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We demonstrate a novel method for measuring the microrheology of soft viscoelastic media, based
on cross correlating the thermal motion of pairs of embedded tracer particles. The method does not
depend on the exact nature of the coupling between the tracers and the medium, and yields accurate
rheological data for highly inhomogeneous materials. We demonstrate the accuracy of this method with a
guar solution, for which other microscopic methods fail due to the polymer’s mesoscopic inhomogeneity.
Measurements in an F-actin solution suggest conventional microrheology measurements may not reflect
the true bulk behavior.

PACS numbers: 87.19.Tt, 83.10.–y, 83.70.Hq, 83.80.Lz
Many interesting and important materials such as poly-
mers, gels, and biomaterials are viscoelastic; when re-
sponding to an external stress, they both store and dissipate
energy. This behavior is quantified by the complex shear
modulus, G��v�, which provides insight into the material’s
microscopic dynamics. Typically, G��v� is measured by
applying oscillatory strain to a sample and measuring the
resulting stress. Recently a new method, called microrhe-
ology, has been developed which determines G��v� from
the thermal motion of microscopic tracer particles embed-
ded in the material [1,2]. Microrheology offers significant
potential advantages: it provides a local probe of G��v� in
miniscule sample volumes and can do so at very high fre-
quencies. While microrheology provides an accurate mea-
sure of G��v� for simple systems, its validity in common
complex systems is far from certain. If the tracers locally
modify the structure of the medium, or sample only pores
in an inhomogeneous matrix, then bulk rheological prop-
erties will not be determined. Such subtle effects currently
limit many interesting applications of microrheology.

In this Letter, we introduce a new formalism, which we
term “two-point microrheology,” based on measuring the
cross-correlated thermal motion of pairs of tracer particles
to determine G��v�. This new technique overcomes the
limitations of single-particle microrheology. It does not
depend on the size or shape of the tracer particle; more-
over it is independent of the coupling between the tracer
and the medium. We demonstrate the validity of this ap-
proach with measurements on a highly inhomogeneous
material, a solution of the polysaccharide guar. Two-point
microrheology correctly reproduces results obtained with a
mechanical rheometer, whereas single-particle microrheol-
ogy gives erroneous results. We also compare ordinary and
two-point microrheology of F-actin [2–4], a semiflexible
biopolymer constituent of the cytoskeleton. Different re-
sults are obtained with the two techniques, suggesting that
earlier interpretations of F-actin microrheology should be
reexamined.
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Conventional microrheology [1,2] uses the equation:

r̃2�s� �
kBT

psaG̃�s�
, (1)

where r̃2�s� is the Laplace transform of the tracers’ mean
squared displacement, �Dr2�t��, as a function of Laplace
frequency s, and a is their radius. Equation (1) is the
Stokes-Einstein equation generalized to a frequency-
dependent viscosity [s21G̃�s�] that accounts for elasticity
[1]. Equation (1) is subject to the same conditions as the
Stokes calculation: overdamped spherical tracer particles
in an homogeneous, incompressible continuum with no-
slip boundaries. If the tracers inhabit cavities in a porous
medium, or create their own cavities by steric or chemical
interactions with the material itself, their mobilities may
be much greater than predicted by Eq. (1) [5].

Since the effect of such inhomogeneities is difficult to
quantify, we seek a means to discriminate between a tracer
moving in a soft pore in an otherwise very rigid matrix
from another tracer moving with the same amplitude in an
homogeneous soft matrix. One difference between these
cases arises from the long-range deformation or flow in
the matrix due to the tracer’s motion. In the homogeneous
case, this strain field is proportional to the tracer motion
and decays �a�r , where r is the distance from the tracer.
For the hypothetical tracer in a soft cavity, the strain field
is localized to the cavity itself.

Since one tracer’s strain field will entrain a second par-
ticle, we can measure the strain field by cross correlat-
ing two tracers’ motion. Recent experiments have probed
such correlated motion in viscous [6] and elastic [7] ma-
terials. We use multiparticle video tracking [8] to mea-
sure the vector displacements of the tracers Dra�t, t� �
ra�t 1 t� 2 ra�t� where t is the absolute time and t is
the lag time. We then calculate the ensemble averaged ten-
sor product of the tracer displacements:
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Dab�r, t� � �Dri
a�t, t�Dr

j
b�t, t�d�r 2 Rij�t���ifij,t ,

(2)

where i and j label different particles, a and b label differ-
ent coordinates, and Rij is the distance between particles
i and j. The average is taken over the “distinct” terms
(i fi j); the “self” terms yield �Dr2�t�� 3 d�r�.

For an incompressible continuum, the expected two-
point correlation is computed by multiplying the displace-
ment predicted in Eq. (1) by the strain field of a point stress
[9]. The result, in the limit r ¿ a, is

D̃rr �r , s� �
kBT

2prsG̃�s�
, Duu � Dff �

1
2

Drr , (3)

where D̃rr �r , s� is the Laplace transform of Drr �r , t� and
the off-diagonal tensor elements vanish. Significantly,
Eq. (3) has no dependence on a, suggesting that Dab�r, t�
is independent of the tracer’s size, shape and boundary
conditions with the medium in the limit r ¿ a.

