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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 17, No. 1, February 1992 
Printed in U.S.A. 

TWO-PLAYER REPEATED GAMES WITH 
NONOBSERVABLE ACTIONS AND 

OBSERVABLE PAYOFFS* 

EHUD LEHRER 

This paper studies two-person repeated games in which after each stage a player is 
informed about the payoff he received at the previous stage. The information can, in some 
cases, include more than that. Four kinds of Nash-equilibrium concepts are defined by the 
limit of the means. A characterization of the equilibrium-payoffs sets and several properties 
of these sets are given. As a specific example, the standard information case, that of the folk 
theorem, is provided. 

1. Introduction. A repeated game with nonobservable actions consists of the 
repetition of a one-shot game which is repeated sequentially for an infinite number of 
periods. At the end of each a player gets only partial information about other players' 
actions which took place at that stage. At each stage a player may rely on the signal 
he previously got when he chooses his one-stage strategy (action) for the next 
repetition. The case of standard information, where at the end of each stage a player 
is informed of the actions taken by all other players at the previous stage, has already 
been studied (see [A3]). This is known as the folk theorem. 

In this paper we refer to the case of a two-player game, where at the end of each 
stage, a player is informed of his own payoff at that stage, and sometimes of 
additional information. We define four notions of Nash equilibrium in the undis- 
counted repeated game: the lower, the upper, the Banach equilibrium, and the 
uniform equilibrium. The first three notions differ one from the other in the ways 
they evaluate diverging bounded sequences of numbers. In other words, the different 
notions involve three ways to measure profitability of a deviation: by the liminf, by the 
limsup, and by any Banach limit. 

The uniform equilibrium (see [S1]), on the other hand, does not deal with 
evaluating the infinite sequence of partial averages. It requires that for every E > 0 
there is a time T such that the strategy in question induces an E-Nash equilibrium in 
the t-fold repeated game for every t > T. In other words, for all possible deviations 
the partial average does not exceed by more than E the prescribed payoff if the game 
proceeds for more than T times. 

We characterize the sets of the payoffs that are sustained by lower, upper, Banach, 
and uniform equilibria, and we find that all four sets coincide. The characterization 
differentiates between the nontrivial case where both players can (by playing a certain 
action) distinguish between two of their opponent's actions (namely, to get different 
signals), and the trivial case in which the signals of at least one player always reveal 
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nothing about the action played by the other one. In the nontrivial case the 
characterization is done by the sets C1 and C2 consisting of joint mixed actions 
(P1, P2), where pi is an action of player i. C1 is the set of all the pairs (p1, P2), 
where, if there is another p', which is a better response versus P2 than p1, then one 
of the following two must hold: either p' changes the distribution of player 2's signals 
or p' decreases the possibility of player 1 distinguishing between actions of player 2. 
Both possibilities give player 2 opportunity to detect the deviation from p, to p'. The 
set C2 is defined in a similar way. 

The main result of this work states that all the sets of equilibrium payoffs coincide 
and they are equal to the set of all individually rational payoffs that are associated 
with convex combinations of pairs in C1 n C2. According to this characterization, 
payoffs and information have the same importance in the sense that a player would 
be willing to deviate only if the deviation is nondetectable, gives the player at least 
the same amount of information (as the prescribed action gives), and gives a greater 
payoff. 

The well-known folk theorem [A3] characterizes the same sets in the case of 
standard information as the set of all the individually rational and feasible payoffs. In 
this case every deviation is detectable, and therefore Ci contains all the pairs (p1, P2). 
Thus, there is no additional restriction over feasibility in saying that the payoff is 
associated with a combination of pairs in C1 n C2. 

Our proof is partially based on a former result [L2] that characterizes the lower 
equilibrium payoffs set in a general game with nonobservable actions. It turns out to 
be the set of all individually rational payoffs that are associated with two (possibly 
different) convex combinations. The first one is of pairs in C1 and the second is of 
pairs in C2. Another case in which there is a full description of the equilibrium 
payoffs set in the undiscounted game is the case of semistandard information in which 
a player is informed about a set that contains his opponent's action rather than of the 
action itself (see [L1]). 

The literature dealing with repeated games with nonobservable actions, especially 
with complete information, has rapidly expanded over the last decade. However, one 
of the nicest papers on this topic was written before the new wave by Kohlberg [Ko]. 
In this paper, to which we refer in more detail in the last section, Kohlberg dealt with 
zero-sum repeated games with incomplete information and general information 
functions for both players. Radner [R1] and Rubinstein and Yaari [RY] also studied 
undiscounted repeated games with one-sided moral hazard. Two players, the princi- 
pal and the agent, participate in the game. The agent is fully informed and the 
principal is informed only partially of the agent's actions and on the outcome which is 
stochastically dependent on the agent's actions. Fudenberg and Maskin [FM] and 
Abreu, Pearce and Stachetti [APS] have studied discounted games in which all the 
players are informed only of a common signal which is dependent stochastically on 
the joint action taken by the players. This signal and the action of a player determine 
his payoff. Thus, payoffs are observable. Fudenberg and Levine [FL], also in a model 
of observable payoffs and n players, defined a set of mutually punishable and 
enforceable payoffs (without nondetectable profitable deviations). They proved that 
these payoffs are sustained by uniform equilibria. Our result shows that this set of 
payoffs does not exhaust all the equilibrium payoffs. 

This paper is divided into six sections. The theorem is given in the third section, 
accompanied by a few examples. In the fourth section, several important geometric 
properties of the payoffs in the case of observable payoffs are proved. The proof of 
the main theorem, which relies on these properties, is provided in the fifth section. 
The sixth section is devoted to concluding remarks. 
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2. Definitions and notations. 
DEFINITION 2.1. A two-person repeated game G* with nonobservable actions is 

defined by: 
a. Finite sets S1, 2, called action sets. 
b. Functions l, 12; li: E1 X 2 -+ Li, i = 1, 2. Ii is called the information function 

and Li is called the signals set of player i, i = 1, 2. 11 and 12 satisfy: 
(i) l1(s, t) I1l(s', t') when s # s' for all t, t' E E2. 

(ii) 12(s, t) 12(s', t') when t : t' for all s, s' E E1. 
c. Functions h1, h2; hi: S1 x ,2 -* I, i = 1,2, called payoff functions. 
Notation 2.2. Denote the range of hi by Ai, i = 1, 2. 
The sets of pure strategies of a player in the repeated game, denoted by Fi, are 

defined as follows. 
DEFINITION 2.3. Fi = {(fi, fi2, fi3,...); for each n E , fin: L-1 -, S} for i 

1, 2, where L? is a singleton. 
When player i chooses the pure strategy fi, i = 1, 2, the game is played as follows. 

At the first stage, player i plays f/, gets his payoff hi(f1, fl), and the signal 
li(fl, f2). At the second stage, player i acts fi2(li(f, f2)), gets his payoff 
hi(f2(l1(f 1, f2)), f22(2((ll fl))) and the signal li(f 2(11(f , f2)), f2(l2(f, f))), and 
so forth. 

A mixed strategy of player i is a probability measure ,ui on Fi. 
Notation 2.4. The set of all the mixed strategies of player i is denoted by A(Fi), 

i = 1,2. Each pair of pure strategies f = (f,, f2) E F1 X F2 determines a string of 
signals (s1(f), s2(f))= E (L1 X L2) and a string of payoffs (x1(f), X(f))=1 E 
(A1 x A2), where sn(f), x(f) are the signal and the payoff, respectively, that 
player i gets at stage n. If player j picks a pure strategy fj according to Etj E A(Fj), 
then Sn and xn become random variables. 

DEFINITION 2.5. Let I = (L, CP2) E A(F1) x A(F2) and n e N, 

H(l ,, U2) = Exp (/n) E xk(f) , i = 1,2. 
k=l1 

Hin(1, /L2) is the expectation of the average payoff of player i at the n first stages of 
the repeated game, when A, is the strategy played by player 1, and P2 is that played 
by player 2. 

DEFINITION 2.6. (1) Hi*(p1, 1.U2) = limn Hn(Al, At2) if it exists, i = 1, 2. 
H*(Al, /2) = (H*(tl,, /2), H2 *(1l, P2)) if both H* and H2 are defined. 
(2) Let L be a Banach limit. 

Hi*L(,, Ar2) = L({H?(Lj, A'2)}n), 

H* L(1, 2) = 
(H1*L(l Z2), H2L(Pl, P2)). 

