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Abstract

Many biological and technological complex fluids exhibit tight microstructural alignment that 

confers them nematic mechanical properties. Among these we count liquid crystals and 

biopolymer networks, which are often available in microscopic amounts. However, current 

microrheological methods cannot measure the directional viscoelastic coefficients that appear in 

the constitutive relation of nematic complex fluids. This article presents directional two-point 

particle-tracking microrheology (D2PTM) – a novel microrheology technique to determine these 

coefficients. We establish the theoretical foundation for D2PTM by analyzing the motion of a 

probing microscopic particle embedded in a nematic complex fluid, and the mutual hydrodynamic 

interactions between pairs of distant particles. From this analysis, we generalize the formulation of 

two-point particle tracking microrheology for nematic complex fluids, and demonstrate that the 

new formulation provides sufficient information to fully characterize the anisotropic viscoelastic 

coefficients of such materials. We test D2PTM by simulating the Brownian motion of particles in 

nematic viscoelastic fluids with prescribed directional frequency-dependent shear moduli, showing 

that D2PTM accurately recovers the prescribed shear moduli. Furthermore, we experimentally 

validate D2PTM by applying it to a lyotropic nematic liquid crystal, and demonstrate that this new 

microrheology method provides results in agreement with dynamic light scattering measurements. 

Lastly, we illustrate the experimental application of the new technique to characterize nematic F-

actin solutions. These experiments constitute the first microrheological measurement of the 

directional viscoelastic coefficients of an anisotropic soft material.
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1 Introduction

Particle tracking microrheology (PTM)1,2 is a useful experimental technique to determine 

the rheological properties of soft materials that exhibit complex mechanical behaviors and 

are conveniently available in minute amounts3,4. In PTM, submicron-sized particles are 

embedded in a material sample, excited with a known force, and their displacements are 

measured as a function of time. From these measurements one can determine the materia’s 

frequency-dependent shear modulus G(ω). PTM methods can be classified as active or 

passive depending on the nature of the force that drives particle motion. Active PTM 

methods apply an external force on the probing particle whereas in passive PTM methods, 

the embedded microparticles undergo random motion due to thermal and possibly non-

thermal fluctuations. Active and passive PTM have been applied to characterize, among 

other systems, colloidal suspensions5–7, reconstituted protein gels8–10, and the cytoplasm of 

live cells11–13.

Regardless of the mechanism driving particle motion, a key step of PTM is to connect the 

measured motion with the underlying rheological properties of the medium. This step 

requires theoretical knowledge of the relation between the driving force and particle velocity 

as a function of G(ω). This relation is usually idealized as Stokesian, i.e. F = 6πGa/ω where 

a is the particle radius, but there is a number of near field phenomena that generate 

deviations from Stokesian behavior. Examples of these are partial slip at the particle 

surface14, compressibility15 and electrochemical surface interactions16. To eliminate these 

short-range effects, Crocker et al. 17 introduced two-point PTM, which analyzes the cross-

correlated motion of pairs of distant particles.

The vast majority of existing PTM protocols (active and passive, single-point and two-point) 

assume that the probed medium is isotropic. However, there is a substantial number of soft 

materials that exhibit molecular or supramolecular alignment leading to anisotropic 

rheology. Anisotropic particle diffusion has been reported in nematic liquid crystals18,19, 

reconstituted polymer networks20,21, and the cytoplasm of cells12,22–25. However, there is a 

lack of microrheological methods to measure the directional viscoelastic coefficients of 

nematic complex fluids. Previous efforts analyzed particle motion in the principal directions 

of minimum and maximal motion, and applied Stokes’ law in each direction 12,20–22,24,25 

This approach provides effective shear moduli that quantify the viscoelastic resistance 

experienced by the particle in different directions. However, these effective shear moduli do 

not represent true material viscosities4, and have been shown to differ substantially from the 

material viscosity coefficients of the fluid26. To address this limitation, Gómez-González 

and del Álamo26 studied the flow of a nematic fluid around a sphere using the Leslie-

Ericksen constitutive relation. They calculated the drag coefficients of the sphere in the 

directions parallel and perpendicular to the nematic as functions of the three directional 

shear moduli of the fluid. They also showed that one-point PTM can only provide up to two 

independent drag coefficients, which is insufficient to calculate the three shear moduli.

In this paper, we resolve this indetermination by analyzing the cross-correlated motion of 

pairs of distant spheres in a nematic fluid. Specifically, we derive a closed-form analytical 

solution for the spheres’ mutually induced velocity, i.e. the multiparticle mobility tensor. We 
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show that this approach provides three independent equations, so that two-point PTM can be 

used to determine the rheological properties of nematic fluids that follow the Leslie-Ericksen 

constitutive relation. The novel directional two-Point PTM (D2PTM) formulation is 

validated via numerical simulations, as well as experiments in a nematic liquid crystal of 

known directional viscosity coefficients. Finally, we apply D2PTM to a nematic solution of 

filamentous actin. These results represent the first direct microrheological measurement of 

the directional shear moduli of F-actin, enabling future applications of D2PTM to other soft 

materials.

2 Theoretical Foundation of Directional Two-Point Particle Tracking 

Microrheology

This section describes the motion of spherical PTM probes embedded in a nematic complex 

fluid defined by the director n  (Fig. 1). The drag force experienced by the particles and the 

interaction between pairs of distant particles (Fig. 2) are calculated. These results are used to 

develop analysis algorithms for D2PTM.

2.1 Mathematical Formulation

The velocity field of an incompressible complex fluid can be described27 by the Cauchy’s 

momentum equation

ρ ν
˙

− ∇ ⋅ τ = f , (1)

together with the continuity equation ∇ ⋅ ν = 0, where f  represents the applied external 

forces, ν = ∂
t
u  is the velocity field, u  is the deformation field, ρ is the density and τ is the 

stress tensor. These equations are valid for homogeneous one-component materials, and for 

semidiluted bio-polymer networks that conform to certain conditions28, i.e. low volume 

fraction φ of the solute, characteristic length of the displacements a larger than the mesh size 

ξ, and frequencies ω ≪ 104 s−1. These conditions are often met in microrheology studies of 

biological samples such as the eukaryotic cytoplasm (φ ~ 0.01 – 0.0229) and reconstituted 

bio-polymer networks (φ ~ 0.001 – 0.019,21,30), where the length scale is the radius of the 

probing particle a ≫ ξ and the frequencies are well below the specified limit26.

We estimate a Reynolds number Re = ρUa/η ~ 10−6 in PTM experiments26 and thus neglect 

inertial terms in the equations of motion. We relate the stress and strain (ε) tensors via a 

generalization of the Leslie-Ericksen constitutive equations 31–33 in the frequency domain,

τ ij = − pδij + α1
∗(s)nknqε kqn in j + α2

∗(s)n iN j + α3
∗(s)n jNi

+α4
∗(s)ε ij + α5

∗(s)n inkε kj + α6
∗(s)n jnkε ki,

(2)

where p represents the pressure, δ the Kronecker delta, ⋅  indicates Laplace transform, s is 

the frequency and the subscripts i, j, k and q represent space coordinates. The convention of 
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summation over the repeated indices k and q holds for this equation. This expression is 

analogous to the generalized Stokes’ formula proposed by Mason and Weitz1. It depends on 

six complex viscoelasticity coefficients α
k
∗(s), the director of the nematic n

i
, and the rate of 

change of the director with respect to the background fluid, N
i
. The viscoelasticity 

coefficients are a generalization of the Leslie viscosity coefficients αk through analytical 

continuation, and depend on the complex frequency s. The vector N
i
 is defined as the sum of 

the substantial derivative of n
i
 and the rotation of the fluid with respect to the director, and is 

more conveniently expressed in real space as

N = ∂
t

n + ( ν ⋅ ∇) n − (∇ ∧ ν ) ∧ n 2 .

The nematic field n  is determined from the equilibrium of moments created by the 

viscoelastic stresses on the fluid and by the elastic stresses on the nematic, whose ratio is 

quantified by the Ericksen number, Er. In the limit of Er ≪ 1, the viscoelastic forces on the 

fluid generated by the motion of the particle are small enough to not perturb the nematic 

field, and n  will be equal to the equilibrium distribution33. In a typical PTM experiment the 

low Ericksen number hypothesis is reasonable far away from the particle. Thus, for the sake 

of studying the correlated motion of pairs of distant particles to formulate D2PTM, we 

assume the director field to be uniform in space and constant in time, n  = (1, 0, 0).

To reduce the number of free material parameters, we group the viscoelasticity coefficients 

into three generalized Miesowicz34 shear moduli,

G
a

= α4
∗ 2,

G
b

= (α3
∗ + α4

∗ + α6
∗) 2,

G
c

= ( − α2
∗ + α4

∗ + α5
∗) 2,

and make use of Parodi’s relation35, α6
∗ = α2

∗ + α3
∗ + α5

∗. Under these simplifications, equation 

(1) becomes

∂x p‒ = (Gc − Ga + α1
∗)∂xxu x + Gb∇2

u x + f x, (3)

∂y p‒ = (Gc − Ga)∂xxuy + Ga∇2
uy + f y, (4)

∂z p‒ = (Gc − Ga)∂xxuz + Ga∇2
uz + f z, (5)
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where p‒ = p + (G
c

− G
a

− α5
∗ )∂

x
u

x
 is a modified pressure, and r = (x, y, z) and 

u = (u
x
, u

y
, u

z
) are the position and displacement vectors in a Cartesian coordinate system.

The three Miesowicz coefficients have a clear physical meaning in a nematic fluid36. For a 

uniform shear flow along the x-direction, G
b
 and G

c
 are excited if n  is respectively parallel 

to the flow velocity or to the velocity gradient, whereas G
a
 is excited if n  is perpendicular to 

both the flow velocity and its gradient. Fig. 14 in Appendix A provides a graphical 

interpretation of these coefficients.