While we will treat our samples as incompressible,
Eq. (3) can be generalized to compressible media by using
a different Stokes-Einstein relation and strain field [9].
The compressibility changes the anisotropy of the strain
field, and modifies the relative amplitude of the tensor
elements. Thus, measuring the different tensor elements
should enable measurements of compressibility [7].

We use Eq. (3) as the basis for the microrheology of in-
homogeneous media which cannot be modeled by Eq. (1).
We demonstrate the effectiveness of this approach empiri-
cally, and present a simple argument in its favor. The ther-
mal motion of a soft viscoelastic medium can be described
as a stochastic, time-fluctuating strain field characterized
by a spectral density that depends on frequency and spatial
wavelength [10]. The Brownian motion of a single tracer is
the superposition of such modes with wavelengths greater
than the particle radius, a. The correlated motion of two
tracers is driven by those modes with wavelengths greater
than their separation r rather than a, since shorter wave-
length modes do not move the tracers in phase. Thus, the
correlated motion of two tracers separated by more than
the coarse-graining length scale in an inhomogeneous me-
dium will depend only on the coarse-grained G��v�.

Comparing Eq. (3) and Eq. (1) suggests that we define
a distinct mean squared displacement, �Dr2�t��D as

�Dr2�t��D �
2r
a

Drr �r , t� . (4)

This quantity is just the thermal motion obtained by ex-
trapolating the long-wavelength thermal undulations of the
medium down to the bead size. If and only if the as-
sumptions implicit in Eq. (1) are valid will �Dr2�t��D �
�Dr2�t��. Any difference in the displacements provides in-
sight into the local microenvironment experienced by the
tracers. We can then understand �Dr2�t�� as a superposi-
tion of a long-wavelength motion described by �Dr2�t��D

plus a local motion in a cavity.
In practice, we first confirm that Drr � 1�r , which indi-
cates that the medium can be treated as an (coarse-grained)
homogeneous continuum. This was the case for all our
samples over the length scales we studied, 3 , r , 30 mm.
We then use the average value of rDrr over that range to
calculate �Dr2�t��D from Eq. (4). Finally, we calculate the
two-point microrheology result by substituting �Dr2�t��D

into Eq. (1) in place of �Dr2�t��.
Several numerical procedures for calculating the shear

modulus from �Dr2�t�� have appeared in the literature
[1,2,4]. We first approximate �Dr2�t�� locally by a second-
order polynomial (spline) in the logarithmic plane to obtain
a smoothed estimate of the function and its first logarithmic
derivative. We then use approximate, local algebraic ex-
pressions to calculate the storage, G0�v�, and loss, G00�v�,
moduli (defined by G� � G0 1 iG00), from the smoothed
value and derivative [1]. This method approaches the exact
result as �Dr2�t�� approaches a power law, and has the ad-
vantage that it does not require the experimental data to be
fit to an analytic model, nor does it suffer from the trunca-
tion errors of numerical integral transforms. On the basis
of numerical tests, we expect all the moduli presented here
to have systematic errors smaller than 5% of jG�j, although
larger errors are possible near the frequency extrema.

We used submicron fluorescent beads as tracers (mo-
lecular probes, Rhodamine Red-X labeled carboxylate-
modified latex�polystyrene). We sealed the samples
between a No. 1.5 glass cover slip and microscope slide
with UV-curing epoxy (Norland No. 81). The tracers were
imaged with epifluorescence (Leica, inverted microscope,
DM-IRB�E) using a 1003, NA � 1.4, oil-immersion
objective at a magnification of 129 nm�CCD pixel and a
video shutter time of 2 msec. To minimize wall effects,
we focused at least 25 mm into the 150 mm thick sample
chambers. A few hundred particles were located within the
field of view and 2 mm depth of focus. For each sample,
10 min of video were recorded, which yields a few million
two-dimensional positions with 60 Hz temporal and 20 nm
spatial resolution [8].

As a control, we measured the two-point correlation,
Dab , of 0.47 mm diameter tracers in a glycerol�water mix-
ture. The results confirm our expectations for a simple
fluid, as shown in Fig. 1(a). The functional form is Drr ,
Dff ~ t�r to within statistical error, with Dff�Drr �
0.43 6 0.06, in agreement with Eq. (3) for an incom-
pressible medium. As shown in Fig. 1(b), we find that
�Dr2�t��D is equal to �Dr2�t�� and is linear to within sta-
tistical errors, at least when a small constant is subtracted
from the latter. This small constant added onto �Dr2�t��
is simply the squared measurement error of the tracer
positions. Since the errors for two tracers are uncorrelated,
�Dr2�t��D is unaffected.