DEFINITION 2.7. (1) At is an upper equilibrium if H*(,I) is well defined and if for 
every j1- E A(F1), limsupn Hi(,1, JL2) < H1:(,1, u2)), and for every .2 E A(F2), 
limsuPn H2n(1, P 2) < H2(/1, AP2). 

(2) The lower equilibrium is defined in a similar way, replacing limsup with liminf. 
(3) ,u is an L equilibrium if, for any J1 E A(FI), L({Hfn(jl, L2)}n) < H L(P), and 

similarly for any /2, replacing 1 with 2. 
(4) jL is a uniform equilibrium if H*(,t) is well defined and if there is a sequence 

of numbers {En}, converging to zero and an increasing sequence of integers {kn} such 
that ,A induces an en-Nash equilibrium in the kn times repeated game of G. 

For an extensive study of uniform equilibria, see [S1]. 
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Notation 2.8. (1) UEP = {H*(/x)\1u is an upper equilibrium}. 
(2) LEP = (H*(1z)lIt is a lower equilibrium}. 
(3) BEPL = {H*L(Iz)IL is an L equilibrium}. 
(4) UNIF = {H*(,u)l,u is a uniform equilibrium}. 
Notation 2.9. If X is a set and s E S, then Ss will denote the Dirac measure on s, 

and will be the measure corresponding to s in A(E), the set of the probability 
measures over E. 

Sometimes we will refer to Ss as s. 
REMARK 2.10. The functions h = (hl, h2) and I = (1, 12) can be extended to 

A(l1) X A(C2) in a natural way, so that hi and 1i will be ranged to lR and A(Li), 
respectively, i = 1,2. 

From here on we will call elements in /i and in A(di) actions and mixed actions, 
respectively. 

3. The main theorem. The main theorem characterizes the various equilibrium 
payoffs sets in the case where the information includes the payoffs, i.e., for each 
player i and joint pure actions (s, t), if hi(s, t) # hi(s', t'), then li(s, t) - li(s', t'). In 
simple words: if the payoff related to (s, t) differs from the payoff related to (s', t'), 
then the signals related to these joint pure actions differ as well. A game of this kind 
will be called a game with observable payoffs. 

The characterization is done by an equivalence relation and by a partial order 
defined on A(Yi). These relations were defined originally in [L2]. We will give the 
following definitions for actions of player 1. One can apply similar definitions for 
player 2. 

DEFINITION 3.1. (1) Let s, s' E Z. s is equivalent to s' (s - s') if for every 
t E 2, 12(s, t)= 12(s', t). 

(2) Let p, p' e A(S1). p is equivalent to p' (p p') if for every t E 2, 12(p', t) = 
12(p, t) (in the sense of Remark 2.10). 

In words, p' p if the distributions over the signals of player 2 are the same under 
p as under p', for any action t. 

DEFINITION 3.2. (1) Let s, s' E 1, s' is more informative than s if for every 
t, t' E S2, 11(s, t) - l1(s, t') implies 11(s', t) l1(s', t'). s' is greater than s (s' > s) if 
s ~ s' and if s' is more informative than s. 

(2) Let p, p' e A(l1). p' is greater than p (p' > p) if p' p and if there are 
nonnegative constants s,,, such that ps = Es P,, Ps = Es, Ps,, and if s, s > 0, 
then s' is more informative than s. 

In words, p' is greater than p, in the sense of the partial order >-, if p' - p and if 
by playing p' the player can distinguish between two actions of his opponent with a 
greater probability than he could do so by playing p. The intuitive interpretation of 
(2) is the following. The prescribed mixed action is to play s with probability ps. 
However, according to the deviation action, p', player 1 picks first an s with 
probability Ps and second, with probability s,, s/Ps, the action s', which he then plays. 

DEFINITION 3.3. 
(1) D1 = {(p, q) e A(S1) X A(2)lh1(p, q)= Maxp,p, hl(p', q)}. 
(2) D2 = {(p, q) e A(21) X A(Y2)Jh2(p, q) = Maxq, q h2(p, q')}. 
(3) D = D1 n D2. 
DEFINITION 3.4. 
(1) C1 = {(p, q) E A(21) x A(S2)hl(P, q) = Max,>, hl(p', q)}. 
(2) C2 = {(p, q) E A(1I) X A(S2)lh2(p, q) = Max q> q h2(p, q')}. 
(3) C = Cl n C2. 

I.e., Ci is the set of pairs of the mixed actions, in which player i cannot profit by any 
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deviation without being discovered by player 3 - i, or without decreasing his poten- 
tial for getting information. Intuitively, if (p, q) e C1 is played repeatedly many 
times, then player 1 can profit only by a detectable deviation. 

DEFINITION 3.5. 

(1) d1 = Minq A(Y2) MaxPEA(l h(p, ), d = Min Max 2)h2(p,q). 
(2) IR = {(a, b) e ER2la > d1 and b > d2}; 

i.e., IR is the set of all individually rational payoffs. 
(3) Let o- be an action of player 1 that satisfies: d2 = MaxqE a(2) h2(1, q). o2 is 

defined in a similar way. 
DEFINITION 3.6. The information of player i is trivial if for any s E Si and 

t, t' E S3-i, li(S, t) = li(S, t'). 
In the main theorem we give a characterization of the equilibrium payoffs, using 

terms of the one-shot game only. It turns out that in case of observable payoffs, all 
four notions of equilibria yield the same set of payoffs. 

MAIN THEOREM 3.7. If G* is a two-person repeated game with observable payoffs, 
then: 

(1) If the information of both players is not trivial, then 

UEP = LEP = BEPL = UNIF = Conv h(C) n IR 

= Conv h(C1) n Conv h(C2) n IR for any Banach limit L. 

(2) If the information of at least one player is trivial, then 

UEP = LEP = BEPL = UNIF = Conv h(D) n IR 

= Conv h(D1) n Conv h(D2) n IR for any Banach limit L; 

where for each E c A((1) x A(Z2), h(E) denotes the set of payoffs related to actions in 
E, i.e., h(E) = {h(p, q)Kp, q) e E}. 

In order to introduce the examples that follow, let us define the partitions Sl, S2 of 
S1 and Z2, respectively. 

DEFINITION 3.8. If i E {1, 2}, then Si is the partition of 2i into the equivalence 
classes of the relation ~ . S S are called the information partitions. 

EXAMPLE 3.9. Standard Information. A game with standard information is a game 
in which each player knows the actions used by his opponent, i.e., li(s, t) : li(s', t') iff 
(s, t) - (s', t') for every (s, t), (s', t') E E1 X 2. In this case Si = {{1}, {2},... , {|il}}, 
i = 1,2, and h(C1) = h(C2) = Conv{(h1(s, t), h2(s, t))(s, t) E E1 X L2}, which means 
that h(C1) and h(C2) are equal to the set of feasible payoffs. Thus, UEP = LEP = 
BEPL = UNIF = Set of feasible payoffs, which are individually rational. This is what 
is known as the folk theorem [A3]. 

EXAMPLE 3.10. The repeated game of 

Player 2 

L R 

U 1,1 1,2 
Player 1 

D 2,1 0,0 

where player i's information is his action and his payoff. This is not the case of 
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standard information, since when player 2 acts L he cannot know whether player 1 
acts U or D. Nevertheless, S1 = {{U}, {D)} and S2 = {{L}, {R}}, and the result of the 
folk theorem holds here as well. 

EXAMPLE 3.11. The repeated game of 

Player 2 

Player 1 

W X Y 

W O, 0 O, 1 ,0 
X 1,0 1,1 0,0 
Y 0,1 0, 0, 1 
Z 0,0 0,0 0,0 

z 

0,0 
0,0 
0,0 
0,0 

where player i's information is his action and his payoff. Here, {{W, X}, {Y}, {Z}}, 

s, = S2 = {W}, {X,{Y, Z}}, 

d, 2 = 0, 

Convh(C) IR = Conv{(,0), (1, 1),(0, 1),(0,0)) 

(see Figure 1). 
Notice that (1,0) is not an equilibrium payoff, due to the fact that the pair 

(X, W) E X 2 is not in C2. The action X of player 2 is greater than W and gives 
a greater payoff to player 2. 