2.2 Derivation of the Response Function

A spherical particle of radius a moving at low Reynolds number experiences a drag force 

that is proportional to its velocity,

F = − ζ
‒‒

⋅ ν ( x = 0 ) = − ζ
‒‒

⋅ ν 0 = − sζ
‒‒

⋅ u 0, (6)

where ζ
‒‒
 is the tensorial Response Function, also known as Hydrodynamic Resistance37 or 

Self-Resistance38. Note that ν 0 and F  are not parallel to each other in an anisotropic fluid 

as ζ
‒‒
 is not proportional to the identity matrix.

To calculate the response function of the particle, we perform a multipole expansion37,39,40. 

We first calculate the Green’s function of equations (3)–(5) in the Fourier wavenumber 

domain, and then integrate the Green’s function to obtain the particle velocity as a function 

of the driving force. Due to the linearity of the problem, we seek for solutions of the form

ν =
� ⋅ f

8π
=

1
8π

�1 j f j

�2 j f j

�3 j f j

, (7)

p =
� ⋅ f

8π
=

1
8π

� j f j, (8)

where ⋅  denotes Fourier transform along the spatial coordinates, �
ij
 and �

j
 are the Green’s 

functions for the velocity and the pressure, and f  is the driving force applied on the fluid. 

Solving for the Green’s functions of the problem yields (see26 for more details)
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� j

8 π
= −1k j

(1 − δ1 j)c + b

d
, (9)

and

�1 j

s 8 π
=

δ1 jk
2 − k1k j

d
, (10)

�lj

s 8 π
=

δlj

b
− klk j

(1 − δ1 j)c + b

db
, (11)

with l = 2,3, and where

b( μ ; k ) = (G
c

− G
a

)k1
2 + G

a
k
2,

c( μ ; k ) = α1
∗

k1
2 + (G

b
− G

a
)k2,

d( μ ; k ) = α1
∗

k1
2(k2

2 + k3
2) + G

b
k
4 + (G

c
− G

b
)k1

2
k
2,

k = (k1, k2, k3) = (k
x
, k

y
, k

z
) is the wavenumber vector, μ = (α1

∗, G
a
, G

b
, G

c
) is the 

viscoelasticity vector, and δij is the Kronecker delta.

The particle velocity is calculated by performing the inverse Fourier transform of equation 

(7) particularized at x = 0 ,

ν 0 =
1

(2π)3 2∫ ∫ ∫ �

8π
⋅ f ( k )d3

k = − ζ
‒‒−1

⋅ F , (12)

where f ( k ) = f ⋅ H( k ) is the Fourier transfonn of f ( x ) and the function H( k ) is a 

regularization kernel that localizes the drag force in physical and/or Fourier space. We 

choose to distribute the force as a Gaussian around the origin41,42 so that

H(k) = e
−a

2
k
2

π . (13)

The response function is thus given by
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ζ
‒‒−1

ij =
s

4 2πa ∫
θ = 0

θ = π

sin θ ∫
φ = 0

φ = 2π
k

2
�ij

8π
dφ dθ, (14)

where k = (k, ϕ, θ) is the Fourier wavenumber vector in spherical coordinates. Due to the 

symmetry of �
ij
, the tensor ζ

‒‒−1
 is diagonal and equation (6) becomes

F = − s

ζ ∥ 0 0

0 ζ ⊥ 0

0 0 ζ ⊥

⋅ u 0, (15)

where ζ ∥ and ζ ⊥ are respectively the components of the response function in the directions 

parallel and perpendicular to n . Their general form is provided in Appendix A (equations 46 

and 47) together with its singularities and Taylor expansion around the isotropy point.

The influence of the parameter α1
∗ in the response function has been shown to be weak 

compared to that of the other coefficients26, and its value has been measured to be very 

small for many nematic materials43–47. Thus, we focus on the limit case α1
∗ 0, for which 

the principal components of the response function are defined by

sζ ∥
α1

∗ 0
=

4πa(Gc − Gb)

G
c

G
b

arctan G
c

G
b

− 1

G
c

G
b

− 1
− 1

, (16)

sζ ⊥
α1

∗ 0
=

8πa(Gc − Gb)

1 −
arctan G

c
G

b
− 1

G
c

G
b

− 1
+

G
c

− G
b

G
a

arctan G
c

G
a

− 1

G
c

G
a

− 1

, (17)

which exclusively depend on the three generalized Miesowicz shear moduli.
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2.3 Particle-Particle Hydrodynamic Interactions in a Nematic Complex Fluid

Consider two distant particles denoted α and β, embedded in a nematic complex fluid as 

shown in Fig. 2, where aα and aβ represent the particle radii, r
α, β

 is the vector that connects 

the center of the particles, and r
α, β

≫ a
α
, aβ.

When particle β moves with velocity ν
β

0
 it displaces the fluid around itself and induces a 

velocity

ν α, β

I

=
�
‒‒

⋅ ζ
‒‒

8π
⋅ ν β

0
(18)

on particle α. Contrary to the isotropic case, the induced velocity depends not only on the 

distance between particles, ∣ r
α, β

∣, but also on the orientation of r
α, β

 with respect to the 

nematic director. Up to first order, the induced velocity will create an additional drag force 

on particle α,

F α = − ζ
‒‒

⋅ ν α

0
+

�
‒‒

8π
⋅ ζ

‒‒
⋅ ν β

0
. (19)

Reciprocally, the total velocity of particle α is

ν α = − ζ
‒‒−1

⋅ F α

0
−

�
‒‒

8π
⋅ F β

0
. (20)

The dependence between the velocities and drag forces of both particles can be expressed in 

matrix form38 as

F α

‐−‐

F β

= − ℒ
‒‒

⋅

ν α

‐−‐

ν β

, (21)

where ℒ
‒‒

( r ; s) is the multiparticle resistance tensor and its inverse is the multiparticle 

mobility tensor. When the two particles are far apart from each other their long range 

interaction is very weak, and each particle’s self-induced drag force dominates over their 

mutually-induced force. In that case, the resistance and mobility tensors up to first order 

become
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ℒ
‒‒

≈
ζ
‒‒

ζ
‒‒

⋅ �
‒‒

⋅ ζ
‒‒

8π

ζ
‒‒

⋅ �
‒‒

⋅ ζ
‒‒

8π ζ
‒‒

(22)

and

ℒ
‒‒ −1

≈
ζ
‒‒−1

�
‒‒

8π

�
‒‒

8π ζ
‒‒−1

. (23)

This result is essential to derive D2PTM fonnulae in §2.5 below. To this end, it is necessary 

to transform the Fourier expressions (10)–(11) of the Green’s function back into the physical 

domain. For a nematic fluid, it is sufficient to obtain the inverse transform particularized at z 
= 0 due to the axial symmetry of the nematic configuration. To exploit this symmetry, we 

work on the plane defined by n  and r
α, β

 and apply a simple rotation of the coordinate 

system to transform this plane into z = 0. The general form �(x, y, z = 0) is given in 

Appendix B (equations 58–63), along with its singularities and Taylor expansion around the 

isotropy condition. In the limit α1
∗ 0, the components of the Green’s function are

�11
s z = 0

α1
∗ 0

=
2

Gb − Gc

1

x
2 + y

2
−

Gc

Gb

1

x
2 +

G
c

G
b

y
2

, (24)

�12
s z = 0

α1
∗ 0

=
2

Gb − Gc

x

y

−1

x
2 + y

2
+

1

x
2 +

G
c

G
b

y
2

, (25)

�22
s z = 0

α1
∗ 0

=
2

Gb − Gc

x
2

y
2

1

x
2 + y

2
−

Gb

Gc

1

x
2 +

G
c

G
b

y
2

+
1

x
2

Gb

Gc

− 1 x
2 +

Gc

Ga

y
2 ,

(26)
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�33
s z = 0

α1
∗ 0

=
2

Gb − Gc

1

y
2 − x

2 + y
2 +

Gb

Gc

x
2 +

Gc

Gb

y
2

−
Gb

Gc

− 1
x

2

x
2 +

G
c

G
a

y
2

.

(27)

2.4 Directional One-Point Particle Tracking Microrheology: An 

Undetermined Problem

The Einstein relation between the one-dimensional mean squared displacements (MSD) of a 

particle undergoing Brownian motion and its hydrodynamic drag is

ζ =
2kBT

s
2

Δx(0), Δx (s)
, (28)

where kB is the Boltzmann constant, T the temperature and Δx(0), Δx (s)  the Laplace 

transform of the MSD4,48. Using the results derived in §2.1–2.2, this Einstein equation can 

be adapted to describe the motion of a particle embedded in a nematic complex fluid.

