily large number N of independent radiators, whose elec-
tric fields add linearly. (Eqn II.9 is an example of such a sum.)
Since the phases ¢i are mutually incoherent, this produces an inten-
sity subject to large fluctuations over time. However, these fluc-
tuations cannot occur over arbitrarily short times. Rather, there
exists a time scale given by the inverse bandwidthvof the light
admitted to our system. (This is true since the bandwidth /\) deter-
mines the range of frequencies that can beat against each other to
create a timé-varying intensity envelope.) Thus 1if we measure the
noise at time t, then again at time t + ", it is unlikely to have'had
changed very much if % < Zss. Similarly, referring again to Figure 1,
if B is sufficiently close to A, the noise profile, created by the

for each independént source

sum over the phasé of arrival times tBi

i, will not be drastically different from the corresponding sum con-
ducted at the point A. Only as d becomes significantly greater then

%%-will the noise at B become different from that at A.

To’compiete this section, a derivation due to Purcellz_3 is given
that makes clear the connection between two-channel correlated noise
and eqn II.6 of the previous seétion- We present here a version of
this argument specialized to detectors of zero resolving time; again

this is fo; simplicity only. Consider a light beam of omne pélariza—
tion with 1ntensity such that é phototube placed in the beam counts n
photons per ﬁnit time. If the light is from a chaotic source (e.g.;
a thermal oné), the fluctuations in this‘rate are given by éqn I11.6,

i.e., <Qﬁp)2> =TE(1 4-;5. Split the beam with a half-silvered mirror
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so that one beam contains an intensity of ;I; the other contains N,

with n = ;I.+ ;;; The fluctuations in each of the split beams are
also governed by eqn 1I.6 However, we could connect our phototube
outputs for 1 and 2 together (count in the OR mode) and demand that

we . recover the fluctuations resulting from a total of ;.photons.

Mathematically,

((An)2> Rl +T) | (11.17)

2

(s (R ey

but

(@m?)

(@ o)+, )]2>_Y
(

| (Anl)z> + <(A“2)2> + 2<An1'An2>

Substituting nl( 1 + 1 ) for n,’s mean-square dispersion, and simi-

1

" larly for n,’s, one obtains:

2

Qﬁplqﬁp2> =m,°n, (11.18)
Thus, the fluctuation formula for Bose~Einstein statistics leads
directly to correlated noise counting rates, without the need for the

intermediary classical wave picture.

D.. Intensity Interferometry in Particle Physics

This section develops selected aspects of Bose-Einstein statis-
tics as applied to particle physics. This material is intended to be
introductory only; most results specific to RHIC are deferred until

Chapter Five. Here we will show that correlations between identical
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pions are determined by the properties, in particular;'che space~time
extent, of the pion source, thus providing a strong analogy to the
role of photon correlations in the HBT effect. .However, while analo-~
gous to the HBT technique, in another sense two-pion correlations are
complementary, in that the correlations appear in the relative

energy-momentum of the detection process, rather than in the distri-

bution in space and time of arrival at the detector positions.zs’26

Similarly, while the derivations of the previous section relied upon
either classical wave interference or (non-classical) particle number

fluctuations, the approach here will be dominated by quantum mechani-

cal indistinguishability, which in turn implies symmetrization of the

wave function. Nevertheless, it should be remembered that these are

all different methods of describing the same physical phenomena.

The first application of intensity interferometry to.particle

physits was made in 1960 by Goldhaber,'Goldhaber, Lee, énd'Pa1327

- (GGLP). They studied the distribution of opening angles between

plons from the annihilation of 1;05 GeV/c.;}s on protons in a propane
bubble chamber. It was found that the mean opening angle for like
pion pairs.was significantly smaller than that for unlike pion pairs.
GGLP explained this in the framework of the Fermi statistical
quel,28 with the additional requirement of symmetrization between
like particles. To see how this comes about, considef first the

expression for the differential cross section do to produce N parti-

cles from a reaction with total four-momentum PTOT:
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1=N v d3pi A i=N
do = CNPN(_Q_)' H —5.T 8¢ PTOT - ’2 Py ) . (II.19)
i=1|(2m) i i=1

Here CN is a nofmalization constant, V is the quantization volume,
and pi = (Ei;;l) is the four-momentum of the i-th particle. The
product in brackets, along with the delta-function, is simply the
available N-body phase space. PN(Q)'represents.the probability that

all N particles are simultaneously in the reaction volume Q, thus

~ - —> 2 |
Q Qo '

If one assumes the N particles are statistically independené, the
wave function QN isvtheﬁ the product of élane waves:
. ip,°T,
i=N e i i
B T i=l  \V

In this case, it is apparent that PN(Q) = (QjV)N. What GGLP showed

was that the distribution of pion pair opening angles required modi-
fying QN by symmetrizing the product wave function between like pion
pairs. After doing so, the phase-~space integrals were evaluated via
Monte-Carlo integration, leading to good agreement with the observed
opening angle distributions for values of the reaction volume radius

R between O.Sjgg and,0.7ﬁégg, or roughly between .7 and 1.0 fm. (It
" n

is interesting t6 note that in his'1950vpaper,28 Fermi makes explicit
note of neglecting like-particle symﬁetrization requirements. It
does no disservice to the authors of Ref. 27 to suggest.that, had the
available data warranted such a treatment, Fermi himself may have

made a GGLP-style analysis of meson correlations.)



21

Further_ﬁs experiment:szg-31 at higher energies found radii simi-

lar to those obtained by GGLP. Bartke et 31;32 were the first to _
examine the mean opening angle as a function of the relative momentum
between thé pions. Again, they found R 2 1 fm, in this case for the
reaction ﬁp-9p4n+3n—. The extension to hédron-hadron reactions with
three and even four identical'pions in the final state-wasbperformed

by Boesebeck et al.33

All of the above experiments relied on some variant of a Monte-
Carlo integration over the phase space of the N - 2 "other" particles
in a N particle event. This procedure becomes increasingly burden-
some as the CM-energy, and hence the event multiplicity, increases.
One may turn this fault into a virtue by taking the N = o limit,
i.e., by applying the ﬁechniques of statistical mechanics. For exam-
ple, Khox34 showed that the multiplicity distribution of pions in p+p
reaction; at 405 GeV is not Poisson, but is well described by assum-
ing the pions form a partially degénerate boson gas. waever, pre-
éiéely because the statistical assumption appéars.valid, more
detailedvdynamical information is difficult tq obtain by such
1nte§ral methods.

Fortunately, Kopylov and Podgoretskii, in an extensive series of

articles,35—j41 showed that this difficulty may be avoided through use

of the two-pion correlation function, roughly defined as
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6
. d ¢
ap2dp)
- —> 2
C,(psP,) = —3—1—3—- (I1.21)
d " ¢d o
3 3
dp) dpy
Under appropriate conditions, it can be shown that:
—> = -
C,(p»P,) = C,(d,q4); (11.22)
- = ->
q=P2"P1 ’
and that C, is proportional to a constant plus the absolute square of

2

the Fourier transform of the space-time distribution of pion sources,

i.e. »

) |
¢,(Thay) @ 1+ Ip@ay)! (11.23)

We may understand this result qualitatively by applying the
rules of quantum mechanics for indistinguishable events to the exper-

iment illustrated in Fig. 2. Assume that a detector located at;?l

- v . ‘
measures a plon of momentum Py in coincidence with the detection of

. —p -—
a pion of momentum P, at location x (The requirement of a coin-

2°
cidence in time is ' not needed to insure some condition like

AE°At ~ . The resolving time must simply be adequate to assure us
that the detected pions caﬁe from the same nuclear collision, which
in turn implies that their wave-packets were once very near each
other.) If the source of the pions has some non-zero space-time
extent, there are two ways that such a twb-pion event may occur:

-
r

-
1 and a pion with p, was

Either a pion with ?1 was emitted at
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_ under the particle interchange r
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- - ' :
emitted at T, or the pion with p, was emitted at-?; while the pion

7? . These two alternative histories of the

1

system are, in general, indistinguishable. Therefore, we must add

with'gz was emitted at

the amplitudes before squaring the matrix element. Writing

- .
=';;'xj - Eitj, and assuming the pions are described by plane-

wave states, the amplitude for a two-pion event is given by:

pixj

I 4

ip, (x,-r.) 1ip,(x,-r,)
- = _
¥(psp,y) @ - Jl e 1 T2, - (11.24)

\2
ip (x)=ry) ip,(x,-r))
e e
We note in passing that adding the amplitudes for indistinguishable
processes has led us automatically to write a wave function symmetric
K==> r2, the:eby making contact

1
with the approach of GGLP. The probability is then proportional to

- = .2 o '

P10 = 1+ cosL(pz-pl)(rl-rz)] | (I1.25)
Assuming the pion sources act independently, and are distributed in
space and time according to a distribution function p(?:t), the
result for the two-pion counting rate is found by integrating over
the distribution of pion production sites ri:

B3y 5,) = |d*rd'rp@ t.) ('r’I t,) 1¥(p. ?)iz - (11.26)

P1»Py NP LS Lt Ut LA LAY S R ) |
- 2
=1+ IP(Q.qo)l ’

where B, ??, and q, are as given above.

As an example, assume the distribution of sources is described

o : 2,2 2,2
by a Gaussian in space and time, that is, p(?:c) « e’ [R™=t" /T .
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The correlation function is then given by

-q2R2/2 - qé’tz/z

~> _ (11.27)
Cz(q.qo) =1+e -

Thus, for large momentum and/or energy differences, C, approaches

2
one. It shows an enhancement for relative momenta q = %‘and for
relative energies 94 :‘%. It is just when these conditions are
satisfied that the Heisenberg relations insure that the alternative
propagation paths are truly indistinguishable. This provides another
quantum mechanical interpretation of the classical HBT effect, since
when (see Eqn. II.16) %? < 1 we can no longer tell which photon came

from which side of the star. Also note that for any source density

function that satisfies

P, T ot iTysty) = p(F e ) p(T,t,) © (11.28)

with

-
Jp(r,t)dar =1
—
we have C2(q=0,q0=0) = 2, in accord with the general rule that the
probability of finding two identical bosons in the same state is

twice. that for non-identical particles.42'

Since Kopylov’s and Podgoretskii’s initial suggestion, correla-
tion function methods have become an accepted if not widespread tool

43-33 and recently e+e' annihilation,55

of hadron-hadron physics,
where a 3-pion correlation function has also been measured. Gen-
erally, the sizes and lifetimes so obtained are consistent with

R=ct=1 fm. (See Ref. 56 for a recent review.) In RHIC, both
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37,38 and (-zxpel::i.ment:alsg-'62 work indicates that two-piomn

theoretical
measurements are capable of providing valuable information about the
pion source. This thesis describes the results of such an experi-

ment.:

We close this chapter with two observations. First, the results

of this section should make it clear that intensity interferometry is

not unique to bosons. Had we considered, in the derivation of Eqn

11.24, the simultaneous detection of two fermions (in the same spin

state), the plus sign in the amplitude would havé been replaced by a

minus sign in this and the following equations, leading to an anti-

correlation at small relative momentum. Such an effect has been

5,63,64

predicted and observed6 for two protons emitted in heavy ion

. | .
collisions. In this case, however, the effect of anti-symmetrization

is outweighed by the final state coulomb and strong interactions
between the ﬁw0vprot6ns. It should also be apparent that correla=
tions between fermions is limited to the particie regime; there are
no (macroscopic) fermion "waves" since Fermi statistics prevents“the ‘
occupation number of any one mode from ever exceeding two (including

the spin degeneracy).

As our second observation, we note that the discussion of the
properties of Cz(g:qo) is a heuristic one 1in that many potentially
complicating factors have been neglected. For instance, the final
state interactions between the two pions, and between the pions and

58

the residual matter of the collision, have been neglected. A more

fundamental complication is the assumption of statistically indepen-
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dent emission of pions by a distributed source. This is clearly an
approximation based on the relative scale of the pion wavelength vs.
the spatial extent of the source that must bé examined case by case.
Finally; the fact that pions are bosons imblies.that it is (in prin-
ciple) possible to construct states of the field that exhibit classi-
cal properties. For example, if the source Qf the pion field may be
treated as c-number, the resulting pion state is a coherent one of
indefinite particle number. Such a state would show no GGLP effect,
even though the role of Bose-Einstein statistics has been fully
>1ncorporated in its construction. (The optical analog of this pion
state is the.field from a gain-stabilized laser, which was shown in
the Section B of this chapter to exhibit classical, not Bose-

58,65-70 h

Einstein, particle-number fluctuations.) Many authors ave

examined the possibility of coherence and its experimental signature

in two pion interferometry. The interpretation of present evidence,

however, is complicated by experimental systematics,48

71

and by unob-

served dynamic effects, it therefore remains inconclusive.



CHAPTER III-

EXPERIMENTAL APPARATUS

The experiments described in this thesis are high-~resolution
studies of pion correlations from the reactions

40 20

1.8 A-GeV Ar + KC1 — 2nt + X and 1.8 A°Gev Ne + NaF — 2n + X.

We elected to measure pion pairs in a relatively small region of
phase space with high statistics and good (absolute and relative)
momentum resolution; in this sense our results are complementary to

streamer-chamber measureme_nftssg’61

at this energy. In particular, we
studied pions emitted near 90 degrees in the center-of-mass, since at
this angle.the.effects of strong and Coulomb interactions with the

72 Such

spectator nuclear matter a}e\most susceptible to analysis.
pions appear near 40 degfees in the laborétoty with momenta peaked
about 300 MeV/c. . Thefefore, they may be moment&m_analyzed by simple
magnetic spectrometer éystems. :hié chapter provides a brief
descfiption of the éxperimenﬁal hardware and on—line'dafa adquisition

software. The discussion of off-line analysis is presented in

Chapter IvV.

A. Beam Transport and Monitoring

All measurements were made at the Berkeley. Bevalac. Fuily

stripped 8.5 A<MeV 20Ne or 4OAr from the SuperHILAC are injected into
the main ring of the Bevatron, where they are accelerated 'to-

1.8 A*GeV. At this energy, the repetition rate is 10 pulses per

27
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minute. Following resonant extraction, the beam is transported to
our target via a conventional beamline of magnetic dipoles and qua-
drupoles. The final quads are located approximately 5 meters

upstream from the target; typical beam spots are 1l cm. X 1 cm.

The targets are chosen to provide an essentially equal-mass sys~
tem with respect to the projectile, i.e, a KC1 térget is used for
40sr be#ms and a NaF target for 20ye beanms. The difference between
the resul;ing nuclear systems and the exactly symmetrical case is
expected to be small. In‘particular, pion source size parameters
should not be affected since the} are determined by geometric, not
isotopic, properties; A target thickness between 0.5 and 1.0 gm/cm2
provides a good coﬁpromise between the conflicﬁing requirements of

high event rate and low multiple scattering in the target.