EXAMPLE 3.12. The repeated game of 

Player 2 

W X Y Z 
W 0,0 0,1 x,0 0,0 
X , 10 , 1 0, 0, 0 

Player Y O, 1 0, 1 0, 0,0 
Z 0,0 , 0 , 0 0,0 

where the information is the action and the payoff. This is almost identical to the game 

(0,1) (1,1) 

UEP = LEP 

(dl,d2) * (<0,0)) (1,0) 

FIGURE 1 
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(0,1) (1,1) 

UEP = LEP 

(d4,4) a (0.0) (I,0) (1,0) 

FIGURE 2 

in the former example. The difference is in the payoff related to (Y, X) of 11 X 42- 
By changing this payoff (1, 0) becomes a payoff in h(C). Now the pair (X, W) belongs 
to C because player 2 cannot deviate to the strategy X without losing the ability to 
distinguish between the actions X and Y of player 1. In other words, X C- W. Thus, 
the set of equilibrium payoffs is Conv{(0, 1), (1, 1), (1, 0), (0, 0)} (see Figure 2). 

Notice that by increasing player 2's payoff associated with (Y, X) from 2 to 1 the 
Pareto optimal frontier is pushed rightward. 

4. Properties of the sets Di, C. The geometric properties of the sets Di and C, 
will play a significant role in the proof of the main theorem. We start with the simple 
observation: 

LEMMA 4.1. Di and Ci are closed sets, i = 1, 2. 

PROOF. Clear. // 
The following lemma is used repeatedly in what is to come. 

LEMMA 4.2. Let (p, q) E A(E1) x A(E2). 
(i) Ifp' >- p and q' > q satisfy: 

(4.1) h(p', q) = Maxhl(P , q), 
P >-p P>P 

(4.2) h2(p,q') = Maxh2(p,q), 
q>-q 

then (p', q') e C. 
(ii) If p' p and q' q satisfy (4.1) and (4.2), replacing > with ~, then 

(p',q') eD. 
(iii) If p' p (resp., p' >- p) and q >- q (resp., q' q) satisfy (4.1) (resp., (4.2)) 

replacing >- with , then (p', q') e D1 n C2 (resp., C1 n D2). 

PROOF. We will show (i). Assume to the contrary that (p', q') 0 C. Without loss 
of generality, (p', q') e C1, therefore there is p > p' s.t. 

h,(p,q') > hl(', q'). 
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Since q' >- q and since the information includes the payoffs 

(4.4) hj( q) = hj( q'). 

The relation >- is transitive and, therefore, 5 >- p. (4.3) and (4.4) imply that 

hj(f, q) = hj(p, q') > hl(p', q') = hj(p', q), 

a contradiction to the choice of p'. / 

PROPOSITIoN 4.3. There is a point (ul, u2) e h(D) such that ui < di, i = 1, 2. 

PROOF. Recalling Notation 3.6, let p* E A(I1) and q* E A(12) have the follow- 
ing properties: p* - o,, q* - o2, and 

(i) ul = hl(p*, or2) = Max 1 hl(p, O-2) s<MaxpEA(jl) hj(p, o,2) = dl, and 
(ii) u2 = h2(u1, q*)= Maxq 2 h2(of1, q) < Maxq EA(Y2) h2(r,1 q)- d2. 

By Lemma 4.2, (p*, q*) e D. Let (u, ul2)= h(p*, q*). By the definition ui < dig 
i =1, 2. // 

DEFINITIoN 4.4. Let Q c Rl2 be a closed set. A point (a, b) e Q is called an 
upper boundary point (UBP) in Q of type I if a = Max(cl(c, b) e Q} and UBP in Q 
of type II if b = Max(cJ(a, c) e Q}). 

REMARK 4.5. Any boundary point in Cony h(C) which is strictly individually 
rational is an UPB in Cony h(C). 

DEFINITIoN 4.6. Let Bi be a closed subset of A(Yi), i = 1, 2. The pair (B1, B2) has 
the C-I property' if any upper boundary point in Cony h(Bl) n Cony h(B2) is 
contained in Cony h(B1 n B2). 

LEMMA 4.7. The pairs (DJ, D2) and (Cl, C), (D,, C), (Cl, D2) have the C-I 
property. 

PROOF. We will show it for (Cl, C2). 
Assume that (a, b) is an UBP in Cony h(CQ) nl Cony h(C2). So that 

3 3 

(a, b)= Ca h(pt, qt)= Epth(Ct, it) where 
t=1 t-1 

a, + a2+ a3 = 1, P1 + P2 + P3 = 1, 

at > 0, >0, (p',qt) e C1, (t,tt) E C2, t = 1,2,3. 

Without loss of generality, (a, b) is an UBP of type II. We will show that 
(pt, qt) E C2. Assume to the contrary that (pt, qt) e C2. It means that there exists 
qt > qt such that 

(4.5) h2(pt, q2t) Maxh2(pt, q) > h4(pt, qt). q -qt 

Since the information includes the payoffs 

(4.6) h1(pt, qt) = hl(pt, qt). 

'For Convex-Intersection. 

207 



EHUD LEHRER 

By Lemma 4.2, (pt, qt) E C. Using (4.5) and (4.6) we obtain 

3 3 

E atthl(pt, t) athl(pt, qt) and 
t=l t=l 

3 3 

E ath2(pt, qt) > E ath2(pt, qt), 
t=l t=l 

which contradicts the assumption that (a, b) is of type II. The same proof, replacing 
> with - at the appropriate places, holds for all other pairs. // 

The next proposition is responsible for the fact that LEP c UEP in the observable 
payoffs case. (The inverse inclusion always exists.) 

PROPOSITION 4.8. 

Conv h(C) n IR = Conv h(C1) n Conv h(C2) n IR, 

and a similar equation for D1, D2. 

PROOF. We will show it for Ci, and a similar proof holds for Di. It is enough to 
show that Conv h(C) n IR v Conv h(C1) n Conv h(C2) n IR. Let (a', b') e 
Conv h(C1) n Conv h(C2) n IR, and let (a, b') and (a', b) be two upper boundary 
points of Conv h(C1) n Conv h(C2) of types I and II, respectively. By Lemma 4.7, 
(a', b), (a, b') E Conv h(C). 

By Proposition 4.3 there is (u1, u2) < (d1, d2), and (ul, u2) E h(D). By the defini- 
tion h(D) c h(C) and, thus, 

(a',b') E Conv{(a',b),(a,b'),(ul, u2)} c Conv h(C). // 

Notation 4.9. 

SPO = {(a, b) E 1R2lIf (a', b') E Conv h(;1 x 2) 

and a' > a, b' > b, then a' = a and b' = b}, 

i.e., SPO is the set of the strong Pareto optimal payoffs. 

PROPOSITION 4.10. SPO c Conv h(D). 

PROOF. Let (a, b) e SPO be an extreme point of Conv h(S). Since (a, b) is an 
extreme point there are p and q satisfying h(p, q) = (a, b). Let p',q' satisfy (4.1) 
and (4.2) written with -, instead of with >- . By Lemma (4.2)(ii), (p', q') e D. Since 
(a, b) E SPO, hl(p', q') = a and h2(p', q') = b. Therefore, those extreme points that 
are also strong Pareto optimum payoffs are included in h(D). Thus, SPO c 
Conv h(D). // 

REMARK 4.11. As has already been shown in Example 3.11, the individually 
rational and weak Pareto optimal payoffs are not always contained in Conv h(C) n IR. 

Notation 4.12. Let B c R2 be a convex and a closed set. Denote by EXI(B) 
(resp., EXIi(B)) the set of all the extreme points which are UBP of type I (resp., type 
II) in B. 

LEMMA 4.13. (i) EXI(Conv h(C)) c h(D1 n C2) and 
(ii) EXII(Conv h(C)) c h(D2 n C1). 

208 



TWO-PLAYER REPEATED GAMES 

PROOF. Let (a, b) E EX,(Conv h(C)). Since (a, b) is an extreme point there is 
(p, q) e C so that (a, b) = h(p, q). If (p, q) L D1 there is p' - p which satisfies 
h1(p', q) > h1(p, q), h2(p', q) = h2(p, q) and (p', q) E D1. By Lemma 4.7, (p', q) e 
D1 n C2. This contradicts the assumption that (a, b) is of type I. The proof of (ii) is 
similar. // 

The purpose of the following proposition is to facilitate the definition of an 
equilibrium which sustains payoffs in conv h(C) \ conv h(D). It turns out that such a 
payoff which is also an extreme point of type I can be written as h(p, q), where (i) q 
is a pure action and it is the best response up to a discovery, and (ii) by playing q only 
player 2 can already detect any profitable deviation of player 1. Thus, player 2 can 
play a pure action by which he can detect any profitable deviation of his opponent. 
Moreover, player 1 expects to get at any time only one signal, because player 2 should 
play a pure action. 