In the principal directions defined by n  and its orthogonal plane, the response function 

tensor is diagonal (see equation 15). Thus, the MSD measured in these principal directions 

are independent of each other (zero cross-correlation) and equation (28) can be applied 

separately along each principal direction12,20,21, yielding

6πaGeff, ∥ = sζ ∥ =
2kBT

s Δx∥(0), Δx∥(s)
, (29)

6πaGeff, ⊥ = sζ ⊥ =
2kBT

s Δx⊥(0), Δx⊥(s)
. (30)

However, it is important to note that these two equations together with (16)–(17), are not 

sufficient to determine the three Miesowicz shear moduli G
a
, G

b
 and G

c
26. The next section 

shows that analyzing the correlated motion of pairs of distant particles resolves this 

indetermination.
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2.5 Directional Two-Point Particle Tracking Microrheology

Consider two distant particles whose coordinates and velocity components are represented 

by xα,i and vα,i in a Cartesian coordinate system with its x1 = x∥ direction parallel to n , its 

x2 = x⊥ direction contained in the plane defined by the two particles and n , and the x3 = z 

direction perpendicular to said plane (see Fig. 2). The two particles are thus contained in the 

plane z = 0 and equations (24)–(27) hold. Following Squires and Mason38, we obtain that

Δxα, i(0), Δx β, j(s) =
2kBT

s
2 ℒ

−1
( r α, β; s)

i, j
, (31)

where ℒ
‒‒

( r ; s) is the multiparticle resistance tensor derived in §2.3, whose inverse is given in 

equation (23). The upper left and lower right blocks of (23) provide the one-point directional 

PTM fonnula derived by Gómez-González and del Álamo26 (summarized in §2.4). The off-

diagonal blocks of the tensor provide the two-point formulae

Δxα, i(0), Δx β, j(s) =
kBT

4πs
2�ij, α ≠ β . (32)

This symmetric tensor relation offers six equations for G
a
, G

b
 and G

c
 but these equations are 

not linearly independent. The tensorial incompressibility condition ∇ ⋅ � = 0  establishes 

three constraints on the elements of �
ij
, effectively reducing the number of independent 

equations in (32) to three.

In the ideal experimental scenario where one could measure 3D particle displacements as a 

function of time, it would be convenient to use the diagonal equations of (32) to calculate the 

Miesowicz shear moduli from the measured two-point mobility tensor. However, typical 

experiments only provide accurate measurements of 2D particle displacements. In this 

scenario, it is still possible to calculate the three Miesowicz shear moduli from the equations 

corresponding to �11, �12 and �22, but it is advisable to precondition the equations as 

described below to minimize numerical error.

The cross-correlated displacements in the left hand side of (32) have very low values due to 

the low energy and long range of the particle-particle interactions. Thus, it is necessary to 

compile averages over a large number of particle pairs to obtain statistically meaningful 

results. But since �
ij

∼ r
α, β
−1 , the averaging procedure converges faster if equation (32) is 

renormalized by rα,β. Additionally, �12 is typically much smaller than �11 and �22, which 

can lead to numerical errors when jointly solving the three equations. Considering that 

�12 ∼ x (y x
2 + y

2), we use this factor to renormalize the corresponding equation. The 

resulting system of equations for the calculation of the Miesowicz shear moduli is
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∑
α, β

rα, β Δxα, ∥(0), Δx β, ∥(s) =
kBT

4πs
2 ⋅ ∑

α, β

rα, β�11( r ; s), (33)

∑
α, β

y

x
rα, β Δxα, ∥(0), Δx β, ⊥(s) =

kBT

4πs
2 ⋅ ∑

α, β

y

x
rα, β�12( r ; s), (34)

∑
α, β

rα, β Δxα, ⊥(0), Δx β, ⊥(s) =
kBT

4πs
2 ⋅ ∑

α, β

rα, β�22( r ; s), (35)

where α and β represent every possible particle pair in the experimental domain. Equations 

(33)–(35) form a non-linear system that must be solved iteratively for each Laplace 

frequency. In this system, kB is a physical constant, s is a parameter of the problem, while T, 

r
α, β

 and Δxi,j are experimental measurements, and �
i, j

 are provided by equations (24)–

(27). Once the experimental measurements are defined, the only three unknowns of the 

problem are �
a
, �

b
 and �

c
.

Fig. 3 presents a flow chart summarizing the D2PTM analysis. We first track the embedded 

probing particles in two orthogonal directions x and y that define a plane containing the 

director of the fluid, n . We then calculate the ensemble averaged MSD, i.e. ⟨Δx2(τ)⟩, 
⟨Δy2(τ)⟩ and ⟨Δx, Δy(τ)⟩. From these data, we calculate their principal directions x∥ and x⊥, 

i.e. the two orthogonal directions where the cross-MSD term ⟨Δx∥, Δx⊥(τ)⟩ is zero (down to 

experimental error). Then, we calculate the two-point MSD of each particle pair in principal 

directions and solve equations (33)–(35) to obtain the values of �
a
(s), �

b
(s) and �

c
(s).

3 Materials and Methods

3.1 Experimental Methods

3.1.1 Sample preparation

3.1.1.1 Nematic F-actin solutions:  F-actin samples were prepared following well-

established protocols21,49. Preformed actin filaments from rabbit skeletal muscle were 

purchased from Cytoskeleton, Inc. (Denver, CO). This F-actin mixture was diluted in Milli-

Q water at room temperature to a concentration of 0.4 mg/ml. The resulting F-actin solution 

contained 5 mM Tris HC1 pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 2 mM MgCl2 and 5% (w/v) 

sucrose. The samples were incubated for 10 minutes at room temperature, allowing the 

filaments to completely dissociate from each other. In order to protect the samples from 

bacterial growth, ampicillin was added to a final concentration of 100 μg/ml. The salt 

concentration of the buffer produces an average filament length of 8 μm, which is 

substantially smaller than the persistence length of F-actin, ξp ~ 20 μm50. Thus, the actin 
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filaments in our experiments can be safely assumed to be straight. To induce the nematic 

transition of the samples, the F-actin concentration was increased to 4 mg/ml while keeping 

constant the salt concentration and filament length by dialyzing the sample, i.e. the sample 

was centrifuged at 2,000 g and 19°C in an Amicon Ultra-4 Centrifugal Filter Unit (EMD 

Millipore, Billerica, MA) until the target concentration was reached. The protein 

concentration was monitored using a spectrophotometer to measure the absorbance at 650 

nm.

Carboxylate modified red latex beads with 0.5 μm nominal diameter (Fluospheres, 

Invitrogen, Carlsbad CA) were diluted in the supernatant solution and then added to the 

protein solution. The surface chemistry of the probing particles is not determinant for the 

experiments, given that the near-field effects are negligible for the two-point particle 

tracking microrheology experiments. Likewise, the particle size is also not important, as 

long as the interparticle separation is much larger than the particle radii17. The protein 

solution with beads was stored at 4°C for no longer than a week. Rectangular capillary tubes 

with internal dimensions 0.1 mm × 1 mm × 50 mm (VitroCom, Mountain Lakes, NJ) were 

filled through capillarity with the protein solution. The filling flow provides enough shear to 

align the F-actin filaments parallel to the capillary axis (Fig. 11a and ref.21). The tubes were 

sealed with two-component epoxy resin to avoid evaporation and internal currents, and 

attached to a microscope glass slide. The samples were kept at room temperature for at least 

2 hours to reach thermal equilibrium in preparation for imaging.

3.1.1.2 Disodium cromoglycate nematic liquid crystal:  Following the protocol outlined 

in51,52, 14%wt and 16%wt samples of DSCG in water were prepared. They were mixed for 

12 hours to ensure proper dissolution. Prior to the experiments, they were heated for about 

15 minutes to 65°C, above their isotropic to nematic transition, to ensure that any residual 

nematic alignment was eliminated. After cooling the samples to the experimental 

temperature, i.e. 21°C, 0.2 μm diameter fluorescent spheres were injected and the samples 

were inserted in the imaging chambers, as described in §3.1.1.1.

3.1.2 Microscopy and Image Processing—Fluorescent light image sequences of the 

samples were captured at 50 Hz, during 100-300 seconds, using a Feica DMI6000 B 

inverted microscope (Leica Microsystems, Inc., Buffalo Grove, IL), equipped with a Zyla 

4.2 sCMOS camera (Andor Technology Ftd., Belfast, UK) and a 63X oil immersion 

objective lens, and mounted on a Micro-g 63-543 optical air table (TMC - AMETEK, Inc.) 

that damped vibrations. The imaging setup was controlled by the open source microscopy 

software Micro-Manager 53–55.

The centers of the fluorescent particles were tracked by implementing a previously reported 

algorithm56 that we validated for Newtonian fluids (see Appendix E). From the trajectories 

of the particles, we calculated the one-point MSD in the directions parallel and 

perpendicular to n , and the two-point cross-MSD for pairs of distant particles. Fig. 4 shows 

particle trajectories obtained in a typical experiment. We then analyzed the cross-MSD as 

described in §2.5 to determine the directional shear moduli of the F-actin solution (see Fig. 

3). A total of 20 F-actin samples were analyzed. For each sample, images from different 

Gómez-González and del Álamo Page 13

Soft Matter. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regions were taken, capturing the motion of 2 to 10 particles in each image, for a total of 

2,346 particles and 6,105 particle pairs.

3.2 Numerical Methods

3.2.1 Brownian Motion Simulations—For validation purposes, we performed 

numerical simulations of particle Brownian motion in viscoelastic nematic fluids. In these 

simulations, we prescribed the Miesowicz shear moduli using a Kelvin-Voigt model 

G
k

= μ
k

+ s ⋅ η
k
 with constant μk and ηk. The Brownian motion experienced by each particle 

was defined as a Gaussian process with average and autocorrelation consistent with the 

fluctuation-dissipation theorem57,58:

νx(t) = νy(t) = νz(t) = 0, (36)

νx(t), νx(t + τ) = ℒ−1 2kBT

ms + ζ ∥(s)
; s τ , (37)

νy(t), νy(t + τ) = νz(t), νz(t + τ) =

= ℒ−1 2kBT

ms + ζ ⊥(s)
; s τ ,

(38)

where ℒ−1( ⋅ ; s t) represents the inverse Laplace transform. Since the particles are small, 

we assumed that inertial forces were negligible compared with the hydrodynamic forces 

acting on them, i.e. ms ≪ ζ
j
(s). This assumption has been shown to be valid for the 

frequencies accessible to PTM experiments 15,26.

By virtue of the central limit theorem, it can be shown that equations (36), (37) and (38) 

describe three multivariate normal distributions, one for the velocity in each direction59. 