The beam intensity is monitored by an ionization chamber located
at the end of the vacuum pipe, approximately one meter from our tar-
get. vThé output current is measured by é Ortec 439 current integra-
-tor, which convérts the ion chambér current to pulses that are read
by a CAMAC scaler. The ion chamber calibration is obtained from a
fit to all previous measurements by our group and others, performed
over a wide variety of energies and intensities. The response is
linear and in excellent agreement with the calculated calibration.
Further details are presented in Appendix A. Typical intensities

08 40 od 20

range from 1 Ar per spill to néarly 1 Ne per spill; a spill

is slightly less than one second.
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B. The Spectrometer

A plan view of the spectrometer is shown in Fig. 3. Pions pro-
duced in the target.have their incoming trajectories determined by
the two small MWPCs, are bent by ﬁhe magnetic field, and then pass
through the twd large MWPCs, thus defining their outgoing trajec-

- tories. A lead collimator, 30cm from the beamline and 20cm thick,
has an opening angle of 10 degrees, centered about 45 degrees with
respect to the beam axis. Due to the target spot siée; thé range of
accepted pion laboratory angles is from 37 degrees to 53 degrees.
Immediately following the lead wall are two trigger counters Sl and
S2; they ?rovide the START signal for time-of-flight meaSgrements.
Behind MWPC4 is an two-layer array of counters, first Bl to B10, fol-
lowed by Al to A8. The geometric overlap of Ai with Bj segments the
active area of MWPC4 into 17 strips AB , k = 1->17. Two-pion events
are defined by requiring two separate AB'combinations in coincidence;
. such a coincidence is also the -STOP for.the time-of-flight. Further
details are presented in the "Fast Electronics and Computer" section
of this chapter. A cylindricai array of tag counters surrounds the
target to provide event-multiplicity information. We now present a
more détailed description of the individual components of the spec-

trometer system.

bgfl. The JANUS Magnet

The magnet used (JANUS) is a staﬂdard Bevatron H-magnet with a
55.9cm X 167.6cm (22" x 66") pole-tip. The gap is shimmed to 21.5cm

to allow insertion of MWPC2 between the pole-tips. All runs were
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made with a 9.0 kilogauss field, which correspon&s to a current of
roughly 500 amperes. The field was measured indirectly by monitoring
the voltage drop across a shunt resistor, and diréctly via a Hall
probe located on the bottom pole-~tip. The field vafied by less than

.2% from run to run.

B.2. Scintillation. Counters.

The active area of Sl was 27cm X 20.3cm, with a thickness of 5
mm. S2 measured 32cm X 15.2cm, with a me thickness. Both were
viewed with XP2020 phototubes equipped with active bases designed for
high count rate enviromen;s. Typical counting rates for S1+S2 were a
few times 105 per second; individﬁal rates, particularly for Sl were

even higher.

All AB counters were 5mm thick, with a vertical active height of
30.5cme Three .different widths (33cm, 19.lcm, and 9.5cm) were used
to create the staggered hodoscope array as shown in Fig. 3. These
counters were equipped with RCA 8575 two-inch phototubes, mounted in

the LBL standard base assembly.

The small tag counters Ti, i = 1=»14 measure 47cm X 12cm, are
3mm thick, and ére mounted in a cylindrical array of radius 30cm jdst
downistream of the target. Each has an angular width of roughly 22.5
degrees so that complete azimuthal coverage would require 16
counters. The two counters in the direction of JANUS are missing,
since, if present, the pions accepted in the spectrometer would pass

through their additional mass, greatly decreasing our momentum reso-
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lution. The T counters use EMI 9843B integra;-tube and base assem=-
blies. Each set of ﬁhree T counters is covered by one C counter,
with active area 57cm X46cm and thickness lecm. The C-countérs are
viewed with RCA 8575 photqtubes, 50 mil of copper are placed before

the T-counters, and %” of copper after them, to reduce the background

from soft x-rays, heavy fragments, etc.

B.3. Multi-wire Proportional Chambers

The four MWPCs form the heart of the spectrometer, since they
provide the spatial information fof each pion trajectory. vThe two
small chambers.MWPCI and MWPC2 are 1dent1§a1; each has an active area
of 30.2cm x 14.2cm and three planes of.sense wires at |
450,'900,.and 0° with respect to the horizontal. vSimilatly, fhe two
large chambers MWPC3 and MWPC4 are identical; each has an active area
of 200cm‘# 25cm with three planes of sense wires at -
+30°, 900, and -30° with respect to the horizontal. Aside from the
differing sense-plane angles between the small and large MWPCs, the
internal details of all four chambers are the same: the sense-planes
are separated by 'l.4cm, the wire séparation is 2mm, and each chamber
has an effective ﬁass for mqltiple scattering of roughly.35 mg/cmz.

All wires are read out with the modular electronics system described

in Ref. 73.

 §. Fast Electronics

Fig. 4 illustrates the overall flow of control in defining an

event. The'seﬁueﬁce begins when two pions péss through S1 and S2.
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The thresholds on these counters are set to correspond to twice
minimum ionizing pions, thus providing a strong bias towards two-pion
events. Two signals are taken from S2; the first passes through a

high-threshold discriminator S2 to enforce the above requirement;

high
the second fires a low=level discriminatorrSZlow which defines the
timing of the coincidence signal S = Sl'S2low'82high'(MASTER'GATE).

This process reduces time slewing from pulse-~height variation to a
minimum. It is important to do so since since S determines the tim-

ing of our event.

Each geometrically allowed AB combination is provided with a
coincidence circuit. Fig. 4 shows only two of these, Ai'Bj and

Al'Bm. In reality, there are 17 such combinations. A majority logic
box creates the signal [] = (AB)k' (AB)n,vk # n, i.e., H_means tv}o dif-
ferent elements of the AB array have fired, indicating. a. pair of
pions has successfully traversed the spectrometer. A éingle—pion

tfigger is simply set by reducing the majority level requirement to -

one, so that only one AB-combination is required.

A final requirement for a event is the signal FO = Fast Out from
the MWPC’s. Due:to restrictions in the MWPC electronics, this signal

is defined as

FO = (f1+f2+f3)‘(f4+f5+f6)'f7'f8°f9f10‘fll'f12
where f1 is the fast out for the i-th plane. (The planes are num=-
bered in the order they are traversed, thus plane #l is the first
plane in MWPCl while plane #12 is the last plane in MWPC4.) The

important point here is that any one of the three planes in MWPCL
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(and similarly for MWPC2) is sufficient to (help) create a FO.
Therefore, it is imperative that the inefficiencies of these planes

be very low to prevent a high trigger rate on useless events.

The eﬁent definition ié thus EV = S°[]* FO. When this condition
is satisfied, A WRITE gate is sent to the MWPC electronics, eﬁabling
the read=-out of struék wires. A signal is also sent to the CAMAC,
initiating the read-éut of all TDC, ADC, and pattern word data for
that event. Simultaneously, the fast electronics is gated off to
prevent further triggers until all &ata has been read. (This enters

the EV definition through S.)

The readout of the CAMAC is controlled by a Micro-programmed
Branch Driver (MBD) -operating the Los Alamos data acquisition system

"-74 The MBD writes the event data into a 800 word buffef of a

-IIQ
PDP—II/AS. When this buffer is full (typically it contains 3-5
events), the Q system writes it to magnetic tape. The maximum

acquisition rate is approximately 200 events per spill due to tape-

speed limitations.



CHAPTER IV

DATA ANALYSIS

This chapter contains a step-by-step description of the off=line
data anélysié’procedures. The data written to.tape by the on-line
data acquisition system pass through.four levels of analysis. The
first level, performed on the PDP-11l used for data acquisition,
selects all reasonable candidates for a n-pion event, where n is
greater than or equal to the trigger requirement for that particular
run. This process, known as "pruning'", writes an output tape which
is then analyzed on a VAX system By a second level of routines. At
this stage, all good events are found, momentum analyzed, and written
to a tertiary file for further processing. This file is then used by
the third level of programs to create the correlation function, which
in turn is processed by the fourth level of programs to obtain pion
source parameters by fitting variéué distributions to the correlationk

function so derived.

We. now turn to a more detailed examination of each of these
steps. Since observation of the Bose-Einstein enhancement depends in
an essential fashion on the data analysis, the discussion, particu-
larly for the third level, will be quite extensive. Many of the con-
clusions presented in the following sections are based on the results
of a Monte Carlo written to simulate the spectrometer system. The

details of this Monte Carlo code are presented in Appendix C.

34
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A. First Pass: Effective Edge Approximation

Analysis begins by finding all hits in the four MWPC'Q. Under
ideal conditions, a chargéd particle passing through one of our
MWPC's will fire at least one wire in each of the three sense planes.
These three wires then form a triangle, localizing the trajectory to
1-2mm. However, operating conditions, particularly for MWPCl and 2,
are far from ideal, in that they are exposed to a flux of charged
particles of 105-106 s~L. The plane-by-plane efficiency is then sub-
stantially less than 100%. This fact, combined with the rgstriction'
on the Fast Out requirement mentioned in the "Fast Electronics" sec-
tion of Chapter I1II, implies that many of 6ur otherwise good two=-pion
triggers will have only two of three wires presént per hit in a given
MWPC. It is therefore necessary that all two-wire crossings in thé
MWPC’s also be considered as.hits, provided thac these crosses are

unambiguously determined, i.e., that they are not the vertices of a

large triangle.

Once all hits are found, track selection begins by considering
all possible ingoing rays to the spectrometer, and all outgoing rays
from the Spectrometer.v Ah ingoing ray is defined as a combination of
any hit in MWPCl with any hit in MWPCZ. Similariy, an outgoing ray
is defined as any hitvin MVPCS combined with any hit in MWPC4. The
ingoing rays,.ptojected back to the target, are required to originate
from within 10cm 6f the nominal beam—~spot location. - The outgoing
'rays are required to have an exit ﬁngle legs than the minimal

entrance -angle to the spectrometer, i.e., they must correspond to a
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potential trajectory for a charged particle bent in the appropriate

direction.

Each ingoing ray is then paired with each outgoing ray to deter-
mine if they lie on an allowed trajectory through the magnet. This
determination is made using a simple geometric requirement in the
effective edge approxiﬁation, as -described - in Appendix B. The effec-
tive edge is calculated via three separate prescriptions. The first
uses an analytic result75 for the additional distance beyond the

pole~tip edge Leff over which the field is considered constant (See

also Figure 6):

4T 4
Legg = 2n|_A2 = ln(1+s] .

" In this expression & 15 a solution to

= nh
8 = tan( s - T
h is the vertical distance between the pole~tip surface and the
center of one of the coils, and d is the gap. The second method of

obtaining Le uses the Monte Carlo to calculate actual trajectories

ff
using the full field map. For a track of momentum p, traversing a
pole-tip of width 2L with a central field of Bo’ the effective edge

is then given by

plsineout - sineinl

2( L + Leff) = (Iv.1)

e
=B
co

where ein and eout are the entrance and exit angles, respectively, to.

the field region. (See Appendix B for further details.) Finally, one

may define the effective edge as.that point where. the field falls to
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half the central value. For the JANUS magnet, these three methods

agree to within lmm.

dnce the effectivevedge has been calculated, Eqn. IV.1l may be
inverted to give the momentum as a function of ein and eout° These
angles, of course, are obtained from the MWPC information. Such a
procedure is accurate to about 1.5%. This number is not the momentum
resolution; it simply represents the intrinsic accuracy of the effec-
tive édge approximation for ideal trajectories as compared to propa-
gation in the complete field map. In practice, the fact that MWPC2
lies within the fringing field means that the measured ein is not
identical to thé asymptotic value; this effect degrades the‘aqcuracy
~of the method to. «A;o.ugh';y,. 2.5% .

>Once a éan&idate'tfajéCtary is obtained; an&vitsumoﬁenﬁum‘célcﬁQ
lated, the'motion'in the vertical plane is checked for consistency
with the effects of vertical focusing from the fringe field. Specif-
ically, the hits in the firsﬁ two MWPC’s are used to predict the
vertical locatioﬁ of the hits in the last two MWPC’s.. This is done
" using simple first-order ray optics; the actual calculation is found
in Appendix B. A cut is then made on the difference between the

actual and the calculated verticalbposition in MWPC3 and MWPC4.

If thé number of surviving candidétes is greater than or equal
to the trigger reQﬁirement (i.e., at least one track for a singles
‘run, at least two tracks for a fwo-pion run), the event is ﬁfitten to
an oﬁtput tépevfor further processing. Tﬂe'number of pruﬁedAevénts

ranges from 5 to 15% of our on-line triggers, depending on MWPC
N
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efficiency. The major sources of bad events are inadequate chamber
information and single-pion events simulating two-pion event signa-
tures in the AB array by creation of delta rays, which then fire an

adjacent counter.

B. Second Pass: Chebyshev Parametrization

The output of the pruning program is a tape éontaining one
record for each event. The event record consists of all the original
évent infbrmation, i.e., hit wires, an& ADC’s and TDC’s for all the
counters. Additionally, the tracking program specifies which wires
| are associated with each godd trajectory candidate it finds. The

purposé of the second stage of analysis is to calculate the momentum

"fand-iuitialstargétnposition of each track as accurately as possible, - = !

as well as making further cuts on the data based on initial position_
X,
TARG

etc. The algorithm chosen to calculate the derived quantities such

at the target (= ), counter pulse heights, time-of-flights,
as momentum and target location is based on a Chebyshev parametriza-
tion of known (Monte Carlo) trajectories. Since this method is well

716,77

described elsewhere, only the rudiments of the technique will be

presented here.

B.1l. Discussion of the Method

Assume that a Monte Carlo describing a spectrometer has gen-
erated a set of N events labeled by B, B = 1 to N, written as
?ﬂ = [?B’?ﬁ]' Here X is used to denote the independent quantities,

and Y the dependent quantities. For example, for real events in our
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specﬁrometer, the set of struck wires for a track define

X - (XI’XZ""’XIZ)’ and quantities such as ? and ;)TARG form ?.

(In the Monte Carlo, of course, this role is reversved.)that: we seek
is some algorithm that, given__)?, returns ?, that is, ? = E‘(?). To
do so, the dependence of b4 upon ? observed in the Monte Carlo events

is used to parameterize this dependence for a general ?. :

This parametrization is in terms of a set of reduced variables,
obtained by the following prescription: First choose the origin for

the X*s at their center-of-gravity, that is, form

T=%-&), | (IV.2)
where the average is over the set of N Monte Carlo events. Then per-
. 'f_o;m_i- a principal ‘compoment: 'aﬁ_é’l}*éis’ on the -?p’é' to find' the most = .~ -~
significanﬁ vlinear c.ombinat.iOI;S of x-Basis components. This ‘def.it.1es

rd .
a new basis of event vectors EB in terms of a real orthogonal matrix

A:

?p - A-?p o (1V.3)
A benefit of the principal component analysis is that the first com-
‘ponent of g is the most significant, i.e., shows the most variation
over the data set, followed by the second compbnent, and so on. It
is often the case that not all components. of g are indepegdent ; then
the least significant components of g are fixed. For example, if we
take ¥ as the set of twelve reduced wire numbers for a trajectory

through our spectrometer (i.e., one hit per sense plane), then there

are at most eight independent components of ?, since specifying the
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wire numbers of any two sense planes in a MWPC essentially determines
the wire number of the third sense plane, to within small corrections
due to parailax, finite spatial resolution, etc. Thus, components

9 = 12 of '§> should show no variation over the data set, and Eqn.
IV.2 insures that they are in fact near zero. The ?’s are then
further transformed to restrict their variation to the interval
{-1,11, 1.e., fqr each component 1,

== (IV.4)

P17 e [leil:l

The maximum is taken over the set of Monte Carlo events.

Once the ?’s are found, an expansion in Chebyshev polynomials
is used to parametrize the dependence of the -‘?'s upon the ?’s. If

the first m components of P are used in the expansion, we have

¥® = - ) i'&’(11,12,...,1m)ril(p1)riz(p2)...ri ) x1v. 5)
1, 2’...’ m m

where Tm(t) is a Chebyshev polynomial of order m. Chebyshev polyno-
mials are used for the expansion since they minimize the maximum
deviation of the fit from each data point, rather than some "global"
quantity such as chi-squared. This is precisely the property we
desire for parametrizing tracks, i.e., we seek a good approximation

to the ?’s for each event.