PROPOSITION 4.14. (i) If (a, b) E EXI(Conv h(C)) \ Conv h(D), then there is 
(p, q) E (A(Y1) X 2) n C2 such that 

h,(p, q) = Max(h,(p', q)12(p', q) = 12(p, q)}. 

(ii) Similar to (i) if (a, b) is of type II, interchanging 1 and 2. 

PROOF. We will prove (i). 
By the previous lemma there is (p, q) E D1 n C2 such that h(p, q) = (a, b). If, to 

the contrary, q e S2 then q is a convex combination of pure actions, say, q = Eaiqi. 
Furthermore, for some i, ai > 0 and (p, qi) 6 D1 n C2 (because (a, b) is an extreme 
point). Since (p, qi) E C2, (p, qi) e D1 and that there is some Pi p such that 
hl(pi,qi) > hi(p, qi) and (Pi, qi) E D1. Since (p, qi) E C2 and p -pi, we obtain by 
Lemma 4.2(iii) (pi, qi) E D1 n C2. We have obtained that 

hl(Pi, qi) > hl(p, qi) and h2(Pi,qi) = h2(p, qi) 

One can find such pi for every i and get 

E aihl(i, qi) > a, Eatih2(Pi, qi) = b. 

This means that (a, b) is not an UBP of type I in h(Conv D1 n C2) = Conv h(D1 n 
C2), which is a contradiction. Thus, q E E2. 

Auxiliary Claim. We can assume, without loss of generality, that there is no other 
q' E ~2 such that q' >- q and q a- q'. 

PROOF OF THE CLAIM. If there is such a pure action let q' be a maximum with 
respect to >-. We obtain h2(p, q') < h2(p, q), because h2(p, q') > h2(p, q) means 
that (p, q) i C2. We have two cases. In the first one, h2(p, q') = h2(p, q), we can 
take q' instead of taking q and get the desired claim. The second case, h2(p, q') < 
h2(p, q), will lead to a contradiction. We assumed that h(p, q) * D. Thus, by 
Proposition 4.10, h(p,q) < SPO. However, if the second case holds and q' is a 
maximum with respect to >-, we get that (p, q') e D1 n C2. Thus h(p, q) = 
EX,(Conv h(C)), a contradiction. 

Return to the proposition's proof. It remains to show that (p,q) satisfies the 
second requirement mentioned in (i). If, to the contrary, there is p' E A(SI) such 
that 12(p', q) = 12(p, q) (in particular, h2(p', q) = h2(p, q)), and h1(p', q) > h1(p, q), 
then (p', q) q C (because (a, b) is of type I). Take such p' that ensures that 
(p', q) E D1. By the previous observation, we get (p', q) e C2. This means that there 
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is q' > q such that h2(p', q') > h2(p', q). However, by the auxiliary claim, q > q' and 
by the assumption that the information includes the payoffs, we get: 

(4.7) h2(p, q') = h2(p', q') > h2(p', q) = h2(p, q). 

The first equality of (4.7) holds because q > q' and thus 12(p', q) = 12(p, q) implies 
12(p', q') = 12(p, q') which implies in turn h2(p', q') = h2(p, q'). (4.7) is a contradic- 
tion to the fact that (p, q) E C2. Hence, h,(p, q) = Max{hl(p', q)ll2(p', q) = 12(p, q)}, 
as desired. // 

REMARK 4.15. Notice that (p,q) of Proposition 4.14(i) satisfies the following 
properties: 

(a) q is a pure strategy and it is a best response versus p among all the strategies 
that are greater (>-) than q. 

(b) p is the best response versus q among all the strategies that preserve the same 
distribution on L2, while player 2 plays q. In other words, p is not only the best 
response among all p' such that p' >- p, it is the best response among a bigger set, 
namely the set of the actions that preserve the distribution over player 2's signals 
while he is playing q (and not necessarily while playing other pure actions). 

The second property is crucial for the construction of the strategies in the third 
step of the next section. Player 2 will be required to adhere to q. It will be his best 
response up to a discovery, on one hand, and it will be sufficient, otherwise, for 
detecting any profitable deviation of player 1. 

5. The proof of the main theorem. 
DEFINITION 5.1. A behavior strategy of player i, i = 1, 2, in the repeated game is a 

sequence fi = (fi, fi2,...) of functions fin: Li' 
- 

A(:i), n = 1,2,.... 
A pair (fl, f2) of behavior strategies induces measures on F1 x F2, and thus on 

(A1 XA2). 
REMARK 5.2. A repeated game with nonobservable actions is a game with a 

perfect recall. Therefore, according to the Kuhn theorem ([K], [Al]), we can deal with 
behavior strategies in the sequel, whenever it is convenient. 

For any pair of behavior strategies (fl, f2), we can define Hn(fl, f2), n = 1, 2,..., 
and H*(f1, f2) as in ?2. In addition, we can define for any n e I a probability 
measure, prob(fl, f)('), on L7 for i e (1, 2) and on Li x L2, in a natural way. 

PROOF. We will divide the proof into seven steps, as follows: 
1. LEP c Conv h(C) n IR. 
2. Convh(D) n IR c UEP. 
3. [d Conv h(C) \ Conv h(D)] n IR c UEP. 

By combining Steps 2 and 3 we arrive at: 
4. Conv h(C) n IR c UEP. 
5. BEPL = LEP = UEP. 
6. UNIF = UEP. (The first six steps provide the proof of the nontrivial case.) 
7. The seventh step proves the trivial information case. 
Step 1. LEP c Conv h(C) n IR. By [L2], the LEP of any two-player repeated 

game with nonobservable actions is equal to Convh(C1) n Conv h(C2) n IR. By 
Proposition 4.8, it is equal to Conv h(C) n IR. 

Step 2. Conv h(D) n IR c UEP. It is readily seen that SPO n IR c UEP, but to 
see that Conv h(D) n IR is contained in UEP is much more difficult. 

SKETCH OF THE PROOF. We divide the set of periods, N, into an infinite number of 
blocks: M1, M2,..., and then gather them into super blocks: B1 = Ml U M2 
U . U Mkl, B2 = Mkl+l U ** U Mk,.... The lengths of Mi and ki increase with u???u 2 = 

Mj+l U U Mk2 
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i. On each super block the strategies are defined independently of the signals 
received in the previous super blocks. In other words, each player loses his memory at 
the beginning of each super block. On each block the player checks his opponent to 
see whether he has deviated from the agreed strategy or not. The checking is done by 
some statistical tests on the appearance of the signals, based on Chebyshev inequality. 
If he finds a definition he "punishes" the opponent at those following blocks that are 
contained in the same super block. A player has the ability to "punish" his opponent 
because the payoffs we deal with are all individually rational. However, using those 
statistical tests, a player can come to the conclusion that the other player has deviated 
even when he actually has not. To prevent this type of mistake from influencing all 
the future payoffs, there are "moratorium" times at the beginning of each super 
block, where the players lose their memories. 

Let (a, b) E Conv h(D) n IR. There are (pi, qj) E D and aj > 0, j = 1, 2,3 such 
that E3= ai = 1 and (a, b) = 3_1 aJh(pi, qJ). 

Define the sequences {nit}=1, {Eii =l, and {ki}i= as follows: 

ni i100, ='- - =2i =1 2 
ni= i Ei 10, ki = 21, i = 1, 2.... 

Divide N, the set of stages, into infinite consecutive blocks: M1, M2,..., where M, 
contains ni stages. Gather blocks into consecutive super blocks: B1, B2,..., where B, 
contains 21 blocks. Divide each block Mk into three parts, M,l, Mk2 and M,3, so that 
for some sequence {(k}, which tends to zero, and for some constant y 

I#Mk/nk-ajl < y 'k for j= 1,2,3. 

Notation 5.3. Let p = (p(1),..., p(m)) e Am and E > 0. Then denote by p, the 
point in {p E Amlp5(i) > E) which achieves the minimum distance (with respect to the 
maximum norm) from p. 

In other words, pe is a modification of p in which every coordinate is at least e. For 
the sake of convenience denote pi = PJ, q{ = qJk 

In order to describe the equilibrium pair of strategies (fl, f2), we will define what 
we will call the "master plan"2 of player 1 in block Mk. The master plan of player 1 
in block Mk is to play pi at the stages of Mk. 