Each distribution was completely defined by a zero average vector and a covariance matrix 

Σ∥ or Σ⊥ with components

Σ ∥ , kl = 2kBT ⋅ ℒ−1
ζ ∥

−1
(s); s τ

τ = t
k

− t
l

, (39)

Σ ⊥ , kl = 2kBT ⋅ ℒ−1
ζ ⊥

−1
(s); s τ

τ = t
k

− t
l

. (40)
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We prescribed fixed values for μa, μb, μc, and ηa ηb, ηc, and calculated the covariance 

matrices(39) and (40). The time distribution of velocities for each particle, ν
α
0(t), is drawn 

from a Multivariate Random Number generator. Fig. 5 shows the parallel and perpendicular 

covariance kernels calculated from (39)–(40) for μa = 0.5 Pa, μb = 0.01 Pa, μc = 1 Pa and ηa 
= ηb = ηc = 0.1 Pa·s, compared to the ensemble-averaged autocorrelation of the random 

velocity samples for 10,000 time steps and 3,325 particles. The plot shows that the 

autocorrelation closely follows the prescribed covariance kernels, indicating that the 

simulation procedures are self-consistent.

In each simulation we considered five particles initially located at a distance higher than ten 

radii from each other. This configuration is representative of the experiments presented in 

§5. From the simulated Brownian motion of the particles, we calculated the hydrodynamic 

interactions between pairs of particles as described in §2.3. The computation of these 

interactions was accelerated by exploiting the fact that the jumps in particle position are 

negligible compared to the inter-particle distance, which allowed us to assume constant r (s). 

Thus, for each pair of particles, it was necessary to evaluate the Green’s functions only once 

(24)–(26) to calculate the induced velocity from (18).

After the hydrodynamic interactions are calculated, the velocity of each particle is obtained 

as the sum of its own Brownian motion and the particle-particle interaction terms,

ν α = ν α

0
+ ∑

∀β ≠ α

ν α, β

I

. (41)

The final step of the simulation is to calculate the particle trajectories by integrating in time 

their velocity vector.

All the analysis and simulation tools were written in the general-purpose programming 

language Python60 using the numerical and scientific packages Numpy61 and Scipy62, and 

the plotting library Matplotlib63. The most computationally intensive functions were 

compiled in C by using Cython64, and sped up by using Memoryview objects and the linear 

algebra module Ceygen65. A key step of the simulations is to calculate direct and inverse 

Laplace transforms. The numerical implementation of these transforms is explained in 

§3.2.2 below.

Fig. 6(a) shows the random evolution of the velocity of a representative particle in the ∥ and 

⊥ directions. The blue and red lines represent respectively the total velocity of the particle 

and the velocity induced by its four neighboring particles. The particle-particle interaction is 

a weak higher-order effect, and the total influence of the four neighbouring particles is 

smaller than the Brownian particle velocity. Fig. 6(b) shows the trajectories of the five 

particles in the same simulation. As noted above the inter-particle distance is much greater 

than the particle displacement, which justifies our assumption of constant particle-particle 

separation in the calculation of the Green’s functions (24)–(26). The inset of Fig. 6(b) zooms 

into the trajectory of one particle, whose envelope is an ellipse with its major axis aligned 
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along the nematic, consistent with the anisotropic rheological properties of the simulated 

fluid.

3.2.2 Numerical implementation of Laplace transforms—Laplace transforms 

were calculated using the Fast Laplace Transform (FLT) approach66. The FLT is based on 

the observation that the complex Laplace frequency s is related to the Fourier frequency ω as 

s = c + iω, so that the Laplace transform can be calculated by using the coefficients of the 

Fast Fourier Transform. We used an efficient implementation of the Fast Fourier Transform 

called the FFTW67,68. The accuracy of the FLT was characterized as a function of the free 

frequency parameter c66, being c = 4π/T the optimal value, which we employed throughout 

the simulations. We found the errors introduced by the FLT for the specific data of our 

simulations to be ~ 10−6%69. We dismissed the implementation of an improved Talbot 

approximation to the Inverse Laplace Transform70–72 because, while it would provide a 

smoother result, it is singular at τ = 0.

4 Validation of D2PTM

In order to assess the feasibility and accuracy of D2PTM, we applied this new technique to 

measure the directional viscosities of a lyotropic chromonic nematic liquid crystal73, and 

compared the results with reference values available in the literature52. Existing methods to 

measure the anisotropic rheology of liquid crystals typically assume constant viscosity 

coefficients. However, other complex fluids may exhibit nontrivial frequency dependence in 

their shear moduli, with both elastic and viscous components. In order to assess the capacity 

of D2PTM to capture these effects in nematic fluids, we also tested this technique in 

numerically simulated directional viscoelastic gels.

4.1 D2PTM of a lyotropic nematic liquid crystal

Water based liquid crystals such as disodium cromoglycate (DSCG)52,73 are a convenient 

benchmark for D2PTM since the probing microparticles are easily available as a water 

suspension. DSCG is a lyotropic chromonic nematic liquid crystal that has recently sparked 

attention due to its biocompatibility51 and other interesting properties74. We chose DSCG 

because its directional viscosity coefficients were previously characterized by means other 

than D2PTM. Zhou et al.52 measured the twist viscosity (ηtwist) of DSCG, as well as its 

splay (ηsplay) and bend (ηbend) viscosities. These coefficients can be used to calculate two of 

the Miesowicz viscosities measured by D2PTM, namely ηb, and ηc 33, by solving the 

equations:

ηsplay = ηtwist − α3
2

ηb, (42)

ηtwist = α3 − α2, (43)
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ηbend = ηtwist − α2
2

ηc, (44)

ηb − ηc = α2 + α3 . (45)

Table 1 displays the values of ηb and ηc calculated from by Zhou et al. ‘s measurements for 

two DSCG concentrations (14 wt% and 16 wt%). We prepared DSCG samples at these two 

concentrations as detailed in §3.1.1.2, and particle motion was imaged as explained in 

§3.1.2. Then, the motions of the probing particles were analyzed following our new D2PTM 

protocol, which is described in §2.5.

Fig. 7(a) shows the principal MSDs measured for probing microparticles immersed in a 

nematic 16 wt% DSCG solution. Due to the dominantly viscous nature of this fluid, the 

MSDs vary ahnost linearly with τ and the curves have a roughly unit slope for τ < 1000s. 

However, the slopes are not exactly one, and they are different along different directions, 

suggesting that the DSCG is, as expected, not completely viscous. Anyhow, given that there 

is not data available in the literature to compare with the measurement of the elastic response 

of the DSCG solutions, we will only regard the viscous part of its directional shear moduli. 

At longer time scales, the MSDs manifested a departure from linear slope, probably due to 

incomplete statistical convergence. Consistent with this explanation, the standard deviation 

of the MSDs increased significantly for τ > 100s, and we observed a similar long-time 

behavior for additional validation experiments performed in a Newtownian isotropic fluid 

(see Fig. 17 in Appendix E).

Fig. 7(b) displays the two-particle MSDs. The dependence of these data on τ is similar to 

that of their one-point counterparts and, as we had anticipated, the noise content of the cross-

directional MSD (i.e. ∥–⊥) is higher. Also as expected, the renormalization proposed in 

(33)–(35) makes the values of the different two-point and one-point MSD components 

comparable to each other. We also measured one- and two-point MSDs of particles 

immersed in 14% wt DSCG (see Fig. 15 in Appendix D.1), and obtained qualitatively 

similar results. The Miesowicz viscosity coefficients obtained by D2PTM from our two-

particle cross-MSD measurements are shown in Table 1. The results are in good agreent with 

those obtained from Zhou et al. ‘s 52 data for both the two DSCG concentrations that we 

considered in our experiments (14% and 16%). As a reference, we also include the 

directional effective friction coefficients that are obtained by analyzing the motion of single 

particles embedded in DSCG.

4.2 Validation of D2PTM by Numerical Simulation

To provide further validation of D2PTM, we simulated the Brownian motion of particles 

embedded in a nematic viscoelastic fluid of known Miesowicz viscoelasticity coefficients, 

including the particle-particle hydrodynamic interaction. The simulation procedures are 

detailed in §3.2.1 above. We then analyzed the simulated particle trajectories as described in 
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§2.5, and compared the shear moduli values obtained from this analysis with those initially 

prescribed in the Brownian motion simulation.

To determine the mean square displacement tensor, we simulated the trajectories of 200 

particle groups each containing 5 particles (i.e. 2,000 particle pairs). For consistency, we 

considered the same nematic Kelvin-Voigt fluid with μa = 0.5 Pa, μb = 0.01 Pa, μc = 1 Pa and 

ηa = ηb = ηc = 0.1 Pa·s used to illustrate the simulation methodology in Figs. 5 and 6. The 

directional one-point MSD of the simulated particles are plotted in Fig. 8(a) in principal 

directions of the fluid. Due to the particular choice of parameters for the Kelvin-Voigt 

model, these MSD have a characteristic shape. At low values of τ, the MSD are dominated 

by the high-frequency viscous response of the fluid and thus increase linearly with τ. 

Furthermore, since we prescribed the same value for ηa, ηb, and ηc, at short τ the MSD are 

isotropic (i.e. Δx∥
2 = Δx⊥

2 ). In contrast with this behavior, the MSD are dominated by the 

low-frequency elastic response of the fluid at high values of τ, thereby reaching a plateau. 

Additionally, since we prescribed different values for μa, μb and μc, the MSD are different 

along different directions. Of note, the simulated MSD ratio Δx∥
2 Δx⊥

2  is non-trivially 

related to the ratios between the three shear moduli, consistent with the idea that the 

effective shear moduli obtained from eqs. (29)–(30) do not reflect the material viscosities of 

a nematic complex fluid4,26.