B.2. Results of Chebyshev Parametrization

In practice, a guess for the various Y, s is first made. The

B

Chebyshev parametrization is then made for the difference between the
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guess and actual value. . For example, a first gdess to the momentum
is given by invertingithe effective edge formula Eqn IV.1l. Provided
the guess introduces no pathological biases, this procedure results

in a much more rapid convergence of the above series.

The coefficients of the Chebyshev series are determined by con=-
sidering 500 Monte Carlo events, distributed preferentially over the
boundaries of the JANUS spectrometer acceptance. Since the Cﬁebyshev
parametrization has the mini-max property only over ;he interval
[-1,1]; the physical acceptance boundaries must be slightly expanded
in selecting the Monte Carlo events. This insures that the reduced
variables Qﬂ encountered for real events will always be within the
app;;gablg ;gngg‘oﬁ tbe:f;;f Ibe_fitted quantitigs_are_;he spher%cgl _
.céﬁponéhfs_of the 1nit1ai'mOméntumAveetor (iﬁ.ﬁhé-lébﬁratofy‘syStem)i
E?, and the initial x and y coordinates at the target. (Thé orienta;
tion of the coordinate system is shown in Fig. 3) An expansion of
roughiy'ZSjterms suffices to obtain the accuracy given in Table 1

below:
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Table 1

Results from the Chebyshev Parametrization of
Ideal Monte Carlo Tracks

Quantity ) <(MC—fi:)> B <(MC-fit)2>
Bl (MeV/e) | . =0.01 2,46
6 (degrees) 6.43 x10°° 0.060
8 (degrees) 3.19 x107° 0. 040
M emay 1.60 x10™% 0.253
S em.) 1.60 x10°> 0.077

The above results are for ideal Monte Carlo tracks, i.e., sto-
';phastic éffécﬁé sdchvés ﬁu%ﬁipiélsééttériﬁé and enérgy ldssAﬁévg'Bééﬁ?
turned off. Thus,vTable>1 prbvides'an.indication of the intfinsic
accuracy of the Chebyshev fit. Inclusion offmu1tiple~scattering and
energy losg in the target (here assumed to be 1 gm/cm2 KCl), S1 and
SZ counters, MWPC’s and the air determines the actual resolution
obtained for the fitted quanti;ies. These are shown in Table_Z

below:
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_ Table 2

Resolution for Fitted Quantities in Presence of
Energy Loss and Multiple Scattering

Quantity ((actual—fit)) <(actual-fit)2>
Pl _(MeV/c) | 3.74 3.79
0 (degrees) 0.042 | i.Ol
? (degrees) 5.63 XlO-3 1.39
e P -0.053 1.09
gt ey 0. 046 0.893

Note that, due to multiple scattering and energy loss in the
‘target and the S'counﬁéfé,'the.moméntum'of_a typical_pion:is_feduceﬂ' o
| | o AT

Pras
B agl

by not quite 4 MeV/c. Nonetheless, the momentum resolution
‘ P48

: o , .
is, as a function of Prag = IpLABl’ everywhere less than 4%, as
shown in Fig. 9. Also shown in Fig. 9 is the absolute resolution,
i.e., o0 = ((Ap )2> 1/2. The behavior of 6 as a function of p

p "LAB P LAB
demonstrates the two sources of error in momentum analysis. At low
values of PiaR® db is dominated by multiple scattering. As PiaB
increases, the multiple scattering becomes negligible. However, high
rigidity pions are bent less by our spectrometer, so that 2mm spatial
resolution of the MWPC’s becomes important in determining the actual
trajectory. The total contribution of these two competing effects is

minimized for 250 MeV/c 450 Mev/c, which is the interval

< <
-..PLAB..

where the majority of our pions are found.
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More relevant to the two-pion analysis is the resolution for
relative momentum in the CM system. Various measures of this are
presented in Figs. 10 and 11, as a function of the relative momentum. _

-These results will be further discussed in the next chapter.

B.3. Final Event Selection .

Several cuts are applied to each track found by the pruning pro-
gram. First, the trajectory is projected to the AB-counter plane,
and the expected AB-combination is predicted. The actual combination
that was hit is required to agree with this prediction to within *]
combination (to allow for finite spatial resolution, multiple
scattering, measurement errors,etc.). The ADC fbr the A énd B

counteré,'aﬁd thg TDC.for the combination must be consistent with the
sigﬁature-bf 5 pion in‘these counfers, Tﬁis eliminates protons (a
problem only for n+kruns) and out-of-time pions (a problem only at
the highest beam intensities). -Fbr the surviving tracks, a Chebyshev
fit is then made to the initial momentum;E? and the initial position
at the targét;?

TARG
three MWPC’s is used to predict the location of the hit for this tra-

. Additionally, the information in the first

jectory in MWPC4. Further cuts are then made as follows:

-
X

TARG must be within the limits of

The initial production point
the beam spot on the target. A typical x and y distribution of

;:rARG is shown in Fig. 12. The distribution is roughly Gaussian,

and consistent with the observed beam spot location and size for

that run. Thus, the mean value of XTARG reflects the fact that the

beam was known to be approximately 2-3cm nearer JANUS than the
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nominal beam-line axis. As an example, the cuts -used for the distri-

butions of Fig. 12 were ~-l.2cm < x < 6.8cm and

TARG
< 3.0cm. Next, based on the fit to the initial angle
of the pion, a cut is made to eliminate all pions that would have

passed through the lead collimator. Finally, the predictedivalue of

the MWPC4 hit is compared to the actual value, and a cut is made on

this quantity.

The above cuts are applied independently to each track in an
evént. ‘In addition, two cuts are made on the relative 6rientation of
ﬁhe two-pion events. The'firsg such cut réquires_that the tracks be
separated by some distance RSep in all four MWPC'S. This cﬁt 1nsg;es
that the cross-finding procedure described in Section A of this‘
éhapter has not somehow created a second track from the wires of a
singie particle event. Variation of Rsep thus-provides_somevindica-
tion of the.frequency of fake track.generation. Normally, Rsep is
-set to ' l.5cm. A second cut is made on the separation at the target
of the two. tfacks, i.e., on ;)sep ;;)TARGI - ;}TARCZ' Presumably, the
distribution of';;ep will be narrdwer for two pions created in the
same nuclear collision than for two pions created in éeparate colli-

sions at different points in the target. We may test this hypothesis

by forming the';;ep-distribution for real two-pion events, and com-
' -
X

d e d
TARG, 27¢ XTARG

1 2

paring it to the distribution generated by taking

from different events. The effect is particularly dramatic for the
y-projection of this distribution, shown in Fig. 13. ~While not as

striking as the y-projection, the x~-projection is also narrower for
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real events as compared to random events (a FWHM of 5.2cm as compared

to 6.3cm).

The events that pass all cuts are written to a disk file for
further processing. This forms our data base of good two-pion events
from which pion source parameters are extracted through a correlation

analysis.

C. Third Pass: Generation of the Correlation Function

At this stage of the analysis, we have a file of correlated,
momen;um—analyzed, two-pion events. In this pass, the set of two-
pion events isvused to construct the correlation function (defined in
Chapter IT). Since there is a variety of prescriptions for this con-
" struction, and sih¢e_thefe'afe some.éﬁbéleties involﬁed, ﬁé bégin>'
this section with a more &étaiied'examihationvof the gorfelation
function.

In general, a normalized two-particle correlation function is

defined as
d6n

2 3.3
c T2 - (nﬁ> dp,dp, . ' ' IV. 6
2(PoPp) = 33 (1V.6)

<n (n -1)) d’nd'n

A I w1

dp; dp)

=1+A®,.5,)
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' - -
where A — 0 for large values of Ipl - p2|- In this expression, the

number densities are defined as

3 L g3
T3 &3
dp dp

The presence of the factors involving the pion multiplicities insures

q .

that the numerator and denominator have the same normalization. They
result from the definition of the one-particle inclusive and two-

-particle inclusive distribution normalizations, i.e.,

3. 3
dplZ

6 v
J;_Q—E—1f9 dp2 :;<n"‘nhj;?> -_,,

In principle, one.could construct the éorreiatioﬁ function by
direcﬁly measuring thg'two-parﬁicle inclusive, one-particle
inclusive, and total cross sectiomns, then computing thevrgtio defined
in Eqn. IV.6. 1In préctice this is never done, for a variety of rea-
sons. First, there is ﬁhe purely practical matter of obtaining suf-
‘ ficient-sﬁatistics in six-dimensional phase space. Second, it is
known thét, if the pions are well described by plane waves, then
/\(?1,?2) = /\(qo,?)=» Ip(qo»-i)) IZ,- where p is the Fourier transform of
the source density and 4, and-g'are defined in Eqn. II.22. (We will
use these symbols, alongrwitth E!I??I, for the remainder of this

thesis.) Finally, there are systematic uncertaihties in a simultane~

ous determination of three different types of cross section. In
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fact, the mere requirement of one pion versus two pions leads to a
substantial trigger bias. The nature of this bias is discussed in -
detail in Appendix D, where it is analyzed in terms of impact parame-
ter selection. The results of that analysis indicate that a one-pion
trigger for the JANUS spectrometer skews the mean impact parameter
only slightly fr;m:that of an inelastic trigger, whereas-the two-pion
requirement (for Ar + KCl) is equivalent to the Streamer Chamber cen-
tral collision trigger78 6 = 180 mb., or b £ 2fm. Thus, even in the

limit of an infinite amount of data, a blind application of Eqn. IV.6

would lead to an improper averaging over different event classes.

Therefore, instead of direct application of Egqn. IV.6, we séek a
method for describing. all features of a relative momentum spectrum
for.a given reécfion; excegt-ﬁhé-ﬁoseéEiﬁstein correlations; lThe
resulting distribution B(q0;€3, called the background distributiom,
would then give the correlation function when compared to the actual

spectrum,A(qo'gB:
B ’

-y
Cz(qo,q) == (IV.7)
B(q,,9)

There is a variety of prescriptions for generating B, each with
application in various regimes. Before describing the method we
chose to dse in this work, it is illustrative to examine alternative

procedures.

The most direct approach to calculating B requires the presence
of a complete dynamical model for the system being studied. B(qo;;3

is then explicitly calculated by removing the like-particle
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symmetrization from the model. Not surprisingly, the only model
amenable to calculation is the statistical model (see, e.g., the
results of Ref. 32 ). The obvious difficulty with this method is
the model-~dependence. The features in a Cz(qo;;3 so obtained meas-
ure the deviation of A(qo;€3 from the model used for the phase space
population; only in the limit of a perfect model,_i.e.,‘a complete

accurately reflect the Bose—-Einstein

theory, does the resulting C2

enhancement.

The remaining techniques for determining B all attempt to use
the data directly to oﬁtain ehe expeeted phase spaee distribution for
like—éarticle pairs in the absence of Bose-Einstein correlations.

For instance, n+n- pairs presumably reflect the same kinematic con-
straints as n m pairs; but do not obey a symmeerization requirement.
Unfortunately, the production mechanism and final state-interections
of n+ﬁ- paifs are dominated by a series of resonances ( g, P, un... )
not preeent in thellike-pion channel. Nonetheless, provided the con-
tribetion from these resonances may be removed

43,48,47-55 this approach is often very useful (see,

unambiguously,
however, Ref.‘54). Implicit in the use of this background is equal,
or at least weil understood, detection efficiencies for ﬁ+'s and

m ‘s. This is certainly not the case_for the JANUS spectrometer,
whieh is not capable of simultaneous measurement of_opposite charged
pions. - Furthermore, the utility of n+n- background generation for

heavy ion physics is questionable. First, present-day energies are

such that n+-p separation is difficult over much of phase space.
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Secondly, the Coulomb effects of the residual nuclear charge are
opposite for‘n+ and n-; leéding to observable differences in their

momentum spectra.

Yet another technique for génerating virom the data uses fake
two pion~events:createdfby mixing individual pion tracks from dif-
ferent évents; Since the Bose-Einstein interference does not extend
from event to event, this approach should produce a.background spec~-
trum containing the actual single-particle detection efficiencies as
well as the relevant phase space factors. This is the method that we

chose for the analysis of our data.

While intuitively appealing, the use of pions from different

A evgntsﬂgay Be cqmplicated by several possible;effects.: Firgt:is‘l
,gnergy-méméntum éonservatién,fbf father, iack of it._‘This'is indeed_
a valid objection for some high energy physics experiments; where the
small number of produced particles, leading particle effeéts, jet
phenomena, etc. can lea;d to strong kinematic éonstraints. v In some
cases, it is possible to circumvent this problem by creating a spec-
ﬁrﬁm of "random" pions by the exchange of momentum cdmponents of dif=-

40,54 For heavy ion physics, this is

ferent pions from the same event.
not expected to be a serious problem, in that the energy contained by
the pions is a small fraction of the total available energy. To see
this, consider the collision of two nuclei of mass A in the CM sSys=

tem, where each nucleus has energy YCMA'MN. Assuming isospin sym-

metric matter, this ratio is
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-<E"> 3<n"> - .
f‘ = ~e ) . (IV. 8)
O~y 28
For central 1.8A°GeV Ar + KCl collisions, <n > = 6, and <E"> = 2m",

n

leading to f = 17%. Thus, it is unlikely that any combination of two

plons in a given detector will make significant inroads on this large
reservoir of energy. Similar considerations apply, of course, to

momentume.

The nature of the statistical errots for backgtound events
represents a second effect in different-event mixing with subtle
consequences. If we beéin with N pion momentum vectors, we can gen-
erate from them VZN(N-l) = V2N2 pairs of background évents. Say n

of these pairs fall into a given bin in qo—q space. 'Naively, we

might éséume the error dnfn'tolbe given by & = \ln. However, one is

n
always suépicidﬁs ot‘getting édmethinglfor ﬁothihg, which is juétv'
what our background mixing has done. That is, the batkground mixing
has resulted in, for large N, a tremendous increase in the number of
background pairs, while starting from what may be a quite limited
statistical base. A more careful analysis shows that the actual
error is given by d; = 2n3/4. Tﬁis effect has important consequences
for our data analysis, which are discussed, along with a derivatioﬁ

3/4

of the n rule, in Appendix E.

The third problem with different-event mixing arises when the

' - =
correlation factorlA(pl,pz) shows little variation over the detector
acceptance region. To see this, consider the extreme limit'of a very

narrow-band spectrometer, where all accepted pairs have small rela-
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tive momentum compared Eo the correlétion function, i.e,

Ii?l"];él < %-for all accéﬁted pairs. Then any mixed pair will
inevitably be made of pioné associated with another close partner in
the real event. This leads to a "dilution" of the enhancement, in
that the background B also contains the effects of the correlation

factor A.