During the game, player 1 does some statistical tests. The relevant data for these 
tests are the following. Let j E {1, 2,3}, e E L1 and let Mk be some former block. 
Denote 

O(e) = #{n E MkIlThe signal given to player 1 at stage n was e}, 

i.e., Ok(e) is the number of stages in Mk in which signal e was observed by player 1. 
If player 1 plays pJ and player 2 plays qk, then the probability that player 1 will get 

the signal e will be denoted by prob(pj, q)(e). 
f, is defined as follows: player 1 plays his master plan, unless he has come to the 

conclusion that player 2 had deviated in some previous block of the same super block. 
If he finds a deviation in the same super block, player 1 acts so as to punish player 2, 
i.e., by playing o- (see Definition 3.5(3)). If player 1 finds e E L1, and j E {1, 2, 3} so 
that 

(5.1) J(Ok(e)/#M]) - prob(pj ,q)(e)| > e,2 

2This terminology is due to Hart [H]. 
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he comes to the conclusion that player 2 has deviated at block Mk. The punishment 
takes place from Mk+ on, until the end of the super block. 

The master plan of player 2 in Mk and his strategy f2 are defined in a similar way. 
Notation 5.4. (1) ak = (1/nk)EteM x, a = (1/#M)EtM x, (2) k = k M k1, k ( 2) /3k 

(l/nk)EtMk x, [ k = (l/#M)EtEMk x2, i.e., ak and Pk are the average payoffs of 
players 1 and 2, respectively, at block Mk. 

LEMMA 5.5. H*(fi, f2) = (a, b). 

PROOF. If in block Mk the players play their master plan, then the expectation of 
an average payoff in Mk is close to (a, b), i.e., there is a constant c1 such that 

}E(fl,f2)(ak) 
- 

a| < c ? Max{ek, ,k} and 
(5.2) 

E(fl,f2)(3k) - b C1 . Max{Ek, k}. 

E(f,)(a, f2 k k) is not precisely (a, b), for the following two reasons: 
1. The strategies played are not (pJ, qJ), but their modifications, (pi, qk); 
2. (pk, q) is played #Mk times and not exactly nk a1 times, j = 1,2,3 (recall 

|(#Mj/nk)- aIl < y k). 
If, at block Mk 1, at least one player does not play his master plan, then one of two 

things must have occurred: 
(i) Both players played their master plan at Mk, but it so happened that one of 

them came to the conclusion that his opponent had deviated. If player 1 came to this 
conclusion, it means that he found t e {1,2,3} and e e L1 so that (5.1) holds. 
Similarly for player 2 if he came to the conclusion that his opponent had deviated. 
What is the probability of these events? We will find an upper bound of the 
probability that (5.1) holds for certain j E (1, 2, 3), k E N and e e L1. By Chebyshev 
inequality we get 

(5.3) 

prob(fl f2) i( (O(e)/#B,) - prob(pj, q) (e) > E} < c2/#B ,(e)4 < 3/k50 

for some constants c2, c3, whenever k is sufficiently large. The probability that (5.1) 
has occurred for any j and e in block Mk is less than (c3/k50) ? (#{1,2,3} ? IL1) = 

c4/k50. We now obtain that the probability of case (i) occurring is bounded by 
2 * c4/k50 (the 2 is for two players). 

(ii) The second case is when one of the players did not play his master plan at the 
former block, Mk. However, if (fl, f2) is played, it means that case (i) has occurred in 
some previous block, Mk, which belongs to the same super block, say, Bl. The 
probability of this case is bound by 

kl+l 

(5.4) E 2c4/k50 < c5/k49. 
k=kl 

Combine (5.2) and (5.4) to get, for any k, which satisfies Mk c Bl, 

(5.5) IExp(f,,f)(ak,3k) - (a,b) < c, ' Max{k, k} + c c/k9 

where c = 2Max{lxl Ix E Al U A2). Define mk = Max Mk. 
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By (5.5), Hmk(fl, f2) k-->, (a, b). Now, if n E Mk, then 

IIH n(fl, f2) - Hmk-l(fl, f2)11o 

n mk-1 

E(fl, (1/n) E (x ) - (l/k E (x,x) 
t=l t=l 00 

n mk- 

= E(f1,2) (1/n) E (x .x4) + (1/n - l/ik_-) E (X,4) 
t=mk_l+l t=l oo 

< (1/n)(n - mk_)C + ((n - mk_l)/n)llHmk-l(fl, f2)o. 

However, n - m ik_1 nk, and 

nk/mk- = k1 /E jlo -- O, 
/ j=1 

thus IIHn(fl, f2) - Hk-l(f , f2)11o tends to zero when k tends to infinity. Hence, we 
have H*(f,, f2) = limn Hn(f, f2) = (a, b), as desired. // 

In order to prove that (f1, f2) is an upper equilibrium, we need Lemma 5.6 of [L1]: 

LEMMA 5.6. Let Rl,..., Rn be a sequence of identically distributed Bernoulli 
random variables with parameter p, and let Y1,...,Yn be a sequence of Bernoulli 
random variables, such that for each 1 < 1 < n, Rl is independent of R1,..., Rl_, 
Y1,..., YI. Then we have 

prob{l(R1,Y + .* +RnYn)/n -p(Y1 + *.. +Yn)/n > E} < l/nE2. 

LEMMA 5.7. (fl, f2) is an upper equilibrium. 

PROOF. As previously noted, c is twice the maximal absolute value of the payoffs 
appearing in the game. Let g2 be a mixed strategy of player 2, and let IL be the 
measure on 1f x 1* induced by (f1, g2). We will show that 

limsup(xI + * . +x9)/t < b, ,-a.s., 
t 

which implies that limsup, H2(f, g2) < b. In a similar way one can show that for 
every strategy g1 of player 1 there is limsupt H[(gl, f2) < a. Fix s, E -1, s2 E 2, 
k E N and j {1, 2, 3, and let t E MI. Set Rt(sl) = 1 if player 1 plays s, at t and 0 
otherwise; Y1(sl, e) = 1 if player 2 plays some action of {s2 E I2111(s1, s2) = e} at 
stage t, and 0 otherwise. Because of Definition 2.1.b(i), 

Ok(e) = E Yt(s, e)Rt(sl). 
tEMk 

We have to calculate the probability of several events. We are interested in the 
event where player 2 gains by a deviation without being detected. By the first 
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computation we will find the probability that player 2's payoff in Mk does not exceed 
by much his prescribed payoff, b, given that no deviation has been detected by player 
1 in Mk (i.e., (5.1) does not hold for Mk) and that player 1 plays in Mk according to 
the master plan (i.e., no deviation has been found by him in that particular super 
block so far). By a similar method we will later compute the probability of the same 
event without assuming that player 1 plays according to the master plan. By Lemma 
5.6, 

prob( Oi(e)/#Mi - (prob(Rt(s) = l)/#M,) :Yt(s, e) < (e)2 

> 1 - 1/(#MkE4) > 1 -c,/k50 

for a certain constant c1. Given that (5.1) does not hold for Mk, with probability of at 
least 1 - (c1/k50) the following holds: 

prob (p,ql)(e) - (prob(Rt(sl) = 1)/#Mk) E Yt(sl,e) < 2(ek)2. 

Given that (5.1) does not hold for all previous blocks in the same super block, we 
Given that (5.1) does not hold for all previous blocks in the same super block, we 
have 

prob(Rt(sl) = 1) =pk(sl) > Ek, and 

prob(pi, ) (e) = pk(sl) E q(s2) 
s2' ll(sl, s2)=e 

Hence, with probability of at least 1 - (c1/k50), 

(5.6) (1/#Mk) E Yt(sl, e) - E qk(s2) < 26k. 
t Mk l(Sl, S2)=e 

The last inequality means that with a high probability (at least 1 - (c1/k50)) if player 
1 did not detect any deviation, then the empirical distribution of player 2's actions in 
{s2 E 211I1(s1, 2) = e) is close up to 2ek to their prescribed probability, 

l(sl, S2)=e qk(s2). Fix k and j and denote Z,(s2) = 1 when player 2 plays s2 at stage 
t, and 0 otherwise. Let W(s2) denote the empirical distribution of s2 in Mk, i.e., 

W(s2) = (1/#Mk) E Zt(s2). 
tEM~ 

f = (1/#M]) E E E Rt(s)Zt(s2)h2(s, s2) 
tEMk S2EG2 S1E)21 

E E (h2(sl,s2)/#Mk) E Rt(sx)Z,(s2) 
= (*) 