Fig. 8(b) displays the two-point MSD of the simulated 2,000 particle pairs. Using these data 

as inputs, we solved equations (33)–(35) to determine the three Miesowicz complex shear 

moduli. Fig. 9 shows the loss (panel a) and storage (panel b) components of the complex 

moduli recovered from the simulated trajectories, together with the functional forms of these 

parameters initially prescribed in our simulations. The agreement between recovered and 

prescribed moduli is excellent for the whole range of frequencies considered. A similarly 

good agreement between prescribed and recovered shear moduli is found for different 

combinations of viscoelastic parameters (see Appendix D.2 for an additional example).

Together with the liquid crystal experiments presented above, these simulations suggest that 

D2PTM can be used to accurately determine the rheological properties of nematic complex 

fluids from measurements of particle trajectories.

5 Experimental Application of D2PTM to nematic F-actin solutions

This section illustrates the experimental application of D2PTM to characterize the 

rheological properties of a nematic complex fluid formed by a solution of filamentous actin 

(F-actin). Actin is the most abundant cytoskeletal protein in eukaryotic cells, and forms 

elongated fibers that can display nematic ordering and anisotropic rheology12,21.

The qualitative anisotropic rheology of nematic F-actin solutions can be observed by 

plotting the histograms of the tracked particle jumps in the directions parallel and 

perpendicular to n , P[Δx∥(Δt)] and P[Δx⊥ (Δt)] (see ref.21 and Fig. 10). Both histograms 

have similar skewness (S) and kurtosis (K) coefficients, namely S∥ = −2.4 × 10−3, K∥ = 3.25, 

and S⊥ = 9 × 10−4, K⊥ = 3.22. These values are also approximately consistent with a 

Normal distribution (S = 0, K = 3). The widths of these histograms are however markedly 
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different, indicating that particle mobility is anisotropic. The nematic director of the F-actin 

solution has been shown to align with the direction of highest mobility of the probing 

particles 21. Thus, we define the ∥ direction as the principal direction of maximal mobility in 

our experiments, and the ⊥ direction as the orthogonal direction corresponding to minimal 

mobility. This assignment is confirmed by Fig. 11(a), which shows one-point MSD of the 

tracked particles along the axis of the capillary tube (x direction), the orthogonal direction 

(y), and the principal ∥ and ⊥ directions determined by diagonalizing the MSD tensor. The 

data shows that the MSD in the x and y directions respectively agree with the MSD in the ∥ 
and ⊥ directions, implying that the actin fibers were successfully aligned parallel to the 

capillary axis during sample preparation.

As expected, the MSD curves in Fig. 11(a) have slopes between 0 and 1, suggesting that the 

rheology of the F-actin solutions was neither purely elastic nor purely viscous in the range of 

time scales considered. The MSD ratio Δx∥
2 Δx⊥

2 , shown in the inset of Fig. 11(a), 

ranges between 2 at low values of τ and 4 at high τ values, confirming the anisotropic 

behavior observed in the histograms of Fig. 10. Overall, these one-point MSD are in fair 

agreement with previously reported data21.

The two-point directional MSD of the 6,105 tracked particle pairs are plotted in Fig. 11(b), 

expressed in principal directions and normalized as indicated in (33)–(35). The D2PTM 

analysis of the two-point MSD allowed us to calculate the complex shear moduli of the 

nematic F-actin solutions from our experimental measurements. These shear moduli are 

plotted in Fig. 12 as a function of frequency. As stated above, the inter-particle interactions 

are much weaker than the single particle thermal fluctuations, particularly the cross-

direction component ⟨Δx∥,α, Δx⊥,β⟩ (see Fig. 11 b). As such, they are more prone to 

experimental noise, and a larger number of observations are needed in order to attain 

statistical convergence. Hence, in the results shown in Fig. 12 we have kept only the two 

highest frequency decades. Since Brownian motion is ergodic, the number of independent 

experimental observations increases linearly with ω, and statistical convergence improves 

for higher frequencies.

For the range of frequencies considered, the smallest moduli are G
c
′  and G

c
″. We also observe 

that G
a
′ > G

b
′  for all frequencies. On the other hand, G

b
″ > G

a
″ for high frequencies while the 

opposite happens for low frequencies. Notably, the loss moduli G
b
″ and G

c
″ monotonically 

increase with the frequency, with a slope that denotes a viscous-like behaviour. On the other 

hand, G
a
″ varies more slowly with frequency, implying a more intricate viscoelastic 

behaviour.

To facilitate the interpretation of these results. Fig. 13 replots the Miesowicz moduli as G∥ = 

Gb, G⊥ = Ga and GΔ = Gc — Ga, based on the form of the equations of motion (3)–(5). In 

this representation, G∥ and G⊥ reflect the anisotropy in the strain-stress relationship, while 

GΔ indicates the bending resistance with respect to n 26. The data suggest that fluctuations 

perpendicular to the nematic likely generate distortions of the F-actin fibers including fiber 

bending, which trigger an elastic-like response, i.e. the storage components of G⊥ and GΔ 
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are dominant. Conversely, fluctuations parallel to the nematic generate a viscous response 

dominated by G∥″, and likely caused by filament-solvent sliding.

The anisotropic rheology of a nematic complex fluid can be fully characterized by one-point 

microrheology only in two particular pseudo-isotropic cases 26 in which the number of 

independent Miesowicz shear moduli is reduced to two. These cases are Ga = Gb, which 

corresponds with isotropic momentum diffusivity (G∥ = G⊥), and Ga = Gc, which 

corresponds with zero resistance to bending (GΔ = 0). Our experimental results indicate that 

neither of these conditions are satisfied for nematic F-actin solutions. Fig. 13 compares the 

shear moduli obtained by D2PTM with the effective moduli obtained by one-point 

directional PTM, Geff,∥ and Geff,⊥ (equations 29–30 and refs.12,20,21). Apart from the 

obvious differences in magnitude, there is a number of notable qualitative differences 

between the effective one-point moduli and actual two-point ones. We observe that ∣GΔ∣ ~ 

∣G⊥∣ suggesting that the response to nematic bending, which cannot be captured by one-

point PTM, makes an important contribution to the microrheology of nematic F-actin 

solutions. More importantly, the one-point data would suggest that Geff, ∥″ < Geff, ⊥″  despite 

that G∥″ > G⊥″  (Fig. 13a), implying that one-point PTM may fail to identify the direction of 

maximum viscosity in nematic complex fluids. Additionally, one-point PTM underestimates 

G⊥′  while it overestimates G∥′  (Fig. 13b), thus severely underpredicting the level of 

anisotropy in the elastic response of nematic F-actin solutions.

6 Discussion and Conclusion

Soft viscoelastic materials often exhibit microstructural alignment along a common direction 

leading to anisotropic rheological properties. Liquid crystals75, nematic viscoelastomers76, 

the cell cytoplasm12,77, and the extracellular matrix78 are examples of nematic soft 

materials. For small distortions of the nematic direction field (i.e. low Ericksen number 

limit), the anisotropic rheology of nematic complex fluids can be approximately described 

by three frequency-dependent Miesowicz complex shear moduli26,79,80. These coefficients 

can be macroscopically measured by subjecting the sample to simple shear in different 

geometrical configurations81,82, by propagating ultrasound waves or electromagnetic fields, 

and by light scattering techniques83. However, there is a lack of microscopic methods to 

characterize the rheological properties of nematic complex fluids. This paper introduces a 

novel particle tracking microrheology method to address this limitation: directional two-

point particle tracking microrheology (D2PTM). Compared to existing macroscopic 

methods, D2PTM can be applied to minute samples and involves a simple experimental 

setup.

The theoretical foundation of D2PTM is established by extending previous analyses of 

nematic flow around a microrheological probe26. We determine the mutual hydrodynamic 

interactions between pairs of distant particles immersed in a nematic complex fluid, and we 

use this knowledge to generalize two-point particle-tracking microrheology17 to these soft 

materials. This new analysis allows for calculating the three Miesowicz shear moduli from 

the measured cross-MSD of particle pairs. Further work would be needed to extend this 

derivation to smectic or cholesteric phases.

Gómez-González and del Álamo Page 20

Soft Matter. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to experimentally validate D2PTM, we applied this new technique to disodium 

cromoglycate (DSCG), a lyotropic nematic liquid crystal whose directional viscosity 

coefficients were recently measured by dynamic light scattering methods52. These validation 

experiments suggest that D2PTM measurements agree well with measurements from 

previous methods. D2PTM was validated further by simulating the Brownian motion of 

spheres embedded in a nematic complex fluid with prescribed frequency-dependent 

Miesowicz shear moduli. We then applied the D2PTM analysis to the trajectories of the 

particles and recover the Miesowicz moduli, which resulted to be in close agreement with 

the prescribed ones.

To demonstrate the experimental application of D2PTM to nematic complex fluids with 

viscoelastic anisotropic rheology, we perform particle-tracking experiments on F-actin 

solutions where the actin filaments are aligned by flow shear. The one-point statistics of 

particle motion obtained in our experiments are consistent with those previously reported for 

similar F-actin solutions21. Moreover, D2PTM provides direct information about the 

microstructure of the material that is not accessible from one-point measurements of particle 

mobility. Specifically, we observed that the microrheological response of F-actin solutions is 

predominantly viscous in the direction parallel to n  probably due to filament-solvent 

sliding, while their response is predominantly elastic in the perpendicular direction due to 

fiber distortions and fiber bending. This two-point analysis of particle trajectories revealed 

important differences between the true material shear moduli of nematic F-actin solutions, 

and the so-called effective shear moduli derived by previous one-point analyses12,20,21. In 

addition to not being able to capture the rotational shear modulus of the nematic, one-point 

PTM may incorrectly determine the direction of maximum viscosity in nematic F-actin 

solutions, and may underestimate the anisotropy in their elastic response. Therefore, further 

experimental studies on the relation between the microstructure of F-actin and other 

viscoelastic nematic solutions and their micro- and macroscopic mechanics will greatly 

benefit from D2PTM.