To see this mathematically, consider for convenience a discrete
model for a two-pion correlation experiment. Let 9 denote the spec-

trometer acceptance for events with momentum';;, i.e., B, = D(;;)-

3

similarly, let w, = Q—B; and C, . ='C (?? E? }« (This analysis
dp ij 274,737
i

~assumes tha;lcz‘islg-fpncFion‘qf Fhe twq’;ndividual momentéf This is
fof métheméticél siﬁplicity dnly; ;Thé uée'of‘q and‘do simply intro;
ducés soﬁé a&ditionéiAsumsﬁénd projéétion opefators,'while o$scdfing ”
the physical origin of the effect.) The real one pion counting rate

is then given by

R
Pl(i) = pu _ | : (IV.9)

while, assuming qij = gigj, the two-pion rate is given by

R — * L] L]
Pz(ij) = °1“i‘°j“ﬁ Cij | (IV.10)
Clearly, '
R
Pz(ij)
—_——— =
R ij
PY (1P} (4)
This is just the discrete form of Eqn IV.6. Now consider the results

ofvgeneratingra background spectrum by mixing individual pion pairs
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from different two-pion events. - The number of fake pions with momen-

tum i is given by summing over all unobserved "second" pions, thus

,Pl(i) = IJ:Lmi ;nmmmcim _ (IV.11)

The correlation function from mixing different events is then given

by
R
P (ij) _
Ci;.ff o % (IV312)
vP~2(ij) .
where the fake two-pion distribution is given by
Pr(4f) = PL(1)°P1(§) C@v.13)
AR | 1 -
='|:r;mznmc ]’l-g.m.ZQmC J
1711l "m m im j j&"™n n jn
_ “m n
-Writing Cim =1 +/\im, we obtain ‘
2p w *3p w _ _
diff m~ "8 : | (IV.14).
ij (145 1° [1+6jl 1j ' '
with
;nm m /\im o
m m :
m
2N A
m
o

- -
Here Nm is the actual number of events measured with momentum Py
The numerator of Eqn. IV.12 is an arbitrary normalization constant
whose magnitude depends on the number of pairs used to mix our back-

ground. ‘Thus, C‘;;ff will be proportional to Ci only if the

3



54

variation of 61 and Sj is negligible over the spectrometer accep-
tance. Such is nbt the case for the JANUS spectrometer, where the
influence of the correlations on the background spectra is substan-
tial. Monte Carlo studies for the JANUS spectrometer indicate that,
assuming an.initial correlation function with "typical"‘sogrce param-
diff -

eters,; the 02

flat. The reason for this surprising result is that the Si's in

generated by different-event mixing is essentially

Eqn.and have a momentum variation similar to Ci ‘s.

k|

Fortunately, Eqn. IV.12 also contains the solution to these 4dif-
ficulties. If we had a priori knowlédge of the Si's, then we could

remove their influence by weighting each fake event by the factor

_ 1
g, = o C
"1 (14%)) [1+sj]

In practice, of course, the Si's are dependent on just what we’'re
attempting to measure, i.e., the source parameters contained in A.
Therefore, a recursive approach is required: First some initial guess
for the source radius and lifetime is made. The 61 for each event
with momentum';; is then determined by evaluating the sum given in
the second line.of Eqn. IV.15. The cortrelation function is then cal-
culated by weighting each of the background events with the gij's
given above. A fit is then made to the correlation function to
extract the new source parameters (as described in ;he next section),‘
which are then used to close the loop by re—evaluating the Si's.
Assuming a good guess is initially made, this process is rapidly con-
vergent, requiring 2-4 iterations to obtain values of the source

‘parameters stable with respect to further iteration. The values so
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obtained are independent of the starting values, as verified by both

actual data and by Monte Carlo simulation.

We close this section with a theoretical remark. The alerﬁ
reader will have qoted that , even ih the limit of 100% detection
efficiency aver all 4n, the-Si's do not vanish. This effect may be
traced back to the second line of Eqn. IV.6, which is derived on the
assumption of independent pion emission by ahe source. (Recall the
passage from Eqn. II.25 tb Eqn. 1I.26.) The validity of this aésump-
tion is measufed by the size of the Si’s. One may show, either by
direct calculation using some parametrization of tha Cij’s ahd uk's,
or by the argument contained ia Appendix A of Ref. 58, thae these

< >3

L o L n_ . e
-correction terms are the order of ¢ = — 3 where <A">,is the aver- "~

age pion wavelength, and R is the source size. (The similarity of

this result to Eqn. II.4 is not coincidental.) It is further shown in

Ref. 58 that € ~ i;s 5% for heavy ion collisions of atomic number A.

D. Fourth Pass: Fitting the Correlation Function

The correlation functions'calculated via the prescription of the

previous section are fit to a function of the form

C,(qy,9) = NI_ 1+ M\(qo,q)] , | | (1V.16)
where A\ is the squared Fourier transform of the assumed source dis-

tributions Our canonical parametrization is a Gaussian one, viz.,

- 312/2 - q2R2/2
A(qos q) = e
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The normalization constant N is of no physical significance, since it
merely normalizes the total number of fake events over the acceptance
to the total number or real events. The parameter A is a phenomeno-
logical device introduced by Deutschmann et al.48 to measure the
"strength" of the interferénce effect. While for a fully chaotic
source we must have A\ = 1, the presence of dynamical correlations,
exotic processes, final-statg interactions, background contamination,
etc. can all lead t§ deviations of A from one. Thus, it is advanta-
geous in the fitting procedure to leave )\ as a free parameter to

reflect the presence of such effects.

The method used to fit the data deserves further examination, in
that there does appear to be some confusion in the literature. It is
extremely dangerous to use a least-squares analysis to fit the corre-

lation function, i.e., to minimize the. quantity F, where

= I?z(qo.q) - K(qp,q)
6(C
qo’q o 2)
(Here K is the assumed form for the correlation function.) The prob-

2

by the ratio of two small numbers. In this case, the real event

lem with this approach results from those bins where C, is determined

number A(qo,q) and the background number B(qo,q) are both Poisson-
distributed variates, not Gaussian, and their ratio is certainly not

a Gaussian-distributed variable.79

This has two consequences. First,
standard érror-propagation formulas for 6(02) no longer apply.
Second, chi-squared minimization, which assumes a Gaussian distribu-

tion of errors, is no longer a valid fitting procedure.
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The solution to these difficulties lies in the Principle of Max-

imum Likelihood (PML). In this approach, we calculate the probabil-

ity that Aij real events are. obtained in the 1j—t_h bin, given that
the background .for that bin is B j and the correlation function is
.cij. That is, we seek P(A IA Eﬁij j)g This is clearly a Poisson
distribution; thus
A,
| &)Y & |
- ij L TRy ' (IV.17)
P(A_ . |A, ) = e .
i ij Aij!

The PML formulatidn simultaneously solves both problems discussed in
the previous paragraph: The ratio between A and B is not taken, and
the Poisson statistics of A are explicitly included. Note, however,

',thgt'phistmethqd aséumes that“B:hasvﬁegligible_error;pelapivevpd A. ’

<A fit 1é obtained by maximizing the total probability ¥,

? =P, .IA) | | IV.18
i HT4 , ( )

In practice, one minimizes F, the negative log of 3,

F=-1n(d) | V | | (IV.19)

i3 1313 ij

The minimization routipe used is MINUIT,

2; A . - A lﬂzl.+ln(A ') .
80’8; a very general and

powerful program well-suited to multi-parameter minimization and

error analysis.'

There are two reasons for minimizing the negative log of P,

rather than -9 itself. First, since P(A IA ) < 1 always, the pro-

1
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duct for § will become very small as the number of ij-bins.becomes
large. Thus, to prevent machine round-off errors, and to "slow down"
the variation of §, we perform the usual trick of dealing with the
logarithm of . The second reason is a more fundamental one: in the

-1imit of large A, .’s, the distribution of Aij about A, becomes Gaus-

1ij ij
sian, and minimization of -1n(®) becomes equivalent to a conventional
least-squares minimization. This is most easily seen by simply writ-

ing

»

— 2 -—

A © \l-z_nf

in Eqn. IV.18, then taking the logarithm as in Eqn. IV.19. In the
following, we invert this procedure, i.e., the large A limit of the
| sécdnd-iing.éf Eqﬁ; i§;19 isréiélicifiy évaluatéd. By déiﬁg'sd'ﬁe
will derive a goodneSS-of-fit parameter that is the analog of chi-

squared for distributions containing small numbers of events.

Using Stirling’s approximation, we have for a given term of the

sum for =-1n(9) (dropping temporafily the ij-subscripts)

A - AlnA + 1n(A!)

n

‘A - A‘lnX + LAlnA - A+ 1/2 1n(2nA)] (1V.20)

(A =R -alnl 2| 4 1) 1n(2na)

2

X.- A 1 .K - A
A Xy

(A -4) - A
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2

= A -4 + 1/2 ln(ZﬁA) .
2A _
Oul:f sum is thus
_ _ (Xi. - A )2 , -
F = - + 1l 1n(2maA, ) (IV.21)
g Py 1 | -

n -

_ 1/2 (chi-squared) + (constant) .

- This leads us to ‘suggest’ that the appropriate generalization of chi-

squared for Poisson distributed variables is the quantity

o) gy, 2F S ; taCzmby ) oo o avee

since in the limit of largé A s it-redﬁces to the”convent:ional.

i]
chi-squared. (Here F is -1n(®) as defined in Eqn. IV.19.) The

(emi)iricélly observed) properties of (X)ZPML will be discussed in the

next chapter.



CHAPTER V

RESULTS

In this chapter the meihods of Chapter IV are applied to an
énalysis of the two-pion events. However, befope doing so, we exam-
ine the single-particle spectra from both our one and two-pion
triggers. By comparison to the results of other authors, we obtain
information regarding the detection efficiency of our séectrométer,
as well as testing our Monte Cario calculations of the spectrometer
acceptance as a function of momentum. At this poinﬁ we remind the
réader that all measurements reported are for a beam energy of
1.8 A*GeV. Two systems werevstudféd;*4oAr + KC1 and 2ONe + NaF. . For
the mass 40 s&stem Eoth 20" and 2ﬁ+ daté ﬁere-taken; fof the mass 20

system. only 2n pairs were measured.

A. Single Particle Spectra

Since the correlation function as calculated by the prescription
of Eqn IV.7 is independent of the absolute normalization, measurement
of the_actual magnitude of various cross-sections is not required to
generate Cz(qo,q). This fact, combined with. the restficted time-
available for experimentél observation, argued against performing an
extensive series of efficiency measurements for each component of our
detection system. However, since the ion chamber output was
recorded, and its calibration known, we may invert the usual pro-

cedure to obtain our overall detection efficiency. Furthermore,

60
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since (with one important exception' to be noted below) our pion
detection efficiency is expected to be independent of momentum, we
may extract the shapes of invariant momentum spectra as a valuable

check on our understanding of the spectrometer’s acceptance.

Ianigures 17 through 20 the invariant érosé sections for one
and two piOn't;iggers are presented._iThese data are presented in
terms of a cross_section multiplied by.an unknown efficiency factor
‘i’ where 1 = 1(2) for one(two)-pion trigger requirements. The two-
‘'pion results are presented in terms of the invariant momentuﬁ distri-
bution for one of the pions, with the '"second" pion>anywheré in the
_ JANUS spectrometer acceptance. The spectrum is then also incrementéd
for the momentum corresponding to the "seéond" pion, thus, it is
incremented twice for each two-pion event. In all cases, the spectra
show the characferistic exponential-decay characteristic of pion pro-

82 There are two notable deviations from this

duction in RHIC.
exponential behavior. The first occurs for ECM 2 500 MeV and is par-
ticularly-prbminent for the n+ spectra.’ This‘is-obviously‘an
unremoved proton contaminatioﬁ. The logarithmic invariant cross sec-
tion piot<dramatizes the contribution of these events. 'Té show this,
iq»Fig. 18-20 we also present the corresponding plot of dn/dpLAB. |

For examble, in Fig. 18, the arrow at E = 500 MeV corresponds to

CM
the arrow at PLAB = 700 MeV/c. The proton contamination is barely
discernible in the laboratory spectrum; its contribution to the total

cross section is well under IZ.
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The second deviation from the exponential slope is present only
in the one-pion trigger data (Fig. 17) for ECM < 220 MeV. This is
thg momentum-dependent efficiency alluded to above. Specifically,
the threshoids of the Sl #nd S2 trigger counters were set for the
passage of two minimum-ionizing particles. Therefore, these counters

became efficient for the detection of one pion only for

TLAB dE ,
n dx

precisely those values of E

< 35 MeV, where Z{QEJmin- The enhancement is observed for

dx

cM corresponding_to the above condition in

the laboratory.
To eliminate the influence of these two effects, fits were made
to exponential distributions in the region 240 MeV < Ecm < 540 MeV.

The results are presented below in Table 3.

Table 3
3 -E . /E
Results of Fits to EQ—%:=.Ae ' o
_ dp
System | Trigger A 2 E <-do/do
(mb/sr-Gev”) | (MéV) (mb/sr)
arwel | 1m~ | 42.5 | 7741 | 20.9 x10°
+ 3
Ar+KCl in - 24.9 80+3 10.8 X10
Ar+KCl 2n . .183 73%2 113
Ar+KC1 2nt 117 772 158.3
Ne+NaF In 7.43 79+1 3.38 x10°
Ne+NaF 2n .083 811 35.0
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While there is some variation over the various data sets, the
exponential slopes Eo arevall.consisteﬁt with 77 MeV, in reasonable
agreement with the value of 80 MeV derived from streamer chamber
.measurgﬁents by the.GSI grpup.83 For the Ar+KCl system, EO for n+'s
is greater than for the cor;esponding n trigger, in accord with sim-
ple models describing the effect of the Coulomb interaction between
the nucleons and pions.84 The value of Eo for the Ne+NaF system 1is
'slightly greatér than that for the analogous Ar+KCl trigger condi-

tion.

Also given in Table 3 are the integrated effective cross sec-

tions, i.e. »

opdp _ A 1
E z.

_ -E/E 2 K, (2) n
[

ZEE-.-
E
o

where Kl(z) is a modified Bessel function. The cross section is

given in terms of an efficiency 61 times %g:for pilons at OCM = 90°.

To determine the Gi's; we use the extrapolation of Nagamiya et al.82

of their 2.1 A*GeV Ne+NaF data to 1.8 A°GeV, thereby obtaining

[ggqu %= 85 mb/sr. For the Ar+KCl data, we use the data of Ref. 78,

do
 which giﬁes a total pion production cross section of 4.4b. Allowing

for the observed angular dis_tribution85 of 1 +_cos29 » this gives,

oM’
~ o0 [48] =
for_GCM 90", [dﬂ]Ar'— 263 mb/sr. We note that the value so

5/3

obtained is consistent with an A scaling law between the Ne and Ar
systems, although the overall accuracy of these arguments is probably
insufficient to exclude an A2 behavior. The_ratio of n+ tom yield

for the AR+KCl system 1is taken as 1l.46, the value obtained in Ref. 82
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for this system at a beam energy of 800 A°MeV. While use of this
ratio at 1.8 A°GeV has no strong theoretical basis, in light of the
approiimate equality of the corresponding slope parameters (66 MeV
vs. 77 MeV) and the very rough nature of our efficiency calculations,

we feel that the assumption is adequate.

To model the . .detection efficiencies, we assume that there are
three types: ‘S’ which accounts for the threshold bias in the S

counters .for singles runs; <., which is the efficiency for obtaining

D
a pion after S has fired, thus it reflects the performance of the
MWPC’s, the probability of track recognition, and the likelihood of
passing the various cuts applied to a trajectory; and finally GP,

, which accounts for any additiomal inefficiencies for finding a pair

of pions in a two pion event. Writing for convenience-gg:-a 6, we

da
can express our measured cross sections Oi in terms of the actual
cross sections al as
O =4 ‘% 0

in S D In

and

=‘..‘o<o— . -
Ton = %P D %D %2n

We assume that the true two pion cross section,3§" can be described

in terms of the mean number of pion pairs V2<nn(n"-1)>, the JANUS

acceptance A » and the mean value of the correlation function in

JAN
JANUS <c2>, as
- sin
=< =1)>*<C >* —
oén n"(n" D CZ AJAN <nn>



The last term in the above product merely represents the geometric
probability of a pion-producing reaction. There is no factor of
one~half on the RHS of this equation due to the definition of the

two-pion cross sections given above.