To demonstrate the effectiveness of two-point microrhe-
ology in inhomogeneous media, we compared measure-
ments of a guar solution with those from a mechanical
rheometer. Guar is a naturally occurring neutral polysac-
charide (MW 	 106) extracted from the guar gum bean. A
889
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FIG. 1. (a) Two-point correlation function, Drr , for 0.47 mm
diameter beads dispersed in a glycerol�water solution, as a func-
tion of r and t. In a triple-log plot, the surface is a plane and is
~ t�r. (b) �Dr2�t��D calculated from Drr (circles) overlaid on
�Dr2�t�� (line). The agreement between the two indicates that
the fluid satisfies Eq. (1).

small concentration of guar in water dramatically changes
the viscoelastic properties, because of the formation of
high-molecular weight, mesoscopic aggregates [11] result-
ing from random associations of the guar molecules. This
presents a highly inhomogeneous medium that is ideally
suited to testing our technique.

Our results for 0.20 mm diameter tracers in a 0.25%-
by-weight guar solution are shown in Fig. 2. Unlike the
simple fluid case, the two mean squared displacements do
not correspond, but disagree by roughly a factor of 2 and
have a somewhat different functional form, as shown in
Fig. 2(a). We converted both to their corresponding G0�v�
and G00�v�, and compared the results to directly mea-
sured moduli from a controlled-strain rheometer (Rheo-
metric Scientific, Ares F). As shown in Fig. 2(b) the
moduli calculated from the two-point correlation function
are in good agreement with the results obtained with the
rheometer, correctly capturing the crossover of G0�v� and
G00�v� at 40 rad�s. Single-particle microrheology pro-
vides qualitatively different moduli and completely fails
to detect the crossover. This confirms the underlying con-
cepts of the two-point method, and verifies its accuracy in
890
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FIG. 2. (a) Comparison of the self (triangles) and distinct
(circles) displacements of 0.20 mm diameter beads in 0.25%
weight guar solution. The solid line is a smooth fit to the data,
used for calculating the rheology. The inset shows the r depen-
dence of rDrr for t � 100 msec, in units of 1023 mm3. (b) The
storage (filled circles) and loss (open circles) moduli calculated
using �Dr2�t��D , showing a crossover to elastic behavior at high
frequencies, are in good agreement with rheometer measure-
ments (solid curves). The moduli calculated using �Dr2�t��
(triangles) do not agree.

determining the bulk rheological behavior of an inhomo-
geneous medium.

As an application of the two-point method, we mea-
sured polymerized F-actin, obtained from purified rabbit
muscle [4,12]. The sample was prepared at 1 mg�ml in
G-buffer (2 mM tris-Cl, 0.2 mM ATP (Adenosine triphos-
phate), 0.5 mM DTT (Dithiothreitol), and 0.1 mM CaCl2),
mixed with 0.47 mm diameter tracers and polymerized in
the sample chamber by the addition of MgCl2 to 75 mM.
Phalloidin was added in a 1.2:1 molar ratio to G-actin to
stabilize the actin filaments.

The measured �Dr2�t�� and �Dr2�t��D are shown in
Fig. 3(a); �Dr2�t�� resembles that reported in other micro-
rheology experiments [2,4], increasing subdiffusively with
a weak turnover at 	50 ms. �Dr2�t��D shows no turnover,
scaling as t1�2. Significantly, �Dr2�t�� is up to 5 times
larger than �Dr2�t��D , suggesting that most of the motion
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FIG. 3. Comparison of the self (triangles) and distinct (circles)
displacements of 0.47 mm diameter beads in a 1 mg�ml F-actin
solution. The inset shows the r dependence of rDrr for t �
67 msec, in units of 1023 mm3. (b) The storage (filled circles)
and loss (open circles) moduli calculated using �Dr2�t��D vary
as v1�2. The moduli calculated with �Dr2�t�� (triangles) show a
different form approaching v3�4. The short lines indicate slopes
of 1�2 and 3�4.

of the beads is inside a “cage” formed by the actin fila-
ments [5]. Since it is not due to the fluctuation spectrum
of the actin solution, the turnover in �Dr2�t�� may result
from collisions of particles with the cage. This highlights
the important distinction between effects due to continuum
mechanics and those due to the tracers’ microenviron-
ments. Some of the discrepancy may also be due to com-
pressibility of the network at the small spatial wavelengths
probed in the single-particle data.

The corresponding moduli for F-actin are shown in
Fig. 3(b). While �Dr2�t�� gives moduli similar to other
microrheology results [2,4], �Dr2�t��D yields a very
simple rheological spectrum varying as v1�2, which,
interestingly, corresponds with the exponent seen at
lower frequencies in macroscopic measurements [3]. The
significant difference between the two-point and single-
particle measurements suggests that previous microrhe-
ology results must be reexamined. More work in both
theory and experiment is required to connect the internal
dynamics of the actin filaments, shown recently to scale
as t3�4 [5,13,14], to the G� determined by microrheology.

Two-point microrheology has several advantages, in
addition to its ability to probe inhomogeneous media. Its
robustness should enable accurate microrheology with
polydisperse, nonspherical, or unknown size tracers, as in
studies of the cytoskeleton using organelles. Its ability to
simultaneously probe both bulk rheology and the tracers’
microenvironments will likely be key to understanding
such complex media as biopolymers and cells.
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