Because hydrodynamic interactions between distant particles are weak, two-point PTM 

typically requires a large number of particle tracks in order to achieve statistically converged 

measurements of cross-correlated particle motion. D2PTM is no exception to this rule, 

especially for the cross-correlation of particle motion along orthogonal directions (e.g. 
motion of particle α in ∥ direction with motion of particle β in ⊥ direction, see Figs. 7b,8b 
and 11b). However, proper normalization of the D2PTM equations (33)–(35) can 

significantly accelerate statistical convergence. Our experiments provide a quantification of 

the standard deviation of cross-MSD and shear modulus measurements in D2PTM 

experiments. This quantification could be used in designing future experiments to estimate 

the number of particle pairs necessary to achieve a given error in the estimation of a 

sample’s mean shear moduli (i.e. the standard error). In the case of our 16 wt%-DSCG, 14 

wt%-DSCG and F-actin experiments with 3,315, 816 and 6,105 particle pairs respectively, 

the errors in the samples’ mean shear moduli are expected to be negligible.

The theoretical framework employed here to develop D2PTM is based on a number of 

simplifications that could potentially limit the applicability of this new microrheology 

technique. Specifically, we work with a continuum incompressible formulation that assumes 

Gómez-González and del Álamo Page 21

Soft Matter. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



small deformations. Thus, the accuracy of D2PTM is expected to deteriorate in experiments 

that cause large deformations, for strongly non-linear materials, and for materials that are 

heterogeneous at the length scale of the distance between particle pairs. It is important to 

note, however, that these simplifications are common to most if not all existing PTM 

methods4. For materials that are partially compressible84, the Poisson’s ratio should be taken 

into consideration and the theoretical framework should be modified following an approach 

similar to that of Levine and Lubensky15.

An additional important simplification made in this work is that the orientation of the 

nematic director remains uniform over the length scale of the inter-particle distance. This 

assumption is reasonable in the present experiments. Actin filaments are externally aligned 

as part of the sample preparation, and their persistence length ξp is approximately twice their 

total length and 80 times the particle radius. The assumption of uniform nematic orientation 

can be particularly delicate in the vicinity of the particle due to surface effects85. Likewise, 

when probing polymer solutions with ξp ≫ a the particle may alter the local orientation of 

filaments near itself86. However, these near-field effects have a negligible influence on the 

hydrodynamic interaction of pairs of distant particles, and thus the ability of D2PTM to 

quantify the bulk response of the fluid remains largely unaffected15. Furthermore, D2PTM is 

robust with respect to errors in the direction of the nematic director (see Appendix C).

Distortions of the nematic orientation could be incorporated into the D2PTM analysis by 

considering static non-uniform nematic fields that include defects near the particle surface79. 

Alternatively, the dynamics of the nematic director could be solved taking into account its 

Frank elasticity constants87, or using the Poisson-bracket approach88. Nonetheless, these 

refinements would introduce additional material parameters unknown a priori, and a two-

particle protocol would be insufficient to determine these new parameters together with the 

Miesowicz shear moduli.

In conclusion, we have developed a new directional two-point particle tracking 

microrheology method (D2PTM) that provides important new information about the 

anisotropic viscoelastic response of nematic complex fluids, which had been unaccessible to 

currently available microrheology techniques.

A Single-particle response function

This appendix provides the general form of the components of the response function (15) of 

a particle of radius a moving in a directional complex fluid, calculated from the integral (12) 

making use of equations (10)–(11). The singularities of the response function and its Taylor 

expansion around the isotropy point are also presented.

The components of the response function of nematic complex fluid with general values of 

the shear moduli α1
∗, G

a
, G

b
, and G

c
 are

Gómez-González and del Álamo Page 22

Soft Matter. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sζ ∥ =
8πaGbB μ

D+ μ
arctan C+ μ

C+ μ
− D− μ

arctan C− μ

C− μ

, (46)

sζ ⊥ =

8πaGa

G
b

α1
∗

2

C− μ
8 E+ μ

E− μ

arctan G
c

G
a

− 1

G
c

G
a

− 1
+ 1

B μ

G
a

G
b

arctan C− μ

C− μ
−

arctan C+ μ

C+ μ

.
(47)

where we have used the non-dimensional functions

A( μ ) =
α1

∗ + G
c

G
b

− 1,

B( μ ) = A( μ )2 +
4α1

∗

G
b

,

C+( μ ) =
A( μ ) + B( μ )

2
,

C−( μ ) =
A( μ ) − B( μ )

2
,

D+( μ ) = A( μ ) + 2 + B( μ ),

D−( μ ) = A( μ ) + 2 − B( μ ),

E+( μ ) = A( μ )D+( μ ) − 2
G

c

G
b

− 1 ,

E−( μ ) = A( μ )D−( μ ) − 2
G

c

G
b

− 1 .

Equations (46)–(47) degenerate in the limit B( μ ) 0 , which occurs whenever

Gc

Gb

1 ±
−α1

∗

Gb

2

. (48)

In this limit, C+ → C−, D+ → D− and E+ → E−, and the expressions that determine the two 

components of the response function (46)–(47) become undefined, although solving the limit 

yields sζ ∥ = sζ ⊥ = 0. There is a change of sign of sζ ⊥ , when crossing the limit (48) along 
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the branch associated to the – sign, only when α1
∗ < − G

b
, yielding unphysical negative 

values of the response function. On the other hand, the sign of the response function does 

not change along the branch associated to the + sign.

Equations (46)–(47) are singular for α1
∗ = 0. However, the response function can be 

calculated, for a complex fluid with α1
∗ = 0, as the limit

sζ ∥
α1

∗ = 0
=

4πa(Gc − Gb)

G
c

G
b

arctan G
c

G
b

− 1

G
c

G
b

− 1
− 1

, (49)

sζ ⊥
α1

∗ = 0
=

8πa(Gc − Gb)

1 −
arctan G

c
G

b
− 1

G
c

G
b

− 1
+

G
c

− G
b

G
a

arctan G
c

G
a

− 1

G
c

G
a

− 1

. (50)

This response function depends exclusively on the three Miesowicz coefficients, G
a
, G

b
 and 

G
c
. The physical interpretation of these coefficients is represented graphically in Fig. 14.

For complex fluids that are nearly isotropic, the response function can be approximated by 

the Taylor expansion of equations (46)–(47) around α1
∗ = 0 and G

a
= G

b
= G

c
= G:

sζ ∥

6πaG
≈ 1 +

4
35

α1
∗

G
+

4
5

Gb

G
− 1 +

1
5

Gc

G
− 1 , (51)

sζ ⊥

6πaG
≈ 1 +

3
70

α1
∗

G
+

1
2

Ga

G
− 1

+
1
10

Gb

G
− 1 +

2
5

Gc

G
− 1 .

(52)

Equation (47) is also singular for G
a

= G
c
. However, it presents the limit value:
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sζ ⊥ G
a

= G
c

=

8πaGc

G
b

α1
∗

2

C−( μ )
8 E+( μ )

E−( μ )

1 + 1

B( μ )

G
c

G
b

arctan C−( μ )

C−( μ )
−

arctan C+( μ )

C+( μ )

.

(53)

Equations (49)–(50) present other singularities, for different combinations of G
a
, G

b
 and G

c
, 

with finite limits:

sζ ∥
α1

∗ = 0

G
b

= G
c

= 6πaGc, (54)

sζ ⊥
α1

∗ = 0

G
a

= G
c

=
8πa(Gc − Gb)

2 −
G

b

G
c

−
arctan G

c
G

b
− 1

G
c

G
b

− 1

, (55)

sζ ⊥
α1

∗ = 0

G
a

= G
c

=
24πa(Ga

G
a

G
c

+ 3
arctan G

c
G

a
− 1

G
c

G
a

− 1

, (56)

sζ ⊥
α1

∗ = 0

G
a

= G
b

= G
c

= 6πaGc . (57)

B Two-particle response function

This appendix provides the general form of the components of the hydrodynamic interaction 

tensor �
‒‒

( r ; s) (see equation 18) of pairs of distant particles moving in a directional complex 

fluid, calculated as the inverse Fourier transform of equations (10)–(11) when both particles 

are located in the same plane z = 0. For the sake of completeness, we also provide the 

Green’s function for the pressure, i.e. the inverse Fourier transform of (9).
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The hydrodynamic interaction tensor in a nematic complex fluid, with general values of the 

shear moduli α1
∗,G

a
, G

b
 and G

c
 , is given by

�11
s z = 0

=
2

eb

d + ex
2

c − ey
2

−
d − ex

2

c + ey
2

, (58)

�12
s z = 0

=
G21

s z = 0
=

2
eb

x

y
c + ey

2 − c − ey
2 , (59)

�13
s z = 0

=
G31

s z = 0
= 0, (60)

�22
s z = 0

=
2

Gcy
2 2 x

2 +
Gc

Ga

y
2

+
1
eb

⋅
m−

c − ey
2

−
m+

c + ey
2

,

(61)

�23
s z = 0

=
G32

s z = 0
= 0, (62)

�33
s z = 0

=
2

Gcy
2 −

2x
2

x
2 +

G
c

G
a

y
2

+
b

e
⋅

n+

c + ey
2

−
n−

c − ey
2

,

(63)

where x, y and z are the coordinates of the particle-particle separation in the Cartesian 

coordinate system defined in Fig. 2, and
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b( μ ; r ) = (α1
∗ + G

b
+ G

c
)x2

y
2 + G

b
x
4 + G

c
y
4,

c( μ ; r ) = (α1
∗ + G

b
+ G

c
)y2 + 2G

b
x
2,

d( μ ; r ) = (α1
∗ + G

b
+ G

c
)x2 + 2G

c
y
2,

e( μ ) = (α1
∗ + G

b
+ G

c
)
2

− 4G
b
G

c
,

m+( μ ; r ) = (c − G
b

x
2)(d + ex

2 − 2G
c
y
2) − 2G

b
G

c
x
2

y
2,

m−( μ ; r ) = (c − G
b

x
2)(d − ex

2 − 2G
c
y
2) − 2G

b
G

c
x
2

y
2,

n+( μ ; r ) = α1
∗ + G

b
+ G

c
+ e,

n−( μ ; r ) = α1
∗ + G

b
+ G

c
− e .