For any given system, there are three unknown.é's and only two
known quantities, ci" and ob". However, we may estimate 68 from the
low ECM behavior of the invariant cross section, where the S counters
become efficient for siﬁgle particles. Thus, for the Ar runs, we
obtain <5 = 70%, and for the Ne runs € = 40%. (These runs were
separated in time by 7 months, and the operating voltages and thres-
holds for the counters were not necessarily the same.) For all data
sets wg then obtain 6D = 20%. This value, while low, is attributed
to the large number of elements in our detection system, along with
unfavorable operating conditions for the small MWPC’s. A perfect
one-pion trajectory in our spectrometer must fire three counters and
12 planes of MWPC read-out. While the cross-finding ability of the_
fracking program reduces the requirément on-MWPC performance, it is
clear that any major inefficiencies in more than one read-out plane
quickly becomes a major problem. The high intensities required for

sufficient event rate ( 108-109

incident ions/second) produce a high
background of heavily ionizing. particles in the small MWPC’s, a con-
dition known to lead to substantial impairments in detection effi-

ciency for minimum ionizing tracks.

Finally, the values of <, obtained are best left expressed in

P
terms of the pion multiplicity. This is done to make explicit the
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statistical assumptions of this model for the detection process. For

- +
the Ar n and n two-pion runs we obtain

- 7<n"> + 8.5<n">
M) FE G M %M T m s
nn : non

With <n"> = 4, and,<n"(n"-1)> = 62, quite reasonable numbers are
obtained for the pair detection efficiencies. (Here we have used the
known multiplicity biases for the one énd two-pidn trigger require-
ments obtained in Apéendix D.) Such is not the case for the Ne data;

where we obtain

_ 10<n">
<P(2n ) = '

Thus, for any reasonable:values for thg»pion multiplicities involved,
a detection efficiency of greater than 100% is obtained. This could
indicage some change in detector performance between the one and
two-pion data taking (the one=-pion data are-theiresults of only omne
run), or could 1ndiéate a breakdown of this model for.efficiencies in
the presence of large trigger—depéndent multiplicity biases (seé

Appendix D).

B. TIwo Pion Data

B.l. Orientation

At this point we remind the reader of the variables used in our
correlation analysis. The relevant quantities are the magnitude of
- - :
relative momentum q = Ip1 - pzl , and relative energy q, = IE2 - Ell'

The correlation function is fit‘assuming
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—q2R2/2 - q§t2/2

ey o (V.1)
Cyla, @) = 1+ )e ;
which corresponds to a source density of the form
2, 2 2
-r“/R” -t ﬁtz , (V.2)

p(r,t) ~ e .
We defer until later the 1nt¢rpretation of R, £, and J.

In Fig. 21 profiles of an ideal correla;ion function are shown,
taking account of the JANUS spectrometer acceptance. The contours
are separated by 10 MeV, and R and “t are given typical nuclear dimen-
sions. It is apparent that only a narrow slice of the total (rela-
tive) phase space is measured. However, Fig. 21 is somewhat mislead-
ing in that only half of the 9,9 plane is kinematically accessible.
To see this, consider the relative four-momentum
t =’(p2 - pi)2 =.q§ - qz.“This quantity is of course invariant, so

we may evaluate it in any frame. Calculating it in the two-pion

JQ2+m§, ii? 1, we find

t = ‘4Q2- Thus, q2 = qi + 4Q2 > q§ for all non-zero Q. This implies

center-of-mass frame, where p1(2)

that only the region to the right of the line q = q, in Fig. 21 is

allowed.

Nonetheless, the fact remains that q :-qo for most of our two
‘pion events. This presents a problem regarding visual presentation
of the cofrelatiop'function. Clgarly, it makes no sense to define a
slice of constant q.or q,s then present (say)'Cz( q,qo=constant).
For our acceptance, this produces only a few points, as is readily

seen from Fig. 21. Instead, we define the spectrometer-dependent
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projections

2 A(qo’q)
q
= _0
(e @) =3 B(q,,) | (v-3)
qO

and

2 A(qo9Q)

N ,
(CZ(qo)) 2 B(qb,q) * , _ (V°4)
q v
Here A(qo,q) is the actual number of events with q and q,» and

B(qo,q) is the corresponding background. We emphasize that these are
not true correlation functions; it is only a curious fact of the
JANUS acceptancé that the resemblance is a close one. For instance,
1f the Kinematically allowed region in the 1,-4 plane were completely
occupied out to some large value of q and q,° (Cz(q)> would appear_
much more sharply peaked than the actual correlation function, while
<C2(qo)> would be flat. On the oﬁher hand, for our spectrometer,

these projected C,°s provide some notion of the actual variation of

2
the data, along with an indication of the accuracy of the resulting

fits.

B.2. Results of The Fitting Procedure The data of momentum-

analyzed two-pion events that have passed all cuts consists of
approximately 6700 2n pairs and 5500v2.n+ pairs from the Ar+KCl éys~
tem, along with a subset from our Net+NaF data-base consisting qf
~10,000 2n pairs. In each case, the background spectrum was calcu-
lated using every possible combination of pibns from different

events, in accord with the requirements discussed in Appendix E. The
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results of fits to Eqn. V.1l are presented on the next page in Table

4

69
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T fixed

TABLE 4
System Fit A R cr (x%) /NDF Lhi'sﬁ-—;aﬁ
’ conditions (fm) (£m) :
No Gamow | 0.40%0.05 | 0.073'2 | 4.58%97% | 101.4/105 | 57.2/80
Gamow 0.63%.04 2.881'3’3 3.291';’2 176.7/147 98.2/89
corrected * *
_ Gamow +0.6
Ar+KCl | corrected, | 0.64%.04 =2.70 | 3.54 ° 176.8/148 98.2/90
- R fixed =0.4 .
2n —
Gamow .37 -
corrected, | 0.64%.04 | 3.53"° = 1.91 178.0/149 98.6/90
Gamow and .6 +1.1 . .
Coulomb 0.63%£.04 | 2.77_"g | 3.44_,"; | 211.2/158 80.3/96
corrected * Tt
No Gamow 0.48%.07 | 2.26%1.4 4.123’3 98.7/105 52.4/81
. Gamow
corrected | 0.73£.07 | 4.20%°% | 154722 | 160.6/147 | 67.1/88
Gaﬁow +0.9
Ar+KCL | corrected, | 0.69+.09 = 2.70 4410 "o | 161.7/148 67.1/88
2"+ R fixed
Gamow
corrected, | 0.72%.06 | 4.10%£.54 | = 1.91 160.4/148 67.2/89
T fixed '
Gamow and +2.10
Coulomb - 0.73%.07 | 4.1040.4 | 1.767, 75 | 180.5/145 78.5/83
corrected *
+3.1
No Gamow 0.46%.09 | 0.0_ " | 2.98%1.0 | 122.6/105 76.5/82
Gamow » .
corrected | 0.59%.08 | 1.837:% | 2.96%:%0 | 219.3/148 | 125.7/91
Ne+NaF
- Gamow +.25
2n corrected, | 0.59%.06 - 2.14 2.727°5] | 219.5/149 126.1/92
R fixed *
Gamow
corrected, | 0.60%.06 | 2.80+.30 [ = 1.52 220.9/149 126.6/92
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We begin our discussion of the data in Table 4 by directing the
reader’s attention to the first entry for each system, labeled "No
Gamow". These are the resultsxfrom fits to correlation functions
with no additional assumptions regarding thé final-state interactions
of the pions (to_bé clafified below) . Thé corresponding projected
C2’s are shown in Figures 22-24. - For allkthree systems, the values
of )\ are significantly less than one, on the order of 0.4-0.5. Even
more striking are the v#lues of the radius R. In two cases (the two
2n data sets) the fitted valﬁes for R are zero, perhaps leading one

to question the validity of our entire model for the two-pion corre-

lation function.

Before taking such.a drastic measure, we note that omne knéwn
intefaetién between two like pions has been neglected to this point.
That is the relative Coulomb repulsion between the two pions, which
~leads to a suppreésion of events with small relative momentum. In
conventional quantum mecﬁanics (see.also Appendix F), this effect is

well understood in terms of the Gamow factor,

2
- 2ny = he :
G(l}) ez'“) -1 s I -nq ’ . ) (Vo 5)

which gives the ratio of the probability densiéy at the origin to the
asymptotic value for two-like charged particles of relative moﬁentum
q and mass m. Weighting the background events to account for this
suppression (note that G(p) must also be included in the 61 back=
ground correction factors described in Section C.of Chapter iV), we

obtain the results labeled "Gamow corrected" in Table 4. These data
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are also presented in Figures 25-27. At this point we simply note
that the parameters obtained from thgse fits are more in accord with
our intuitive expectations based on known nuclear dimensions. How-
ever, before further discussion of these results, we pause to deal

with potential objections to the use of the Gamow correction.

First there is the question of resolution. The characteristic
range of the Gamow suppression is for those relative velocities
To see structure on this scale requires very good rela-
tive momentum resolution. However, there is a subtlety to this
requirement, in that prel is the relative velocity in the center=—of=-
mass frame of the two pions, not the nucleon-nucleon center~of-mass..
An extension of the arguments presented in Section B.l of this

chapter shows that the invariant form fo-rwprel is

2 .
\ 4m" -t v (V.6)

prel B -t '

where t Eiqz - q2. Thus, the large Gamow correction extends along
o

the diagonal of the (qo-q) plane, not just for those events satisfy-

m
ing q = T§%° At any rate, we have made Monte Carlo studies which

show that our resolution is indeed capable of observing the Gamow
suppression, and that no systematic biases are introduced by correct-

ing for the same.

A second objection lies in the precise space-time picture used
to describe the pion source. If the pions are emitted by an extended
source in space and time, the Gamow suppression must be reduced, in

that the pion wave-packets never fully overlap. In Appendix F it is
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shown that this is a small effect for RHIC, on the order of a 2-3%

correction to G(p) as calculated via Eqn. V.5.

The final source 6f errorrin‘performing the Gamow correction
arises not from the correction itself, but from its interaction with
a known two-particle track-findiﬂg bias in our analysis programs{
Since the tracking program considers two-wire crosses as well as
three~w1ré triangles as valid wire chamber hits, it is possible that
1t.w111 accept a crosé formed from the vertical wire of the second
hit and the horizontal wire (recall that this plane of wires extends
completely across the face of the small MWPC’s) from the first hit.
This of course always acts to reduce the relaﬁive momentum between
the two pions, by elimiﬁating the vertical component of.;i For-
tunately, the JANUS acceptance in the vertical direction is quife
limited, so that this is a small effect relative to our resolution
except for those pairs with q, = 0. Resolving the relative momentum
into components transverse and parallel to the average momentuﬁ of
the two pions, we have for this change

8q _ 1,89, < qtz:, ,. bq,
q

2 2 2 q °
q q +aq; Ot

Even in the worse case, where all of q, is in the vertical direction,
the change in q is small for all except the first two bins of'qo,

since <qt> is small for our acceptance. In reality, those events

8q
with large :;E-are rare, so that average error in 8q is negligible
t : .

for all but the first q, bin.
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Nonetheless, this poses a problem for the Gamow correction on
the lowest bin in 9, in that the the value of q used in the G(q) is
underestimated, precisely where the Gamow function is most rapidly
varying. This leads to a dramatic over-correction on the first bin
of <Cz(q)> for the Ar+KCl data, e.g., <Cz(q=5 MeV/c)) = 3.3 for the
20 data. The effect is smaller but stili present for the 2n+
events. It is instructive to note that corresponding (Cz(q°)> ‘s are
quite well behaved, in that the first few bins in q have been
included by this projection. Further note that the over-correction
is missing from the Ne+NaF data, due to improved wire chamber effi-
ciency, and thus improved track identification, for that running

period.

To eliminate the bias due to this effect, the first bin has been
excluded from all fits reported here. Exclusion of additional low 9,
bins does not substantially affect the extracted fit parameters, in

accord with our understanding of the origin of this tracking bias.

B.3. Discussion of Source Sizes

At this point the reader 1is. referred to Appendix G, where the
basic tools neéessary for Gaussian parametrization of sources are
presented. In particular, it is shown that 1.) A radius R defined
for a Gaussian source as in Eqn. V.2 is equivalent to a source with

uniform density of radius Ru = 1.52R, 2.) A schematic model for pion
R

\2p Yy

Cm Cm

production predicts T > » where ch and ch are the velocity

and Lorentz gamma factor for the incident ions in the nucleon-nucleon



75

center-of-mass, and 3.) More realistic Monte Carlo cascade calcula-
tions give values of “t 2-3 times larger than the above prediction.

1/3

Assuming R = 1.24 /°fm, and using the value of "t calculated from the

model mentioned in Point 2 above, we would have

= 2.70fm , > 1.91fm/c for Ar; (V. 7)

o
[}

n

2.14fm , > 1.52fm/c for Ne .

Examining the entries in Table 4 labeled "Gamow corrected", we
finﬂ values of R and t more or less consistent with the above
geometric results. (The least consistent value is the R valﬁe for the
Ar+KCl, which is 4-20t:gfm.) However, in some cases, particularly the
lifetimes, this consistency is obtained at least as much through the
large errors as through the fitted values. The nature of these
errors is shown graphically in Figures 29-31, which give the 687 and
95% confidence levels for the determination of R vs. . It is
apparen; that our maximum sensitivity is to some combination such as
R2 + ‘tzv; the orthogonal combination (the variable p = tan-l(%) ) ’i‘s

only weakly‘determined. This is a direct result of our narrow accep-

tance in qolversus'q illustrated in Figure 21.

By fixing either.R or t to some assumed value the errors in the
extraction of the conjugate parameter are sigﬁificantly reduced. For
instance, the entries in Table 4 labeled "R fixed" have the radius
fixed to the geometrickvalues given above. We note that both the PML

quality of fit indicator (Xz) defined in the last section of

PML’ _ .
Chapter IV, and the traditional chi-squared show no significant vari-
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ation when R or ¢ are so restricted, verifying the qualitative infor-
mation provided by the likelihood contours. (The chi-squared entries
of Table 4 are calculated by a restricted sum over only those bins

86

with at least 5 real events, in accord with the usual prescription

for the validity of this statistic.)

In general, the Ne+NaF size parameters are smaller than the
corresponding ones for the Ar+KCl system. The ratio of sizes is
roughly consistent with the expected All3 scaling. A good estimate
of the magnitude and significance of this effect may be obtained by
comparing Fig. 31 to Fig. 29. The lifetimes.fo; the 2n data are

intermediate between the minimum value of ———lL———. and the Monte

Vapcmycm
Carlo prediction of 5.55 fm/c (for Ar+KCl). The value of “r for the
2n+'data is smaller than one would expect from geometric considera-

tions, although the errors on this quantity are large:

+2.4

T = 154700,

fm/c.

Finally, we briefly discuss the external Coulomb corrections.
Until now we have neglected the interaction of the pions with the
nuclear charge. of - the pion source. This is clearly an approximatiom,
albeit a good one for relative momentum. While the existence of
strong Coulomb effects in single-particle momentum spectra may be
quite striking,2 to first order both pions receive the same momentum
impulse from the Coulomb interaction with the nuclear charge (partic-
ularly for q = 0). Thus, the change in relative momentum should be
quite small. Nonetheless, in an attempt to increase the consistency

- +
between our 2m and 2m results, we have corrected each individual
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pion momentum vector for the momentum shift produced by the residual
nuclear charge. We do this using the formalism of Ref. 84 to calcu-
late the change in the p-th component of four-momentum p as a func-

tion of the final momentum Pg?