S2E2 SI El1 teMk 

Again, apply Lemma 5.6 for Rt(sl), Zt(s2), t e Mk, and (given the fact that (5.1) does 
not hold for all previous blocks of the same super block, i.e., in particular, that 
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prob(Rt(s1) = 1) = pe(s1), s, E 1) obtain with probability of at least 1 - (cl/k50) 

(l/#Mk) E Rt(s)Zt(s2) - 
(l/#Mk)pk(sI) E Zt(s2) < Ek 

tE M t eMj 

Thus, 

(*)< E E (h2(s1,s2)Pkj(s,)/#Mk)( E Zt(s2)+ Ck) 
S2ES2 S1E teM( / 

= E (2(, S2)/#Mk)( Zt(s2) + 
C6Iklll) 

s2E=2 tEMk 

E [(h2(L , 2)W(s2)) + CEktls] 
S2C-2 

= h2(Pk, W) + 1121 lIEk = (* *), 

where W = ( A(1W22). For every (s1, e) E 11 X L1 we get by the defini- 
tions, 

(5.7) E W(s2) = E ((1/#M) E Zt(s2)) 
11(S1, s2)=e 11(S, s2)=e t Mk 

= (1/#Mk) E Yt(s, e). 
teMi 

If (5.6) is satisfied for all s1 and e then by (5.7), W is far, by at most 3Ek, from being 
equivalent to qi. Since (pi, qj) e D, we get with a probability of at least 1 - 
(2111 I21clI/k50) 

( * *) < h2(pi, q) + 411 ? 1i21 ? c ? Ek. 

To recapitulate: given that (5.1) does not hold for all blocks Mk, (k' < k) of the 
same super block B1, with probability of at least 1 - (21i11 1I,2c1/k50) 

(5.8a) 1Pi < h2(pi, qj) + 41I11 I1Ic21k, 

for all k big enough and all j E {1, 2, 3}. Hence, 

(5.8b) Pk < b + 3 * 2|111 Iz2lcEk + cy8k 

(the 3 is for j E {1, 2, 3} and the third term appears because I#Mk/nk - aj| < yk). 
(5.8b) can be written as follows. Let r7 > 0. The probability that 

(5.9) Pk > b + 77/4 

and that player 1, playing according to the master plan, does not come to the 
conclusion that player 2 had deviated at block Mk (i.e., that (5.1) does not hold) is 
less than c2/k5? when k is big enough and c2 is a constant. 

Now we proceed by evaluating the probability that player 2 gains by more than 
61l 12lc1ek above his prescribed payoff b, while player 1 punishes rather than 
adheres to the master plan. 
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By an argument similar to the one above, given that R,(s1) = o'1(s1) (which means 
that for some Mk,, k' < k in the same Bl (5.1) does hold), with probability of at least 
1 - (I1|I Iz21c1)/k50 we have 

(5.10) 3k < d2 + 61;11 Il21cek < b + 611il 1E21CEk. 

The lengths of the blocks and of the super blocks have been defined in such a way 
that the length of a super block B, relative to its past tends to infinity with 1, and that 
the length of Mk c B1 relative to the length of Bl tends to zero with 1. Therefore, the 
event {limsupT(l/T)ETl x > b + r7} is included in the event 

((1/#Bi) , xb > b + 7/2 for infinitely many l's}. 
t EB, 

Since #MJ/#B, ---_o 0 for mk c B, the event {(1/#B,)Et , B X > b + /7/2 is 
included in the union 

U{Vk,lk < k', and MkUMk, B}, 

where Vk is the event { > + 7/4 and > b + 7//4}. In other words, Vk k, is 
the event in which, both in block Mk and in block Mk,, player 2's average payoff is 
greater than b + 71/4. 

The event Vk, k is included in the union of two events. The first one is that 
13k > b + -r/4 and (5.1) does not hold for Mk (whose probability is by (5.9) less than 

c2/k50) and the second one is that 3k > b + -7/4 and (5.1) does hold (namely player 
1 punishes player 2 at Mk,) and even though 18k, > b + 77/4 (whose probability is, by 
(5.10), less than IE11 121cl/k'50). Thus, for a fixed k, 

prob( U Vk,k) < (c2/k50) + E 1I1 l2Il/k'5? < c3/k49, 
k<k' k<k' 

for some constant c3. Fix an I. We then have that 

prob( U U Vk,')< (c3/k49) < k48 
MkcBl k<k' k: MkcB, 

for some constant c4. 
The sum of c4(kl)48 over I is finite. Hence, by the Borel-Cantelli lemma (see [LO, 

p. 240]) the event limsupT ET= x2 > b + r7 has probability zero. This concludes the 
proof. // 

REMARK 5.8. a. The strategy constructed here is also a uniform equilibrium. The 
intermediate results (5.9) and (5.10) show it. 

b. One can show that the method employed here goes through not only in the case 
of observable actions but also in any information structure. Notice that the definition 
of D as well as the proof do not rely on the particular information structure assumed 
here. 

Step 3. [d Conv h(C) \ Conv h(D)] U IR c UEP. The difference between payoffs 
in h(D) and payoffs in h(C) \ Conv h(D) is that if (p, q) E D, the player can take 
care of a deviation of the opponent during the regular game by playing (p', qE) for 
some E, and counting the number of times each signal has appeared. However, if 
(p, q) e C\D, it can happen that player 1, for example, will have p' such that 
p' - p but p' 4- p, which increases his payoff. p' - p means that p' does not change 
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the probability of any signal in L2, while player 2 continues playing q. Therefore, 
player 2 cannot take care of player l's deviations during the regular game. 

How can player 2 ensure that player 1 will play only strategies p that are greater 
than p? Player 2 can check player 1 whether the latter knows about the actions that 
took place at the former stages. Whenever p >- p, if by playing p player 1 can tell the 
difference between two actions, then he can also tell the difference by playing p. 
Thus if player 1 does not know something he could have known by playing p, player 2 
comes to the conclusion that an action which is not greater than p was played. In 
general, the players, in order to transmit information to one another, have to play an 
action that does not sustain the equilibrium payoff. For this reason this information is 
transmitted in a set of stages that have no influence on the payoff, namely a set with 
zero density. However, if a deviation is detected long after it has occurred, the 
deviator profits in the meantime. If the punishment would hold only for a while, and 
then the player would return to the master plan, the upper limit of the average 
payoffs of the deviator might exceed his prescribed payoff. This means that the 
strategy would have not been an upper equilibrium. Thus, the punishment has to take 
place from the detection moment on, forever. With this kind of punishment, however, 
the strategies must be qualified in such a way that if a player punishes his opponent, 
then there is a probability 1 that a deviation has actually taken place. We are able to 
define such a strategy by using the properties of the extreme points of Conv h(C), 
which are not in Conv h(D). Indeed, by Proposition 4.14, each extreme point is 
sustained by a pair of strategies (p1, P2), where one, say pi, is a pure action and the 
other, say P3_, is a best response versus pi among all the actions that preserve the 
distribution over Li. This property of P3-i enables player i to prevent his opponent 
from deviating only by playing pi; no other action is needed for detecting profitable 
deviations. So player i plays with probability one the pure action p,, which enables 
player 3 - i to punish only in those cases where deviation has actually occurred, i.e., 
the probability for him to be mistaken is zero. 

Let (a, b) E [(d Conv h(C) \ Conv h(D)] n IR. By Remark 4.5, (a, b) is a UBP, 
without loss of generality it is of type I, and therefore it lies in a segment connecting 
two extreme points of the same type. By Proposition 4.14(i) there are 
(pl, q'), (p2, q2) E (A(S1) X 2) n C2 and 0 < a < 1 such that 

hl(pi, qi) = Max{hl(p, qi)ll2(1, qi) = 12(pi, q)), i = 1,2, and 

(a, b) = ah(p1, ql) + (1 - a)h(p2, q2). 

We will describe the behavior strategies f, and f2 so that H*(fl, f2) = (a, b). The 
joint strategy will not be a uniform equilibrium. A modified strategy, to be defined in 
Step 6, will be a uniform strategy. Take an infinite set W c N with zero density, i.e., 
limn W cN {1,..., n}l/n = 0. As in the third step, divide N \W into consecutive 
blocks MI, M2,.... Take an infinite sequence of real numbers {Ek,l such that 
Ek = k10. Divide each Mk into Mk, and M2 in such a way that L(#MkA/#Mk) - at < 
ClSk, where c1 E R and 8k -k-oo 0. 