It should be noted here that all (58), (59), (61) and (63) depend on G
b
 and G

c
, while only 

(61) and (63) depend on G
a
. The Green’s function for the pressure has the form

�1 z = 0
=

2 2x

eb
3 Gc(3Gbh + ly

4)
1

c + ey
2

−
1

c − ey
2

−Gb

q−

(c + ey
2)3 2

−
q+

(c − ey
2)3 2

,

(64)

�2 z = 0
=

2 2y

eb
3 Gc(3Gbh + ly

4)
1

c + ey
2

−
1

c − ey
2

−Gb

q−

(c + ey
2)3 2

−
q+

(c − ey
2)3 2

,

(65)

�3 z = 0
= 0, (66)

where
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h( μ ; r ) = (α1
∗ − G

a
+ G

b
+ G

c
)x2

y
2 + G

b
x
4 + G

c
y
4,

l( μ ) = (α1
∗ − G

a
+ G

b
+ G

c
)(α1

∗ + G
b

+ G
c
) − 4G

b
G

c
,

p( μ ; r ) = 2G
c
y
2 (h + 2G

b
x
4)(α1

∗ + G
b

+ G
c
)

+G
c
y
2(2G

b
x
2 − G

a
y
2) ,

q+( μ ; r ) = p + G
b

x
6(G

a
m+ + 4G

b
G

c
),

q−( μ ; r ) = p + G
b

x
6(G

a
m− + 4G

b
G

c
),

For a complex fluid with α1
∗ = 0, equations (58)–(65) are simplified into:

�11
s z = 0

α1
∗ = 0

=
2

Gb − Gc

1

x
2 + y

2
−

Gc

Gb

1

x
2 +

G
c

G
b

y
2

, (67)

�12
s z = 0

α1
∗ = 0

=
2

Gb − Gc

x

y

−1

x
2 + y

2
+

1

x
2 +

G
c

G
b

y
2

, (68)

�22
s z = 0

α1
∗ = 0

=
2

Gb − Gc

x
2

y
2

−1

x
2 + y

2
−

Gb

Gc

1

x
2 +

G
c

G
b

y
2

+
1

x
2

Gb

Gc

− 1 x
2 +

Gc

Ga

y
2 ,

(69)
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�33
s z = 0

α1
∗ = 0

=
2

Gb − Gc

1

y
2 − x

2 + y
2 +

Gb

Gc

x
2 +

Gc

Gb

y
2

−
Gb

Gc

− 1
x

2

x
2 +

G
c

G
a

y
2

,

(70)

�1 z = 0

α1
∗ = 0

=
2x

Gb − Gc

Ga − Gc

(x2 + y
2)3 2

−
Gc

Gb

Ga − Gb

x
2 +

G
c

G
b

y
2

3 2
, (71)

�2 z = 0

α1
∗ = 0

=
2y

Gb − Gc

Ga − Gc

(x2 + y
2)3 2

−
Gc

Gb

Ga − Gb

x
2 +

G
c

G
b

y
2

3 2
. (72)

For nearly isotropic complex fluids, the particle-particle interaction can be approximated by 

its Taylor expansion around α1
∗ = 0 and G

a
= G

b
= G

c
= G as

G�11
s z = 0

≈
2x

2 + y
2

(x2 + y
2)3 2

−
y

2

8
8x

4 + 4x
2
y

2 + y
4

(x2 + y
2)7 2

α1
∗

G

−
1
4

8x
4 + 8x

2
y

2 + 3y
4

(x2 + y
2)5 2

Gb

G
− 1

−
y

2

4
4x

2 + y
2

(x2 + y
2)5 2

Gc

G
− 1 ,

(73)
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G�12
s z = 0

≈ xy
1

(x2 + y
2)3 2

−
y

2

8
6x

2 + y
2

(x2 + y
2)7 2

α1
∗

G

−
1
4

4x
2 + y

2

(x2 + y
2)5 2

Gb

G
− 1

−
3
4

y
2

(x2 + y
2)5 2

Gc

G
− 1 ,

(74)

G�22
s z = 0

≈
x

2 + 2y
2

(x2 + y
2)3 2

−
5
8

x
2
y

4

(x2 + y
2)7 2

α1
∗

G

−
1

x
2 + y

2

Ga

G
− 1

−
3
4

x
2
y

2

(x2 + y
2)5 2

Gb

G
− 1

−
y

2

4
x

2 + 4y
2

(x2 + y
2)5 2

Gc

G
− 1 ,

(75)

G�33
s z = 0

≈
1

x
2 + y

2
−

1
8

y
4

(x2 + y
2)5 2

α1
∗

G

−
x

2

(x2 + y
2)3 2

Ga

G
− 1

−
1
4

y
2

(x2 + y
2)3 2

Gb

G
− 1

−
3
4

y
2

(x2 + y
2)3 2

Gc

G
− 1 ,

(76)

�1 z = 0
≈

x

(x2 + y
2)3 2

2 −
3
4

4x
2 − y

2

(x2 + y
2)

2 y
2α1

∗

G

+
2x

2 − y
2

x
2 + y

2

Ga

G
− 1 +

2x
2 − y

2

x
2 + y

2

Gb

G
− 1 ,

(77)
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�2 z = 0
≈

y

(x2 + y
2)3 2

2 −
3
4

4x
2 − y

2

(x2 + y
2)

2 y
2α1

∗

G

+
2x

2 − y
2

x
2 + y

2

Ga

G
− 1 +

2x
2 − y

2

x
2 + y

2

Gb

G
− 1 .

(78)

Equations (58)–(65) are also singular for other combinations of the viscoelasticity 

parameters. Here we list their limit values. For α1
∗ = α = − G

b
− G

c

2
, we have:

�11
s z = 0

α1
∗ = α

=
1

Gb

2x
2 +

G
c

G
b

y
2

x
2 +

G
c

G
b

y
2

3 2
, (79)

�12
s z = 0

α1
∗ = α

=
1

Gb

xy

x
2 +

G
c

G
b

y
2

3 2
, (80)

�22
s z = 0

α1
∗ = α

=
1

Gcy
2 2 x

2 +
Gc

Ga

y
2 − x

2
2x

2 + 3
G

c

G
b

y
2

x
2 +

G
c

G
b

y
2

3 2
, (81)

�33
s z = 0

α1
∗ = α

=
1

Gcy
2

−2x
2

x
2 +

G
c

G
a

y
2

+

2x
2 +

G
c

G
b

y
2

x
2 +

G
c

G
b

y
2

, (82)
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�1 z = 0

α1
∗ = α

=
x

Gb x
2 +

G
c

G
b

y
2

5 2

3Gcy
2 + Ga

Gc

Gb

y
2

5x
4 −

G
c

G
b

y
4

x
2 +

G
c

G
b

y
2

2

+ 2Gax
4

x
4 −

G
c

G
b

y
4

x
2 +

G
c

G
b

y
2

3 ,

(83)

�2 z = 0

α1
∗ = α

=
y

Gb x
2 +

G
c

G
b

y
2

5 2

3Gcy
2 + Ga

Gc

Gb

y
2

5x
4 −

G
c

G
b

y
4

x
2 +

G
c

G
b

y
2

2

+ 2Gax
4

x
4 −

G
c

G
b

y
4

x
2 +

G
c

G
b

y
2

3 .

(84)

For α1
∗ = α = − G

b
− G

c

2
:

�11
s z = 0

α1
∗ = α

=
1

Gb

2x
2 −

G
c

G
b

y
2

x
2 −

G
c

G
b

y
2

3 2
, (85)
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�12
s z = 0

α1
∗ = α

=
1

Gb

xy

x
2 −

G
c

G
b

y
2

3 2
, (86)

�22
s z = 0

α1
∗ = α

=
1

Gcy
2 2 x

2 +
Gc

Ga

y
2

−x
2

2x
2 − 3

G
c

G
b

y
2

x
2 −

G
c

G
b

y
2

3 2
,

(87)

�33
s z = 0

α1
∗ = α

=
1

Gcy
2

−2x
2

x
2 +
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c

G
a

y
2

+

2x
2 −
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c

G
b

y
2

x
2 −

G
c

G
b

y
2

,

(88)
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�1 z = 0

α1
∗ = α

=
x

Gb x
2 −

G
c

G
b

y
2

5 2

3Gcy
2 − Ga

Gc

Gb
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2

5x
4 −
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c

G
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y
4
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2 −
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y
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2 −
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(89)

�2 z = 0
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∗ = α

=
y

Gb x
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G
c

G
b

y
2

5 2

3Gcy
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+ 2Gax
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4 −
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2 −
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3 .