£
zZ ~ (p ui)Ref

e U O S - £
6pp(pf) =3 I_pP (p ui)uip]

|, £ .2 2] 2
“'I_(p u) - mp (R s

is the charge of the i-th nuclear fragment,

(V.8)

In this expression Zi

which is assumed to be moving with four-velocity u, in the frame in
which we are calculating Spp. The notation (pfui) denotes the four-

product between Pg and u .. The effective radius Re is the recipro-

i ff

cal of the mean inverse radius of the source. i.e.,

Reee = (7) -

This may be evaluated for our Gaussian source density to obtain

Ao
R - 2 Ro

eff

- We aséumé the nuclear chargeé consists of three frégments, a
fraction £ of the initial charge 2Z at rest in the center-of-mass,
and two fragments Vg(l-f)z moving with the target and projectile
velocities. Guided by the considerations of Appendix D, we choose
£ = 0.80. Caléulating the correlation function with momenta
corrected according to this prescription produces the results in
Table 4 labeled "Gamow and Coulomb corrected'". The changes in the
radii and lifetimes are sméll, ( £ 0.2fm ), especially with respect
to the statistical errors on these quantities. Tﬁis confirms our

intuitive arguments that the so-called external Coulomb correction
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has a small effect on relative momentum determinations. In the

interest of completeness, we note that this is at best a crude method
for handling the very complicated three~body final state interaction
problem between the two pions and the nuclear charges. The reader is

referred to Ref. 84 for further details.

We close this section by examining the data of other authors. for
this energy. No direct comparison is available, in that the results
reported elsewhere in the literature are streamer chamber measure-

ments for the reactions Ar+BaIz-> 2n 4+X and Ar+Pb304—> 2n +X. The

authors of Ref.59 find R = 3.05 % l.lfm.for the BaI2 target, and

R =3.3 % .9fm for the Pb304 target, both fits being performed with

ct = l.5fm. Allowing “t to vary for the Pb target, they find

+1.2
-005

dependence of R for the_Ar+Pb30

R =3.98 & .78fm and ¢t = 0.6 fm. In Ref.6l , the multiplicity

4-> 2n +X system is studied, again
with ct = 1l.5fm. For N" = 2=4 ;hey obtain R = 3.12 * 1.1fm, while
for N_ = 5-8 R = 4.00 * .72fm. These numbers are quite compatible
with ours for the Ar+KCl system, especially when it is recalled that
<n"> = 6 for the JANUS two-pion trigger. This reinforces our view,

as expressed 1in ‘Appendix D, that. the mean pion multiplicity is pro-

portional to the number of participants in a reaction.

B.4. Implications for Coherence

A number of authors have suggested that value of A may be

58,67

related to the degree of coherence of the pion source. For exam-

ple, in both of the references cited, the result
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n .
=1 - —.coh (V.9)
is derived, which expresses )\ in terms of the number of coherent and

chaotic pion emitters %.oh and n o respectively. Taking A = 0.64,

n
coh

nch

we obtain = %u This is a surprisingly large result, but not

inconsistent with some )\ values as measured in hadron-hadron reac-

tions.

The determination of the coherent component‘is complicated by
several systematic effects. First, and perhaps most obvious, is the
interaction between A\ and the Gamow correction. These are clearly
closely coupled, so that any small error.in performing the Gamow

. _ _ . n
correction may lead to a large change in the value obtained for —9923

nch

A second, more devious effect, resulté from the role played by A in
the backgfound correction sums given in Eqn. IV.15. The errors in A
feed backvinfo the process, which tends tb increase the error on AAto
roughly twice the statistical values given in Table 4. Finally, we
should mention that reéent‘wofk by Gyulassf71 shows that averéging
over unobserved dynamical variables can lead to large deviations of A
from 1, even in the absence of a coherent component tovthe pion
source. Therefore, we feel that ‘any strong statement concernihg the

significance of our value for A would be unwarranted.



CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

In this chapter we briefly summarize the‘impoftant points of
this thesis, thenvdiscuss-futuré.directions for the use of intensity

interferometry in RHIC.

We have demonstrated in this work that the Bose-Einstein corre-
lation between identical pions leads‘to an an enhancement for sﬁch
pairs at low relative momentum. A simple model for the production
process, i.e., indeﬁendent par;icle emission over some region distri-
buted ;n space and time, allows us to interpret this enhancement in
terms of the source size. .The sizes so obtained are consistent with
normal nucleaf dimensions. This is already an interésting result, in
that it indicates that the pions we see are cfeated more or less at
normal nuclear density, not some very compressed phase. The measured
lifetimes are intermediate between the minimum values allowed (in a
geométric model consistent with the extracted sizes) and the predic-

tions of a Monte Carlo cascade code.

These results are complicated by the existence of several
effects. Firsﬁ, the influence of the correlation on the background
spectrum is.lérge, and must be included. Second, there are subtle
asﬁects to the fluctuations in the background spectrum, with impor-
tant consequences for data analysis. Thirdly, the two-pion mutual

Coulomb interaction requires that a Gamow correction must be made to

80
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the low relative momentum events. - Finally, the datavmay indicate the
presence of a substantial degree of coherence for the pion source,

thereby obscuring direct geometric interpretation of the source size.

Nonetheless, we feel that thefe is reason for cautious optimism

regarding futufg.experiments. A spectrometer configuration with
éreatly increased acceptance is cufrently.being planned. This will
open a much larger region of relétive momentum phase space, with two
important consequences. First, as the phase space increases, the
correction to the background spectrum due to the correlation function
decreases. This fact means that analysis will be more straightfor-
ward, leading to greater reliability for our estimates of the source
parameters,.and in particglar, the degree of coherence. Secondly, an
increase in thg relative momeﬁtum phase space decouplés q from qo.
In addition to decoupling the radius from the lifétime in the fitting
procedure, this may allow separate extraction of transve;se and long-
itudinal dimensions of tﬁe source, thereby providiﬁg_further tests of
the geoﬁetric.picture of the collision process as determined by Monte
Carlo calculations. Such comparisons can only increase our under-

standing of this developing field.
This work was supported by the Director, Office of Energy Research,

Division of Nuclear Physics of the Office of High Energy and Nuclear

Physics of the U.S. Depértment of Energy under Contract DE-AC03-76SF00098.



APPENDIX A

IONIZATION CHAMBER CALIBRATION

The ionization chamber mentioned in Chapter III has been used by
our group and others for several years. In that time, the calibra-
tion constants for a wide variety of incident beams and energies have
been obtained. (See the labeled points on Fig. 5.) The usual pro-
cedure for calibiating the ion chamber consists of comparing the
current measured at low beam 1n£ensities to the number of counts
registered byrscintillators counting the beam—-particles passing-
through the chamber. Dark current corrections were sometimes made,
although they were found to have ﬁirtually no effect on the calibra-
tion obtained. The end result of such a procedure is a number giving
the charge collected per incident iom. vFig. 5 shows that the ion

chamber response is well described by

(dE/dx)ion

Reje =

3x 1016ions/coul
where'(dE/dx)ion is the dE/dx of the beam particle (in Mev/gm cm2 )

in Argon.

One may also calculate the theoretical ion chamber response,

knowing that the chamber uses a 80% Ar - 20% CO gas mixture at 800mm

2
Hg, with an active area between the collection plates LIC = 3.18cm.
To an excellent degree of approximation, one may consider the chamber

to contain pure Ar. Using the ionization constant of 26 eV/ion pair

for Ar,87 and writing Par for the density of the Ar gés, we obtain
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26eV/ion pair
*l.6 X 10-1-9 coul/ion pair

R =
Par"L1c
= lool.Rfit’

in complete agreement with the experimentally derived value.
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APPENDIX B

TRACKING METHODS

1l. Track Recognition

Track recognition is performed using a simple geometric model
for orbits in the magnetic field. The relevant geometry is given in
in Fig. 6, which is a schematic illustration of the JANUS spectrome-
ter configuration. An incoming ray, defined by Kﬁ; intersects the

beginning of: the. effective field region at the point X Similarly,

IN'
the outgoing ray CD intersects the end of the effective field at the

point XOUT' Since the effective field is constant by definition, the

trajectory in the field region is a segment of a circle. Therefore,

the perpendiculars to AB athIN and to CD at XOUT both lie along

radii of this circle, and their intersection point O is the center of

the circle. This of course means that RIN = ﬁ?iN'-??l and

X

oUT -E?l are the same length.

ROUT = ]

The tracking program calculates R: . and R0 for each pair of

IN UT

ingoing rays, then examines the.ratio.

T Rour ~ Py
72 Rogp * Rey)

Monte Carlo results indicate that Sr is a sharply peaked. quantity for

real tracks, with an rms width of 3%. The tracking program makes the

loose requirement that |br| < 10%, which selects real tracks from the

uniform distribution in Sr created by random association of unrelated

84
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incoming and outgoing rays.

2. Momentum Determination for Planmar Orbits

Consider a particle of momentum p and charge e ttaversing.a mag-
netic field. Assume the motion is confined to the x-y plane, i.e.,
T = (0,0,Bz(x,y) ) and ;.= 0. The trajectory in space is then
described by some function y = y(x), as shown in Fig. 7. The Lorentz
force law tells us that the inverse local curvature is proportional
to the value off_Bz at that point, i.e,

1 eB (x,y)

R(xvs}') B cp

Using the standard result for geometric curvature, we have

00yl

cp =T o

where y° = dy/dx, etc. If y°° > 0 everywhere, we may integrate this

expression immediately, thus

2 2
=13 (x,y)dx = | = y_dx ’
pej z | 2{3/2 .
1 , 1l 1+y’ , ' -
} y (x'l)v ) y (xz)'
[ ' P4 ! 2 : [ ’ 2 )
) \l1+y(x1) -‘\I,1+y(x2)
== sinGIN - sinOOUT o

Taking account of the signed quantities, this may be written as
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X

2
JBz(x,y)dx
e, 1 '
P = c |sin@.,_ - sin® | °
IN outT

This is a general expression for any planar orbit. If the field
region isveséentially contained between L3 and X5 and if the effec-. .

tive edge approximation is valid, we may write for the integral

Xy

‘J’Bz(x,y)dx = Bo’xeff s
)

where Bo'is the central value of the field. Alternatively, we may
use this expression to define the effective edge for a set of trajec-
tories, thereby obtaining Eqn. 1 of Chapter IV, with

X .=2(L+L
e

eff ££ )°

3. Vertical Focusing

The_motion 1ﬁ the vertical plane 6f the spectrometer (i.e., per-
pendicular to the pole tips) is well deécribed by first-order
geometrical optics. In this approximation, thé'effect of non-normal
entry to a magnetic field on the ve:tical motion is equivalent to
that of a thin lensiof focal length f = Eﬁ%g’ where R is the radius

of curvature in the bend plane, and © is defined as in Fig. 7.

To describe the focusing forces quantitatively, consider the
schematic cross-section of the JANUS spectrometer system shown in

Fig. 8. Defining the usual vertical motion vector
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where z° = dz/dx, the effect of a thin lens of focal length £ is

given by the transfer matrix

Thus, given the vectorf?; at MWPC2, the vector at MWPC4 is given by

??; = Dh.rbut.DB'Finfnzizé ’

v wfitten'out explicitly,

z 1 1,11 1 ol 2L 1 o111 1,z

S 41 S ¥ _ S22
z; jo vif-1/e  o1jjo 1ff-1/f 1110 1 2|

Mohte'Carlo stud1esvindicate that the value of z, predicted by this
algorithm‘has an rms distribution of approximately 2cm about the
actual'z4 value. Roughly 75% of this deviation comes from multiple-

scatteripg in the target, couhters, chambers and'air;_the remainder

is attributable to the intrinsié'accuracy of this approach. -



APPENDIX C

Monte Carlo Methods

This appendix describes some of the assumptions and features of
a Monte Carlo program written to simulate.the performance of the
JANUS spectrometer system. This’program'was used to study the momen-
tum acceptance and resolution bf fhe system, as well as to provide

ideal trajectories used in the Chebyshev parametrizationm.

l. The Field Map

| The magnetic field of the JANUS spectrometer was measured using
a.conventional apparatus provided by the LBL Magnetic Measurements
Group. This'devicévmeasures the field components by digitizing the
voltage induced on three orthogonal search coils as they are moved
through the field regioh. The measurements were made on a grid of
1.60321n, 1.00in, and 1.00in in the x,y, and 2z directioné, respec-
tively. (Thé coordinate system is that of Fig. 3) Because the physi-
cal travel of the mapper was limited,to 30 inches in the z-directionm,
it was necessary to map the JANUS volume-in three separate passes,
reduiring a mechanical realignment énd magnetic recalibration of the
apparatus. The digitized voltages are written to magnetic taée by a

PDP-8 computer.

These tapes are analyzed off-line to provide files of magnetic
field data. Before using this datg as a field map in a Monte Carlo,

every effort must be made to remove systematic errors from the
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measurement process. For instance, we know that (to within the
alignment errors of the coils and pole tips) the Bz component must be
anti-symmetric about the midplane of JANUS. In particular, we must

have Bz(x,y=0,z) = 0. If, due to some normalization error, this is

not the case for the field map data, net drifts in the y-direction

~

will be produced by the Mbnte Carlo program in tracking particles
through the field, even if the initial conditions are ; =y=20. An
artificial motion such as this can produce pathological problems in
performing the Chebyshev parametrizations. Additional sources of

systematic error result from the relative normalization of the three

éeparate map regions, the precise alignment of the search coils, etc.

To circumvent these problems, each éomponeht was proceésed as
follows: Obvioﬁsly bad points and normalization errors were removed,
so that the field profiles were continuous across the three map
regions. Next, the field was exﬁlicitly symmetrized across the three
orthoéonal planes passing through the center of the JANUS magnet.

Fﬁr example, Bx is required to be symmetric in x and z, and anti- -
symmetric in y. Since it each component of the field satisfies
VZBi = 0, a iterative Laplacian smoothing algorithm was used to cal-

89 This algorithm is based

culate the interior regioms of the field.
on the observation that the discrete version of Laplace’s equation
gives the value of the field at any point according to the weighted

average of the neighboring points, thus
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r A’

B(i,j,k) = 2 ; - 2[ '17 B(i+l,j,k) + B(i-1,j,k)
v J
a b™ ¢
+ iz B(i,j+1,k) + B(i,j-1,K)
b\ J
ot + —15 B(i,j,k+l) +_B(i,j,k—.1)]
c .

Here a,b, and ¢ are the‘iattice»spacings in the x,y, and 2z direc-
tions, and B is any (rectangulér) component of the field. The
appropriate boundary conditions require specifying the field on the
boundary of the mapped region, then using the above expression to
propagate the boundary values to the interior region. This process
is iterated until the desired degree of stability against further
computation is reached. The properties of Laplace’s equatidn assure
us that the method is indeed convergent, and that the effect of meas-
urement errors is maximal on ;he boundary. Thus, any interior point
is better determined by this smoothing process than by actually mak-

ing a measurement of the field at that point.

The Qmoothed field is stored on disk for use By_the Monte Carlo
program. When the field value is requested at some point'?z linear
interpolation acroés the lattice cell containing ;?13 used to obtain
the field. The only exception to the fule is when the lattice cell
borders a plane of (positive) symmetry for that component. In this
- case, of course, the local variation must be quadratic. .Since the
physical size of the mapper does not allow us to come closer than
1.51in froﬁ the .pole-tips, éome trajectories pass outsidé the region

of the map. The B-fieldvfor |yl > 3in is obtained by using linear
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extrapolation based on Maxwell’s equations, i.e.,

, 2,
= "%
EE‘L -be' sz
¥ - "% T
3B 3B

Thus, the computation of derivatives that would require points out-
side the lattice is replaced by.defivatives of other field compomnents -

on the face of the lattice.

2. Tracking Methods

The motion of charged particles through the magnetic field is

f governed by the Lorentz force law

—
li&:'[_)Xﬂ',
ar P o

- where ¢ is. the proper time and -f)) = mg,—: Introducing the differen-

-
tial arc-length of the trajectory, ds = |dx], we can convert the

Lorentz law to a form containing only spatial quantities:

_dz?__e.[ix?]
2 pcl ds :
ds P

Here we have written I?I‘ = p, which we know to be a conserved quan-

tity'in the absence of electric fields.