The strategies are defined as follows: for each k E N, in stages of Mk, player 2 
plays the pure action q1 and player 1 plays pi = Pi, except in the cases described 
below. After each block player 1 checks the signal he got at that block. Player 2 must 
always play a pure action; thus, by checking his signals, player 1 can discover 
deviations to strategies q satisfies that q - qj with probability 1. In case he finds a 
defection, he punishes player 2 forever. However, player 2 has the option to deviate 
to an action q which is equivalent to qj, but q ;- qj. 

The way to prevent player 2 from deviating to such q is to "ask" him, at the stages 
of the zero density set, W, about signals he received at previous stages. By asking a 
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finite number of "Yes-No" questions, one can know what signals player 2 received at 
any former stage. Player 2 can answer these questions by acting a certain s1 E 22 for 
"Yes" and a certain S2 E 12 for "No." sI and s2 have to be chosen in such a way 
that player 1 will be able to distinguish between them, i.e., there is v e -i such that 

(5.11) 11(v,s,) : 1l,v,s2). 

This can be done, since player 1 has nontrivial information. There are infinite 
stages w E W, so that for any stage n 4 W we will correlate r states w1(n),..., wr(n) 
in W, where n < wi(n), 1 < i < r. In these stages player 2 will have to answer 
"Yes-No" questions about the signal he got at stage n. It is enough to ask3 
r = L21 - 1 "Yes-No" questions to know what signal player 2 got at any stage. Call 
these questions 41, q2 ,... Ir. When player 1 finds a wrong answer he comes to the 
conclusion that q such that q v- qj was played and he then punishes player 2 forever. 

Player 2 also checks his opponent at the end of Mk. If the relative frequency of 
appearance of each signal does not exceed the expected number by more than Ek, he 
punishes player 1 and the punishment is carried out forever. Therefore, player 1 has 
to be careful not to repeat any action too many times. At any stage r e Mk, player 1 
has to check for each action u E 1, how many times he acted u. In case he finds 
0 # T c 1, so that every u E T is carried out at Mk more than #Mk(pj(u) + 2Ek) 

times, then at the rest of the Mk, i i t is no t p that will be played but rather p where 
PkT is defined as follows: 

DEFINITION 5.9. Let p = (p(1),..., p(l)) e At for some 1 E N, and T c {1,..., 1} 
if 1 > EsT Pp(s). Then PT = (PT(),..., PT(l)) is defined by 

(0, u E T, 
PT(U) = p(u)/ E p(s), u T. 

In other words, if player 2 has found no deviation at any previous block, he plays 
either q1 or q2, depending on whether the stage belongs to Mk or to M2. He answers 
at stage w,(n) to the question 4, a = 1,..., r - 1, referring to stage n. If the 
answer is "Yes," he plays s1, and if the answer is "No," he plays s2 (see (5.11)). 

Player 2 comes to the conclusion that there has been a deviation at some previous 
block Mk if he finds j E {1, 2} and a signal s E L1 whose relative frequency at Mk 

(Ok(a)/#Mk) is far from the expected number. In a precise way, if 

(5.12) \OL(a)/#Mk - prob(p,q)(a)| > 2Ek, 

then player 2 plays o2 from Mk+ on, forever. 
Player 1 plays according to the following rules: 
1. He starts by playing pk at M, and continues for as long s he does not find that 

some action u E Y1 has been played in Mk more than #MJ(pj(u) + Ek) times. 
2. At the moment he finds such an action u, he starts playing Pk where T is the 

set of all these u. 
3. At the stages of W, player 1 plays v (see (5.11)). 
4. He starts punishing his opponents by playing o' if either: 

3r could be chosen to be [log2IL2] + 1, but then at the stages of W the questions should have been 
conditioned by the previous answers. We take r = IL21 - 1 for the sake of simplicity. 
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(i) he finds that player 2 did not play qj at some previous stage (for example if, 
at stage t e Mk, he acted u E E1 and his signal in that stage differs from 11(u, qj)), or 

(ii) he finds a wrong answer at some stage w,(n) e W (for example, if at stage 
t e Mk, player 1 had played u and 12(s', q) = a, but at stage wa(n) player 1 got the 
signal li(v, s2)), which means the answer to the question "Did you get the signal a at 
stage n?" was "No." 

The proof that H*(fl, f2) = (a, b) and that (fl, f2) is an upper equilibrium point 
is based on arguments similar to those employed in the proof of the second step. 
Notice that the probability that player 1 will not play pi at stage t E Mk,, but rather 
PI for some T t 0, in infinitely many blocks is by using the Chebyshev inequality 
and the Borel-Cantelli lemma, equal to zero. Therefore, the probability that player 2 
will profit by a deviation on those stages where player 1 does not play pi but pkr for 
some T # 0 infinitely many times is zero. This means that the limsup of the expected 
average payoffs does not exceed the prescribed payoff. 

REMARK 5.10. a. The strategy of the previous step could be defined in another 
way, namely player 1 will play always pk and player 2 will punish player 1 in a case 
where the relative frequency of a certain signal is far from the expected frequency by 
at least 2ek. As in Step 2, this punishment has to take place in a finite number of 
stages. The proof that such a punishment will occur infinitely many times, while 
player 1 plays according to the prescribed strategy has probability zero, involves the 
arguments that appeared in Step 2. 

b. Notice that the strategy defined here is not uniform. The reason is that 
information about what has been played at stage t is transmitted long after time t. 
Thus, for any time T, there are many stages t, t < T, about which a player will have 
to inform long after T. Therefore, in the T-fold repeated game, the strategy does not 
induce an almost Nash equilibrium. In Step 6, we will modify the strategy, still using 
the idea of asking and answering "Yes"-"No" questions, to define a uniform 
equilibrium. 

Step 4. Conv h(C) n IR c UEP. Any point in Conv h(C) n IR is the convex 
combination of (a, b) e d(Conv h(C)) \ Conv h(D) n IR, and (c, d) E Conv h(D) n 
IR. 

According to the former steps there are upper equilibrium strategies (f1, f2) and 
(g1, g2) such that H*(fl, f2) = (a, b), and H*(g1, g2) = (c, d). 

Take 0 < a < 1 and divide N into two parts, V and U, with density a and (1 - a), 
respectively, V = {v1 < v2 < ...}, U = {u1 < u2 < ...}. Define strategies k1, k2 as 
follows: for every i E {1, 2}, n E N and a E Ln-1 

{ f/(aIV) if n = v E V, 
kn a) = 

gik(aU) if n = u U, 

where alV= (a,j)j 1 and alU = (au)ui< k, = (k, k, . . .). It is clear that 
H*(kl, k2) = a(a, b) + (1 - a)(c, d). 

The proof that (k1, k2) is an upper equilibrium is achieved by employing the proof 
of Step 2. 

Step 5. BEPL = LEP = UEP. Obviously UEP c BEPL for any L. That side of the 
proof in [L2] that proves LEP c Conv h(Cl) n Conv h(C2) n IR can be translated 
easily into terms of Banach equilibrium. Since, by Steps 1-4, LEP c UEP, and by the 
definitions UEP c LEP, we get the desired equality. 

Step 6. UNIF = UEP. It is clear that UNIF c UEP. To show that UEP c UNIF 
one should construct for every point in UEP a strategy that sustains it. As was noted 
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in Remark 5.8(b), the strategy defined in Step 2 is a uniform equilibrium, and thus 
Conv h(D) n IR c UNIF. If the strategy of Step 3 could have been modified so as to 
become a uniform equilibrium, we could have used the method of Step 4 to conclude 
that Conv h(C) n IR c UNIF. 

We will use a method described by Sorin [S2] in order to modify the strategy of 
Step 3. 

Recall that #Mk = k0l0. Any block Mk will be divided into k99 subblocks, each of 
which with length k. Between any two subblocks we will insert two segments of 
stages. In the first one, a state from the previous subblock will be chosen randomly by 
player 2. In the second segment, player 1 will have to inform about the signal that he 
received at the chosen stage. 

In the first segment, which is of length [log k] + 1, player 1 plays with probability 2 

each of the actions s1 and s2. These random moves generate a random string of 
length [log k] + 1. The random strings encode stages in the subblock and thereby 
assign any stage a probability of at least 1/2k. Player 2 can observe the random string 
by playing v, while player 1 randomizes. Immediately after observing the random 
string, player 2 should report the signals he got at the stage encoded by that string. 
This report takes place in the second segment of stages that follows every subblock. 
Thus, this segment should be of length 1I21 - 1. 

To recapitulate, we have the block Mk which is divided into subblocks of length k 
each. Two segments of stages proceed any subblock. The purpose of these segments 
is to check possible deviations of player 2 in the previous subblock. At the first 
segment, player 1 announces the stage at which player 2 will have to inform in the 
following segment, the second one. 