However, a straightforward first-order integration of the above
“form does not lead to momentum conservation. Comnsider the new momen-

tum 'f))' obtained by first-order integration over a step size bs:
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-
P =P+ 8 =7 +$86s
- 2=
= d| dx == d x
p+ds|_dsss p+p——623 .

Then

-, 2 =2 > -3 2
271° = Ipl +p-63’+[-‘1:’—)]26s

One can easily show that, in describing a circle of radius R in a

constant field, this produces an error of order

3GH -, s ’
p2 R

which would be on the order of a few percent for 8s = lcm and typical

JANUS pions.

This error clearly results from ignoring second-order and higher

e
ax
ds

-> \ - ->
- that p = p;)), we can write a second-order expansion for both x and u

-, -
terms in our expansion for p‘. Defining u = and § = -I;% (note

as
> 2>
TAstbs) = F(s) + Lss + 1 LEgs? + ... (c.1)
ds’ :

T(stbs) = (o) + Wos + 1,465 + ...
ds

— -
‘In this notation, the Lorentz law is g—: = EI_? X ?]. This may be

used to expand the second derivative in the equation for ?(s+Ss):
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2> - - .
i_% - g2 L?»x ?‘] (C.2)
8 ¢

- - -
= ¢’ [?x?] X?] +g L?x :—?J
Our final form for the equations of motion is then

¥(s+s) = X(s) + T(s)bs + 1/23[?1:'}?]652 +oaee (C.3)

Torse) = Do) + ¢ Tx T Jss
+ e ['u’* (?-'\7)'1'3’] +5L[?X?} x?] s2 4 ...
One may show that step-by-step integration of this system around a

~circle of radius R leads to a relative error in squared momentum of

3 _ _
order 2"[%5] ; a substantial improvement over first-—order integra-
tion. Typical step sizes of lem then lead to negligible tracking

. - ‘
errors in propagating ? and p through the field.

3. Energy Loss and Multiple Scattering

The Montg Carlo calcuiates the energy loss and multiple scatter-
ing in the térget, the air, and all detectors. The detéctors are
assumed sufficiently thick so that the effect of in;eractions within
them are well déscribed by an integrated distribution (as opposed to
a é;obability distribution for different types of interactions that
create the cumulative.distributioﬂ). Thus, the energy ioss dis;fibu-

tion is assumed to Be given by Landau theory,87 i.e.,
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1 "I/ZI_A“;AJ
P(A)dAA = —e d\ (C.4)
\(zm)

Here, A\ is a reduced energy loss variable,

==[xE-[§E

Bx ’

A

x 1is the thickness; B:is a constant for a given material, A@p_is the
most probable energy-loss, and Ag:is the actuai energy loss. In the
limit of very large x, most /AE values lead to A < 1, and it easy to
show that Eqn. C.4 becomes a‘Gaussian centered onwﬁﬁp.- This condi-
tion is seldom met in practice, thus necessitating use of the com-
plete theory. This leads to a broader distributipn in energy loss,
with a characteristic high energy losé tail. For the sake of com-
pleteness, we give the detailed forms of the parameters used: The
most probable energy loss for a projectile of charge Zinc and velo-

city P, incident on a material of atomic number Z, atomic mass A, and

density P, is given by
mc2 2Bx

> -2 40375, (C.5)
1°(1-p%)

E = Bx<lo
AhP

= 0.154MeV/gm cm.-2 .
The ionization potential I 1is well-approximated by I = 16'(2)0'9 eV.

Multiple scattering 1is included through a Gaussian approxima-

tion90 to the actual Moliere distribution. Thus, the probability of
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scattering into a solid-angle element dQ in traversing a thickness L
of material is given by

2,.2
L —o/e,

P(QdQ = —e da | (C.6)
. "90 -

where LR is the radiation length of the material and

L L
o m 20 MeV/c,, 1+ d0g |—| | .
C0 PP inc 97""10 LR

This approximation is good to 10% or better. The effects of nuciear
single scattering, either through the strong or the Coulomb interac-
tion, are neglected. 1In magnitude, these effects are the order of
1-2%. They are further reduced in the data analysis through the
imposition of cuts such as the " Sr-cut. " and target traceback

requirements.

The Mon;e Carlo allows us to éstimate what percentage of our
pions are actually muons coming from the decay n - P- +9, and
what the effect of these muons are on our momentum resolution.
Approkimétely 10% of the pions accepted after all cuts are in actual-
itj muons. Howeﬁer, those cuts, in particuiar'thé 8r-cut, are such
that only those muons are accepted which come from a decay on the
exit side of the spectrometer, and which have a direction essentially
in that of the origiﬁal pion. Thus, the momentum resolution is noﬁ
substantially degtaded. All resolutionquuoted in Chapter IV and

presented in Figures 9-11 include the effects of these decay muons.



APPENDIX D

MEAN MULTIPLICITY DISTRIBUTIONS

In this appendix we show that our two-pion trigger requirement
is equivalent to a central collision triggér. We»dé so by first
establishing the correlation between pion multiplicities and total
charge multiplicities, then show that our requirement of two pions in
the JANUS spectrometer biaées the event selection strongly towards
those events containing a high pion multiplicity, and thus a high
total charge multiplicity. The total charge multiplicity is then
~converted to a mean impact parameter via a geometrical model for the

collision process.

As shown in Figure 14, the results of Ref. 78 demonstrate-thaﬁ
<M">, ;he mean negative pion multiplicity, is»linearly proportional
to Q; the total number of participant protons. (Incidentally, this
result, for 1.8 A-GeV 40Ar + KCl, indicates that pion reabsorption is
notva significant effect for this reaction.) Due to the hundreds of
contributing partial waves, geometric concepts for total cross-
sections are expected to apply in this- energy regime.3 We may there-
fore interpret the total proton multiplicity in terms of impact
parameter by using an analytic result due to Swiatecki (as presented

in Ref. 91 ) for the number of participant protons Q in a collision

at impact parameter b between two equal-mass ions of charge Z:
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-the data of the UCR streamer chamber group.
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Q(b) = 2Z(1 - 5)2[1 +|= - 1 ﬁ:l » (D.l).
v \2
where B = b/bm, and bm is the maximum impact parameter, i.e.,

bm = 2R. Here the normalization is such that Q(b=0)=ZZ.

In light of the very rough nature of these arguments, and in the
interests of simplicity, we propose to further approximate Eqn. D.l

as

n

Q(b) = (1 - [3)2[ 1+ 1.123]'_ v

n

(1 - By-(1 - p%)

(1 - B) for g << 1. ' - (D.2)

R

This approximation is good to (at worst) 20% for B < 0.5. Since we

will be largely concerned with central collisions, this linear form
for Q(b) will be adequate for our purposes.

To estimate the mean pion ﬁultiplicity for our trigger, we use

92 This data consists of

40Ar + KCl events taken in the inelastic

approximately 3000 1.8 A<GeV
trigger mode, which corresponds to'roughly 85% of the total reactiomn
cross section. All negative tracks in each evénﬁ have been scanned
and momentuﬁ-analyzed. We may therefore selectively examine those
events that satisfy a one or two pion trigger in the JANUS spectrome-
ter. From thése events we may also obtain the totalvnegative pioh :
multiplicity, and thereby determine the mean multiplicity for thg two

triggers. The JANUS trigger requirement is defined as all pions

satisfying 35° ¢ e, < 55° and 200 MeV/c < p, < 1000 MeV/c, where both
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quantities are measured in the lab.

The results of such an analysis are shown in Figure 15, along
with fits to a Poisson distribution. Figure l5a shows that the pion
multiplicity distribution associated with the one-pion trigger for
JANUS. The distribution is approximately Poisson, with a mean of
4.30 £ 0.05. This already represents a bias away from peripheral
collisions, in that the unbiased pion multiplicity for this reaction
is only slightly greater than 3. The results for a two-pion trigger
"in" JANUS is are shown in Figure 15b. This is actually the multi-
plicity for all events with two pions satisfying the above trigger
Cuts, regardless of the azimuthal angle between the fwo pions.
Therefore,‘the'coﬁclusions drawn from Figure 15b depend on the
assumption of statistical independence of the pion momentum spectrum
as a function of azimuthal angle between ;he pions. While this
independence is not strictly the case, (fortunately, for the author
of this thesis), the net effect on trigger bias considerations should
be small. At any rate, the meén plon multiplicity for the JANUS

two-pion trigger is 6.14 * (.18.

Now that our pion multiplicity bias is established, we may use
Eqn; D.2 in conjunction with Fig. 14 to relate the mean pion multi-
plicity as a function of Q, <M"(Q)>, to Q(b). In our approximation,

the relation is linear, thus

<M"(Q)> = nmax(l - B (D. 3)
with N ox = 7.2 for this data. We have taken the liberty of placing

the impact parameter scale so derived on the upper horizontal axis of
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Fig. l4. This allows us to translate a given pion multiplicity

directly into impact parameter. For example, for the two-pion

trigger, <Mh> = 6.14 implies Q = 29, which gives gl-é %-. Assuming
m

b = 2r Al/3
[o]

o » We get, with r, = 1.2fm, <b> = l.2fm. Similarly, a

one-pion trigger gives <b> = 3.3fm, while an unbiased trigger would

2,
give <b> = §bm = 5.5fm.

As a consistency check on Eqn D. 3, Qe note that it gives a
definite prediction for_<n">,'theiaverage pion multiplicity over all

impact parameters:

Id?b <M_(b)>

Ja%b

<n > = (D.4).
n .

1
T3 "pax

' This'gives <n"> = 2.4, as opposedrto the observed value of 3. How-

" ever, given the schematic features of this model, we_feel that this
1s an acceptable degree of consistency;.particularly in light of the
experimentél difficulties in obtain;ng biaseree multiplicity distri-
butions. (The trigger requirement is usually~3uch that the most

peripheral collisions are missed).
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Lest one regard these conclusions as completely model dependent,
we present an alternative approach. The GSI streamer chamber central
collision trigger corresponds to a reaction cross section of approxi-
mately 180mb;93.Assuming o= nbz, this is equivalent to a maximum
impact parameter. of 2.4fm. The observed pion multiplicity distribu-
tion for this trigger-is Poisson, with <n"> = 5.81. The gggg impact
parameter is 2/3 this value, or l.6fm. ‘Thus, a mean pion multipli-
city of roughly 6 is indeed consistent with a mean impact parameter

of about 1.5fm, as determined by actual cross section measurements.



APPENDIX E

BACKGROUND FLUCTUATIONS

In this appendix, we address the question of statistical errors
in the baékground speétrum generated by the mixing of pioﬁs from dif-
ferent events. What we wish to determine is "Given n background
events in some bin, what is thg expected errdr dh?" In the following
we show that: l.) A simple model for background generafion shows that

o = n3/4, not~VE; 2.) The fluctuations in the actual background

n
3/4

events support the n model; and 3.) This has non-trivial conse-

quences for the generation and analysis of correlation functions.

l. A Model for Background Errors

To understand the origin of the n3/4

rule, consider the follow-
ing thoughc experiment:94 Assume we wish to calculate ﬁhe area of the
region'ﬂ in Fig. 16 using a Monte Carlo technique. For simplicity,
we assume Q is rectangular, with sides of length lx énd‘ly, contgined
within a square region of linear_extent L; The most straightfdrward

integration method consists of picking M random points in the large

" square region. The expected number in Q is of course then given by

v 11 .
m, = -Eily'with fluctuations about this value of order oﬁ = V;. This
L

Q
is precisely in accord with our usual notions of the statistical

behavior of large numbers.
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Now suppose we try to circumvent the requirement of generating M
random points in the plane by instead picking only N random numbers
r, , 1 = 1->N, then generating Y, N(N~-1) "random" points in thé plane
via ?ij = ( riL, er ) It would appear that for only N = \rﬂ ran=-

dom numbers, we could obtain the same statistical accuracy in deter-

mining Q as by generating all M random points. Certainly this

approach will produce the correct mean value for Q: The mean number

: 1
of random numbers along the x—-axis will be n_ = TXN, similarly
1
n_ = —IN. The mean number of points in Q is then n, = n_ n_, and thus
y L 2 Xy
. By 2
the average value obtained for Q is Q = —E"L = lxly° However, being
' N

properly suspicious of getting something for nothing, we now use
standard error propagation methods to calculate how accurately this
method determines Q. Assuming for now that o and ny are statisti-~

cally independent, and that their individual errors go- as \E, we have

Uz(nn)

3 )2
Q (E.1)
Gz(nx) + S;; Cz(ny) :

==~n2n + nzﬁ
¥y X X

(nynx) . [nx + ny]

e, 1]

Specializing to the case where lx = 1y, we immediately obtain from

the above O"(nQ) = \E'néﬂ'. Thus, the errors due to this method are
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much larger than those from the usual Monte Carlo estimate of area.
It should come as no surprise that to get the same relative accuracy

as from M truly random points requires N = Mz.

In the above derivation, we have assumed that Q is located far
from the diagonal line given by x=y. If this 1is not the case, as in
~ the case of Q’ in Fig. 16, we cannot regard'nx and-ny as statisti-

cally independent, and the above result becomes d(nﬂ) = 2n3/4 It is

n *
easy to show that in d dimensions, the fluctuations in nv, the mean

number in_a sub=volume V, are given by o(nv) = dnp, with p=1 - 3%5

2. Numerical Studies

While the derivation of the previous section is quite straight—
forward, it is by no means clear that it applieé directly to
different-event mixing in the analysis of two-pion éorrélation.data..
There certaiﬁly ;re suggestive similafities: The N random numbers
correspond to N pion momenta, thebregion O then is analogoﬁs to a
given bin 1n'?1;;;, etc. However, a t&piéal~correlation.analysisv
projects the difference of 3-dimensional momentum vectors into soﬁé
compliéated sub-space of relative moﬁentum and energy. Wé now show
that it is at least plaﬁsible that the background fluctuationsvare

3/4

consistent with an n ‘rule.

We. investigate the background errors using the variable-rz,

where
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2_ ¢ [ A5 7 Byy ] .
i ;ok(m Am o

and the sum over i and j represents a summation over the q and 9,

bins of the relative momentum spectrum. Here Bij is the number of

background events in that bin, and-Aij

that should be identical to Bij in the limit of infinite statistics.

We assert without proof that, provided the 0”s are properly chosen,

is some other distribution

l.) The mean value of Fz is o, and 2.) Pz should be distributed as a

chi-squared distribution for o, degrees of freedom, where n, is the
number of bins in our sum over i and j. To support these assumptions

we note that a.) The expectation value of Pz is n_., since if A and B

D

are independent quantities with the same mean value,

((a;, = B,0%) = c®a,) + 0*(8,); and b.) [ 1s indeed distributed
ij 1j ij 1j°°

as chi-squared for nD if A and B are from Gaussian distributions with

the same mean and dispersion for a given bin.

As our known distribution, we take the real events for

I7f| > 150 MeV/c, where we have every expectation of no correlation.

(The advantage of this choice is that the Gh’s are known.) We test

this against a scaled background distribution over the same interval.

By varying the functional form of oh(B), we can find what form for Gh

produces Fz = npe As our functional form for oh we take the general

1_——.

d-dimensional result, i.e., oh = d°*B Zd. For two different data

sets we find p = 0.75+.02 and p = 0.77%.02, where p=1 - The

L
_ _ 24°
errors are assigned by invoking Assumption #2 detailed above, then

varying d until the change in Fz'corresponds to a 682 confidence
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level for a chi-squared variate of n, degrees of freedom.

It would thus appear that statistical errors of the background

3/4

support the n result from the first section. We note that the
value of p derived above depends only on Assumption #l. Assumption
#2 is required to assign errors to the value of p so obtained, but

its validity does not affect the value of p.

3. Implications for Correlation Analyses

3/4 form of the background

In this section we show that the n
errors has non-trivial consequences for the analysis of two-pion
data. More specifically, we obtain two simple rules governing the

number -of events required in the generation of background spectra via

" mixing momenta from different events.

Suppose wé wish to create a background spectfum with negligible
fluctuations relative to fhose in the corresponding bin for the real
events. We assume that the background is being created from the same
data set as the real events. Let the number of real events be N, and
lét f denote the fraction of these events that féll into some bin i,

i.e., n, = fN. Say we take some fraction of real events M = gN to

: . 2
generate a background containing a total of %?“N(N—l) combinations.

3 o - 2
The expected number in the i-th bin is then m :-él . %?-' Nz. Here

i

C2 is the value of the correlation function for this bin. The corre-
lation function is of course proportional to 33 with errors propor-

tional to-
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2
s o
2 ~ |nj2 n m :
o (Cz) [m] ot B . - (E.3)

"We desire a background such that the error on 02 is determined almost

entirely by the real events. This implies that

3/4

Substituting the above values for m and n, and assuming oh = 2n .

we obtain the condition

é—@ <o (E. 4)

This result is independent of the original number of events N, but it
does depend on both the fraction g used in the background.geﬁeration
and f, the bin size. The requirement that g should be as large as
possible certainly is in accord with our intuition. The surprising
result is the bin-size dependence. Setting g =1, the above condi-
tion becomes |
czf'<-3—12—:
This inequality is satisfied for most, but not all, of the bins used

3% (E.5)

in our correlation analysis. Since the Principle of Maximum Likeli-
hood fitting proéedure requires that the background fluctuations be
negligible compared to the those of the real events, one might object
to inclusion of these bins in the fit. However, by explicitly minim-
izing a quantity that includes the background errors (the PZ defined
in tﬁe previous section); we have shown that in all cases the fitted

parameters are substantially the same as those obtained by PML
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methods.

To summarize the results of this section, it has been shown that
l.) The bin sizes in this form of correlation analysis must be kept
as small as possible (keeping in mind the requireﬁents of resolution
and reasonable statistics per bin) and 2.) Point 1 usualiy means that
all, rather than some subset, of the real events must be used»to

create the background spectrum.



APPENDIX F

GAMOW COULOMB CORRECTIONS

In this appendix we discuss in further detail‘the Gamoﬁ correc-
tion for,fhe two-pion relative Coulomb interaction. In particular,
we are interested in the’effecté of emission by a pion source distri—
butéd in space and time over typical nuclear dimensions. We begin by
briefly reviewing the usual derivation of thg Gamow factor. Thé

95

approach is that of Davydov, although the notation has been some-

what altered. We use units such that %1 appears explicitly.

The Schrodinger equation for the relative motion -0of two like- -

charged particles in their mutual Coulomb field is

2 2 2,2
N2, ~» e ~ _hk —>, (F.1)
—z—fﬁ?k(r)+?~l'k(r) —Zil—i'k(r) ,
where
m.m 1
P = m1 + m = /Zmn
and
mpy - WP,
- 251 172 - - -
K = n * @, = 1/2(p1-p?_)= Yoq .

In the above, the expreséions for B and'f'have been specialized to
the case m, =m,=m_. We note in passing that the relativistically
correct equation for the relative motion of two pions is the Klein-
Gordon equation. However, as we shall see, the Gamow correction 1is

important. only for relative velocities v , so that the non-

~ _C_
rel ~ 137

108
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relativistic approximation is expected to be valid. Also neglected
here is the symmetrization requirément on the two-pion wave function.
This may be imposed at a later stage of the calculation with no loss

of information.

The solution to Eqﬁ. F.1 corresponding to initial motion along
the z-axis is most easily obtained in parabolic coordinates defined
by (u,v) = (r-z,r+z). Writing

ik
= (v=u)
-, 2
¥ (r) =e p(u)
one may show that ¢ mﬁst solve the equation
ug’’ + (1-iku)p’ - gkp = 0 v (F.2)
2 .
with g =HE— The solution to the above equation is given by the

"confluent hypergeometric function F, thus ¢(u) = CF(-ip,l,iku), where

C is a normalization constant.

The Gamow factor Go’ defined as the ratiovof the density at the

origin to the asymptotic density;

1%, = 017

G
o

= (F.3)
1%, @) |2

may then be calculated using the known asymptotic properties of the
confluent hypergeometric function. It is thus straightforward to

show that

2 .
_1pu=0)1" _ 2np (F.4)

|¢(u-->oo)l2 e2nn -1

This 1is the usual Gamow factor.

-G
o
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The above derivation suggests that the effect of a distributed
source may be incorporated by smearing the density at the origin over

the source size, that is,

%, -0 1% > J|+k(?>|2_p<'r’)d? : (F.5)
where p(?3 gives. the distribution of relative separations between -
the two pions. ThevabOVe equation has been derived more rigorously
by Koonin,5 along with an explicit form for p(?3 that includes the
effects of temporal separation between the two pions. Taking Gaus-
sians for the space and time distributions for the individual pion

—
emission points (ti,ri),

L
Pr(ri) e
and
-tf/‘t2
he obtains

-, - 1, > -, >
p(r) = Jd?dFldtZ P (R+ Y, r+7’t2)|0r(R- Y, r+v>t1),ot(tl)'ot(t2) (F.6)

-
1 -1 2 T l2
= ———-———3/2 2 exp 2{\ r - [7_5 "t] ] .
(2nm) sR 2R
(o] o
Here the frame is assumed such that the individual pion sources are
2,2

at rest, V= (p2 + pz)/2m , and s = Vet o+ R + The normalization

is such that Jp(r)dr = 1.

Before proceeding with'explicit evaluation of the integral in.

Eqn F.5, we must now incorporate the symmetrization requirement into
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the relative motion wave function ¢. Using the small u expansion for

F(-ip,1,iku), we have for the unsymmetrized ¢

p(u) = C[l + (-1p) (1ku) + 21!(‘1") ('21" * L) ew? + ... ]

Since u = r-z, the symmetrization is accomplished via z —> -z, so the

symmetrized form with the same value as u—>0 is given by

p () = c[ 1 + kpu + %?kz(r2+z2) + ...]

so that

PACIEE |c|2[ 1+ 2kpr + YpkZg?(e242?) + ] . (F.7)

The modified Gamow factor Gmo is then given by

d
| Gmod = Jd?b(?3l¢s(u)l (F.8)

[ 1 + 2kpr + O(knr)2 + ...}'

n
(7]

O
S
Q.

[a]
]
~~
la]
A d

e

Go[ 1 + 2kp<r> + ...] .
(This result has been obtained by a somewhat different argument by

the authors of Ref. 84 )

This form is in accord with our intuitive expectations. The
suppression for low relative momentum due to the Gamow function is
reduced due to the spatial extént of the source. Before evaluating
‘the integral for <r>, we may estimate the size of the correction to

G :
o

2
| 2kp<r> = 2k FE- <> : (F.9)
e
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1 m"<r>

=1
137  tic /% per fermi of <r>
Therefore, we anticipate that so long as ct ~ Ro’ this correction

will be small for nuclear dimensions. Explicit evaluation of <r>

-
using p(r) gives
s + Vr

A
<r> =,J; R E;'+ 2th°g[s = VTJ .
Substitution of realistic nuclear parameters shows that <r> is not

drastically different from R° or ¥, leading to the conclusion that

the effect of the distributed source in indeed small for RHIC.



APPENDIX G

THE INTERPRETATION OF GAUSSIAN SOURCE PARAMETERS

In this appendix, we relate the use of Gaussian source density
distributions to more conventional descriptions of nuclear denéity
profiles. We also explore the relation between the R and * pgrame_

ters, and examine the time-development of pions in Monte Carlo cas—

cade calculations.

l. Gaussian Spatial Distributions

The normalized Gaussian source distribution used in this
analysis is giveh_by

2,2
-, 1 -r“/R

(l') = ——0 "' e .
i 3/2.3

(G. 1)
We wish to find the value of R such that this distribution best
describes a uniform distribution of radius Ru. Equating the first
moments of these two distributions, we obtain

, R
R=3m, o u

8 "u " 1.50

Similarly, equating second moments, the result is

.2 Ru
R”J';Ruzl.ss_'

More generally, in Ref. 27 it is shown that for R = Ru/l.SZ, the

- squared Fourier transform of the Gaussian distribution differs from
the corresponding transform of the uniform distribution everywhere by

less than 2%. Since the squared Fourier transform is the actual
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observable of interest in a correlation analysis, the use of the
Gaussian parametrization is quite adequate. Furthermore, we note
that while nuclear matter in its ground state is to first order
described by a uniform distribution, a Géussian ensemble of produc=-
tions sites may indeed be é better approximation of the pion source

in a heavy ion collision.

2. The Time Dependence of the Pion Source

In this éection we motivate the use of a Gauésian to describe
the temporal distribution of pion sources based on a heuristic model
for the collision process. Consider thevcollisioh of two équal-mass
nuclei in the center-of-mass frame. Assume that each nucleus is
described in this frame by a Lorentz-contracted Gaussian spatial dis-

tribution, moving with velocities *ch' Thus,

(2, 22 2],.2
- -Lx +y + )’cm(z + pcmt) ]/R
Pi(r) = e | .
The pion production rate at some point ?? is then given by
—
dn"(r) ) -, -,
dc  —p_(Dp Doy 4 -

If we ignore the velocity dependence of 6*v and pion reabsorption,

the total pion production rate:is given by

2. ,2 2,2
d—n'l ~ 42 (—1?) (?) ~ e-Zﬂcmycmt /X '[a spatial integral ](G°.2)
at P_AEIR,

We have therefore obtained the not too surprising result that the

collision of two Gaussian spatial distributions gives a collision

-tZAtz R
rate that is Gaussian in time, p(t) ~ e y with ®* = ——————, 1In

N2y

cm” cm
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reality, this should be viewed as a lower limit for %, as we have
ignored effects such as reabsorption and deceleration of the collid-

ing nuclei,bwhich will tend to increase “t.

3. Comparison to Monte Carlo Calculations .

.The cascade code of Cugnon et al..96 provides a quantitative pic-
ture for the space-time evolution of a heavy ioﬁ collision. Their
results for the collision of 40Ca + 40Ca ions are presented in Fig.
‘28. Two curves are shown, the solid one giving the productionlof
frge pions plus delta resonances, while the dotted curve gives the
just the number of free pions as a function of time. Maximum overlap
occurs for t = 5.1 fm/c. The circular and triangle points are the

results of integrating

2,2
an _ o -t

dt o
for appropriately chosen values of . Thus, e.g+., for the N"'+ %ﬁ

curve we have for t > 5.1 fm/c

- .1 i t=5.1 ]
N(t) /ZNool_l + erf[ ~ >
with € = 2.31 fm/c. A similar expression is obtained for the free

pion production curve, with t = 5.55 fm/c.

These expressions fit the observed time dependences quite well,
particularly for thé total production rate (the closed circles). The
value of “t required, 2.31vfm/c, is reasonably‘close to that predicted
by the method of the previous section, which gives ¢ > 1.91fm/c. The

code predicts a much slower production rate of free pions than one
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‘would expect from the simple overlap of the nuclear densities. This
is due to the reabsorption, energy dependent production cross sec-
tions and finite delta lifetimes. Nonetheless, the time development

corresponds roughly to that predicted by a Gaussian model.

We close by noting that the initial spatial distribution of
nucleons: in this cascade code is assumed to be a spherical, not Gaus-
sian region. However, the results of Fig. 28 are obtained by averag-
ing over a number of "runs", with one run per collision. Presumably
the approach to a Gaussian temporal development of the cascade is a

consequence of the Central Limit theorem.
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FIGURE CAPTIONS

Schematic diagram of a stellar 1n£erferometer using the
Hanbury-Brown-~Twiss technique. Two points Pl and P2 on a star
of radius R are'aésumed to emit chaotic light. The light 15
detécted at points A and B with the.apparatus shown.
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Plan view of the JANUS spectrometer system.

Block diagram of the fast electronics used in conjunction with

the JANUS spectrometer.

Ion chamber calibrations for a variety of projectiles and beam

energies.

Schematic plan view of the JANUS spectrometer, along with the

geometric method used in track recognition.

Definition of angles used in determining momentum via the effec-

tive prescription.

Vertical trajectories through the JANUS spectrometer, illustrat-

ing the effect of focusing by fringe fields.

Momentum resolution for pions as a function of the laboratory

momentum.
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Resolution for relative momentum and energy in the center-of-
mass, as a function of the same quantities, again in the

center-of-mass.

a.) Fractional relative momentum resolution as a function of
relative momentum and b.) Resolution for invariant relative
momentum (used in. the Gamow correction) as a function of rela-

tive momentum in the center-of-mass.

Distribution in y and x of accepted events at the target as

determined by traceback. Horizontal scale 1s in centimeters.

Histogram of mean separation in y between two pion pairs at the
target for real events and random (mixed) events, as determined

by target traceback. Horizontal scale is in centimeters.

Relation between total charge multiplicity Q and mean pion mul-
tiplicity <M"(Q)>, as given in Ref. 78. Also shown is

schematic impact parameter scale.

Pion multiplicity distributions from Ref. 92 for 1.8 A+GeV

Ar+KCl events, for the JANUS 1 and 2 pion trigger requirements.

Schematic illustration of area calculations by Monte Carlo tech~
niques- similar to two-pion background event generation. See

Appendix E for further 'details.

Invariant cross sections for In events as a function of
center-of-mass (total) energy. The cross sections are scaled by

an efficiency factor € The errors are statistical only.
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Invariant cross section for 2m~ events from Ar+KCl collisions as
a.function of total energy in the center-of-mass. The cross
section 1is scafed by an efficiency factor 62. - The err@rs are
statistical only. Also shown is the corresponding laboratory

momentum spectrum. This is the raw spectrum of events observed

1in JANUS, thus it has not been corrected for the acceptance.

The arrow at Ecm = 500 MeV transforms to the arrow at

plab = 700 MeV/c.
As in Fig. 18, for Ne+NaF collisions.
As in Fig. 18, for Ar+KCl->2n' +X.

Profiles of a theoretical C2(qo,q) with typical nuclear dimen-

sions evaluated over the JANUS acceptance for relative momentum.

- The region on the left-hand-side of the ridge is kinematically

forbidden.

Projected correlation functions in q and q, for Ar+KCl—»2m  +X,

with no Gamow correction applied.
As in Fig. 22, for 2n+ events.
As in Fig. 22, for Ne+NaF—>2n +X.

Projected correlation functions in q and 4 for Ar+KCl-»2nm_ +X,

with the Gamow correction applied.
As in Fig. 25, for'2n+ events.

As in Fig. 25, for Ne#NaF—>2n +X.
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pions and deltas for 1.8 A<GeV

130.

Monte Carlo calculations from Ref. 96 for production rates for
40Ca + 40Ca collisions. Points
are predictions assuming a Gaussian source in time. See Appendix

G for further details.

Confidence contours for fits to

~a®R%/2 - >z
CZ(qo’q) =1+ e for the reaction

Ar+KCl=»2n  +X. The inner contour represents the 68% likelihood

contour; the outer band is the 95% likelihood contour.

(30) As in Fig. 29, for 2n+ events.

(31) As in Fig. 29, for Ne+NaF—>2n +X.
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