From the moment player 1 discovers a deviation, he punishes his opponent forever. 
The description of player 2's strategy is very much the same as the one given in Step 
3. Denote the strategy defined here by f. 

As opposed to the strategy defined in Step 3, in f the report player 2 must send to 
player 1 is not delayed until the far future. Here it is done immediately after any 
subblock, at the expense that on signals of any stage t, player 2 is asked only with a 
positive probability and not with probability one. 

Let nk = Ek',k#Mk,. To see that, indeed, f is a uniform strategy, observe the 
following. 

1. #Mk/nk_1 -- 0. 
2. The payoff collected during the two segments preceding a subblock do not have 

much influence because their length is small compared to the length of the previous 
subblock. 

3. To see that f is a uniform equilibrium it is enough, by 1., to show that f induces 
a 8k-Nash equilibrium in the nk-fold repeated game, Gnk, for some 8k converging to 
zero. 

4. For any r7 > 0 there are K and e > 0 s.t. if K < k and player 2 gets in Mk r/ 
more than his prescribed payoff, then in a fraction of at least e subblocks there are at 
least ek stages in which player 2 plays in a probability of at least ek stages in which 
player 2 plays in a probability of at least e worse action (i.e., some action q, where 
q - q) than the prescribed action q. 

5. The probability that one of the stages, mentioned in 4., will be picked by player 1 
for the report of player 2 is at least E/2. 

6. The probability that player 2 will not be able to distinguish between the actions 
that he could have been able to by playing q is Ek (because every action of player 1 is 
played at least with probability Ek) times e (at least the probability of deviation). 

7. The probability not to discover deviation after a subblock of the type mentioned 
in 4. is at most 1 - E2Ek/2. 
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8. The probability not to discover the deviation in Mk is at most (1 - E2ek/2)#M/k. 
Recalling Ek = k-10, we obtain that the probability in question is at least of the order 
of exp(-e2k89/2), which tends to zero as k goes to infinity. 

9. For k relatively big (to K), we will show that f induces a 8k-Nash equilibrium in 
Gnk, where 8k will be specified later. Let Mk be the first block after K in which 
player 2's payoff exceeds his prescribed payoff by more than rq. Player 2's total payoff 
(not the average) in Gnk is then bounded from above by 

(5.13) 

cnK + (b + r7)(nk_-1 - nK) + c#Mk 

+(1 - exp(-E2k89/2))d2(nk - nk,) + exp(-E2k /2)c(nk - 
nk'). 

The first term stands for all stages preceding MK. The second term stands for the 
blocks between MK and Mk, the third term for Mk, itself. The fourth term is the 
punishment payoff (d2) multiplied by the probability of punishment in the stages after 
Mk. The last term stands for the probability that player 2 will deviate in Mk and the 
deviation will not be discovered by player 1 multiplied by the maximal payoff, c. 

10. Notice that after dividing (5.13) with nk, in order to get the average payoff, we 
obtain b + 8k where ak 

- 0. 
This finishes the proof that f is a uniform equilibrium. // 
Step 7. The Trivial Case. By Step 2, Conv h(D1) n Conv h(D2) n IR c UEP. By 

[L2], whenever at least one player has trivial information in any repeated game with 
nonobservable actions, LEP c Conv h(D1) n Conv h(D2) n IR. Since UEP c LEP, 
the proof is finished. 

6. Concluding remarks. 
6.1. (i) We defined an equilibrium as a joint mixed strategy that satisfies incentive 

compatibility. Kuhn's theorem enabled us to consider behavior strategy without 
restricting generality. We could use Kuhn's theorem because we assumed that each 
player is informed about his own actions (see Definition 2.1.b). However, it turns out 
that this assumption is not needed. 

The main theorem also holds in a case where the information includes the payoffs 
and not necessarily the actions. For the construction of the behavior strategy involved 
in the proof, we can deal with an auxiliary game in which the players are provided 
with the information of their own actions in addition to the information given by the 
original information function. These behavior strategies induce mixed strategy in the 
auxiliary game. However, by the Dalkey theorem [D], any mixed strategy of player i 
can be played without knowing player i's own actions. In other words, the induced 
mixed strategy in the auxiliary game induces in turn an equivalent mixed strategy in 
the original game. Equivalent strategies in the sense that with any strategy of the 
opponent both induce the same distribution over histories. 

To recapitulate, the assumption of Definition 2.1.b is not essential for proving 
Theorem 3.7 and it is valid even when the players are not informed of their own 
actions. 

(ii) The proof of Step 2 does not depend on the particular information structure, 
and therefore it proves that in general two-player repeated games with nonobservable 
action, h(D) n IR c UEP. 
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(iii) There are few similarities4 between the construction defined at Step 2 and the 
strategy constructed by Kohlberg in [Ko]. He defined an E-strategy of the uninformed 
player in a zero-sum repeated game with incomplete information, lack of information 
on one side and with a general information structure. In that strategy player 2 
(traditionally, the uninformed player) divides the set of stages into blocks. At all the 
stages belonging to a certain block any player plays the same one-shot game mixed 
action. This mixed action is determined by the relative frequency of the signals at the 
former block. So, player 2 is updating his actions, relying on the relative frequency of 
the signals he formerly got. The length of blocks is defined in such a way that player 2 
(the minimizer) will achieve at most the value +E. 

6.2. A trial to extend the characterization of the general case. The question of 
characterizing UEP in the general case is still open, while the characterization of 
LEP in the two-player general case appears in [L2]. 

The first guess is that UEP = Conv h(C) n IR is valid also in the general case. We 
will provide an example in which UEP \ (Conv h(C) n IR) is nonvoid. 

EXAMPLE 6.1 (Based on an example of Aumann [A2]). The repeated game of 

w x Y Z W X Y Z 

W , 0,0 0,0 0,0 00 a,a a,b a,c a,d 
X , 0,0 0,0 0 0,0,0 b,a b',b' b,c b,d 
Y 0,0 0,0 6,6 2,7 c,a c,b c,c c,d 
Z 0,0 0,0 7,2 0,0 d,a d,b d,c d,d 

Payoffs Signals 

We will show that the payoff (5, 5) which is sustained by a one-shot game correlated 
equilibrium (see [A2]) is contained in UEP. In this example, Conv h(C) n IR is the 
convex hull of all the Nash equilibrium payoffs, and then (5,5) is not contained in it. 
The strategy is based on the following procedure for both players. Play W with 
probability 2 and X with probability 3. If the signal is a, play Y; if the signal is b, 
play Z; and if the signal is b', play again W and X with probability 2 each until the 
first time where the signal is not b'. Given that b' was not the signal, the joint 
distribution of the signals is given by 

a b 
1 1 a 3 3 

b 1 0 

Therefore the correlation between players is done by the information matrix and the 
strategies without the need of a mediator. These instructions do not define an 
equilibrium strategy that sustains the payoff (5,5), because a player can cheat in the 
first part (the construction of the correlation matrix) and play with probability 1 the 
action X, for example, and by that to profit at the second part. However, the other 
player can control this kind of cheating by repeating the procedure many times and 
detecting possible deviations by considering the frequency of the appearance of the 
signal b'. Then to play the second part many times, and so on, repeatedly, infinitely 
many times. By a strategy of this sort (5,5) is becoming an upper equilibrium payoff. 

A more extensive study of correlation by histories can be found in [L3]. 

4This similarity was pointed out by S. Sorin. 
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6.3. Another definition of . We could define the equivalence relation - on 
mixed actions in another way. p p' (p, p' E A(i( )) if p and p' give the same 
probability to every equivalence class of 2i. By this definition we could define in a 
similar way the partial order , and the sets Cl, D'. Since the new definition of - 
is less restrictive, Ci c Cl and Di c D'. 

It can be proven that Conv h(C r n C)) n IR = Conv h(C) n IR, and the same 
equality with Di. Thus, the main theorem could have been stated also in terms of the 
new definition, which gives an earlier way for calculating UEP. 

6.4. More propositions that can be proven. (i) The set Conv h(C) is a polygon. 
(ii) Let IS,i = ci, i.e., Si is divided into ci equivalence classes. For any pair of 

vectors in the unit simplex Ai, i = 1, 2, (a, 3), there is a pair (p, q) e D such that p 
(resp., q) gives the jth class of S, (resp., S2) the total probability aj (resp., 1j). This 
can be proven by a standard fixed point argument. 
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