(90)

When α1
∗ = 0 and G

b
= G

c
:

�11
s z = 0

G
b

= G
c

=
1

Gc

2x
2 + y

2

(x2 + y
2)3 2

, (91)

�12
s z = 0

G
b

= G
c

=
1

Gc

xy

(x2 + y
2)3 2

, (92)
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�22
s z = 0

G
b

= G
c

=
1

Gcy
2 2 x

2 +
Gc

Ga

y
2 − x

2 2x
2 + 3y

2

(x2 + y
2)3 2

, (93)

�33
s z = 0

G
b

= G
c

=
1

Gcy
2

2x
2 + y

2

x
2 + y

2
−

2x
2

x
2 +

G
c

G
a

y
2

, (94)

�1 z = 0

G
b

= G
c

=
x 2Ga + 3(Gc − Ga) y

2

x
2 + y

2

Gc(x
2 + y

2)3 2
, (95)

�2 z = 0

G
b

= G
c

=
y 2Ga + 3(Gc − Ga) y

2

x
2 + y

2

Gc(x
2 + y

2)3 2
. (96)

When α1
∗ = 0 and G

a
= G

b
= G

c
:

�22
s z = 0

G
a

= G
b

= G
c

=
1

Gc

x
2 + 2y

2

(x2 + y
2)3 2

, (97)

�33
s z = 0

G
a

= G
b

= G
c

=
1

Gc

1

x
2 + y

2
, (98)

�1 z = 0

G
a

= G
b

= G
c

=
2x

(x2 + y
2)3 2

, (99)
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�2 z = 0

G
a

= G
b

= G
c

=
2y

(x2 + y
2)3 2

. (100)

Another singularity arises when y = 0, independently of the viscoelasticity coefficients:

�12
s z = 0

y = 0

= 0, (101)

�22
s z = 0

y = 0

=
1

Gax
, (102)

�33
s z = 0

y = 0

=
1

Gax
. (103)

C Influence of the uncertainty in the determination of the director

Prior to calculating directional shear moduli, it is necessary to determine the orientation of 

the nematic director n  from the principal directions of the MSD matrix (see §2.5). This 

process adds a potential source of error on top of the error associated to the value of the 

principal MSDs. To quantify how errors in the orientation of n  may affect the measured 

velocity Green’s function, �
ij
∗, we calculate the deviation Δ�

ij
= �

ij
∗ − �

ij
 of this function 

from its exact value �
ij
, when the orientation of n  has an error Δθ.

We consider a nematic complex fluid, and a coordinate system where x is aligned with the 

director. Two particles, α and β are located, respectively, at the origin and at a location (x, 

y). The plane z = 0 is defined by the location of the particles and the director n  as in §2.3. In 

polar coordinates, the particle β is located at (R, θ), where R is the distance between the 

particles, and θ is the angle between n  and the line that connects both particles. Consistent 

with our D2PTM formulation, we examine the case α1
∗ = 0, for which �

ij
 is given in (67)–

(72). We focus on the components of the Green’s function used in eqs. (33)–(35) to 

determine the Miesowicz shear moduli, and we keep the normalization used in those 

equations (i.e. y

x
�12 instead of �12). Up to first order in Δθ, the relative error of these 

components is
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Δ�11

�11
z = 0

α1
∗ = 0

=

=

G
c

G
b

1 −
G

c

G
b

sin θ cos θ

cos2
θ +

G
c

G
b

sin2
θ

G
c

G
b

− cos2
θ +

G
c

G
b

sin2
θ

Δθ,

(104)

Δ y

x
�12

y

x
�12

z = 0

α1
∗ = 0

=

=

1 −
G

c

G
b

sin θ cos θ

cos2
θ +

G
c

G
b

sin2
θ 1 − cos2

θ +
G

c

G
b

sin2
θ

Δθ,

(105)

Δ�22

�22
z = 0

α1
∗ = 0

=

=

G
b

G
c

− 1 sin θ

cos θ
Δθ

1 −

G
b

G
c

cos2
θ +

G
c

G
b

sin2
θ

+

G
b

G
c

− 1 cos2
θ +

G
c

G
a

sin2
θ

cos2
θ

.

−
cos2

θ

cos2
θ +

G
c

G
b

sin2
θ

3 2
+ 2

cos2
θ +

G
c

G
a

sin2
θ

cos2
θ

−

1 −
G

c

G
a

cos2
θ +

G
c

G
a

sin2
θ

−
2Δθ

cos θ sin θ
.

(106)
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We focus on the quasi-isotropic limit (i.e. whenG
a

≈ G
b

≈ G
c
), in which the uncertainty in 

the determination of the nematic director is expected to be highest. The relative error in this 

limit is

Δ(�11)

(�11) z = 0

α1
∗ = 0

−
2 sin θ cos θ

1 + cos2
θ

Δθ,

Δ y

x
�12

y

x
�12

z = 0

α1
∗ = 0

2 cot θΔθ,

Δ(�22)

(�22) z = 0

α1
∗ = 0

2 sin θ cos θ

1 + sin2
θ

Δθ .

(107)

As expected, the relative error in �22 in the quasi-isotropic limit is related to the error in �11

by a rotation θ → θ + π/2. The leading order factor in both errors is bound by 0.71, so that 

the errors remain small and of order Δθ. The relative error of y

x
�12 becomes singular near 

the nematic axis θ = 0. However, it is important to note that y

x
�12 ∼ sin2

θ near the nematic 

axis in the quasi-isotropic limit. Thus, the absolute contributions to the error coming from 

this component of the Green’s function are in fact negligible near the nematic axis.

In conclusion, this analysis suggest that deviations in the orientation of the nematic director 

cause small relative errors in the equations (33)–(35) used to determine the Miesowicz shear 

moduli.

D Validation of D2PTM

D.1 D2PTM of disodium cromoglycate (DSCG). Additional data

Fig. 15 displays the MSDs measured for microrheological probes immersed in a 14% wt 

nematic DSCG solution. Both the one-point and two-point MSDs are qualitatively similar to 

the results obtained for the 16% wt solution (see Fig. 7 in the main text). Furthermore, the 

Miesowicz viscosity coefficients determined from these MSDs are in good agreement with 

Zhou et al. ‘s52 results (see Table 1).

D.2 Validation of D2PTM by Numerical Simulation. Additional data

The parameters used in the simulation presented in §4.2 were deliberately chosen so that the 

MSD would display isotropic features at high frequencies and anisotropic characteristics at 

low frequencies, and thus illustrate the applicability of D2PTM to differentiate these two 

behaviors. Here, we present additional validation data for a more generic example fluid 

where the 6 viscoelastic parameters are different from each other, i.e. μa, = 0.1 Pa, μb = 0.4 
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Pa, μc = 0.3 Pa, ηa = 0.6 Pa·s, ηb = 0.2 Pa·s and ηc = 0.4 Pa·s, and show that they can also be 

recovered by D2PTM (Fig. 16).

E Validation of the particle tracking setup

To characterize the accuracy of the imaging platform and particle tracking algorithm 

implemented for our experiments, we performed PTM in a solution of glycerol and water, 

which is a well characterized system with isotropic Newtonian rheology. We prepared 

control isotropic samples of 50% (v/v) glycerol in water, which results in a bulk viscosity 

consistent with MSD values that span the range of MSD measured in the F-actin 

experiments.

Fig. 17 shows the MSD of the probing particles in principal directions as well as the total 

MSD. For the whole range of representative frequencies of the experiment, the MSD follow 

a straight line with unit slope down to the lowest values of τ. This result indicates that our 

particle tracking setup has sufficient spatial resolution to track particle displacements at our 

experimental sampling frequency. Furthermore, we calculated the viscosity of the sample 

from the MSD by applying standard PTM (equation 28), and obtained a viscosity coefficient 

of η ≈ 6.5 mPa·s, consistent with a 50% (v/v) solution of glycerol in water, at 20°C. Another 

important result stemming from Fig. 17 is that, although the isotropic samples were confined 

in the same capillary tubes than the F-actin solutions, the measured MSD are isotropic up to 

time separations τ ~ 10s. Thus, the spatial confinement induced by the walls of the capillary 

tube does not induce anisotropic particle mobility in the range of frequencies of interest.

F List of symbols

Due to the high mathematical content of this article, here we present a small summary of the 

most relevant mathematical symbols used.

MSD: Mean Squared Displacements.

G: Shear modulus.

ω: Frequency.

G′: Storage modulus.

G″: Loss modulus.

a: Particle radius.

F, f: Forces.

ρ: Density.

v: Velocity.

τij: Stress tensor.
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εij: Shear strain tensor.

∂t: Partial derivative with respect to t.

u: Displacement.

η: Viscosity coefficient.

⋅ : Laplace transform.

p: Pressure.

αi: Leslie coefficients.

i, j, k and q: Counters.

s: Laplace complex frequency.

n : Director of the nematic.

N : Rate of change of the director with respect to the background fluid.

G
a
, G

b
 and G

c
: Generalized Miesowicz shear moduli.

x, y and z: Space coordinates.

∂x, ∂y and ∂z: Partial derivatives with respect to the space coordinates.

r : Vector position.

ζ: Hydrodynamic resistance of a particle.

�
ij
: Greens function for the velocity.

�
j
: Greens function for the pressure.

⋅: Fourier transform along the space coordinates.

kj: Space wavenumbers.

α: Particle identifier.

β: Particle identifier.

r
α, β

: Vector separation between particles.

ℒ: Multiparticle resistance tensor.

kB: Boltzmann constant.
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T: Absolute temperature.

τ: Time step.

Δx(τ): Particle jump, in the coordinate x, during time τ.

eff: Effective.

∥: Direction parallel to the nematic director.

⊥: Direction perpendicular to the nematic director.

⟨…⟩: Ensemble average.

Σ: Covariance matrix of a random distribuion.
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Fig. 1. 
Particle of radius a embedded in a nematic complex fluid with director n . The particle 

moves with velocity ν  and experiences a resistance force F .
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Fig. 2. 
Hydrodynamic interaction between two particles separated by a vector r

α, β
.
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Fig. 3. 
Flow diagram summarizing the D2PTM analysis procedures.
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Fig. 4. 
Fluorescence images of the microparticles embedded in a nematic F-actin fluid with their 

trajectories superimposed. The inset represents a zoom in one of the particles. It’s trajectory 

is plotted with a color change every 100 time points to highlight both its high- and low-

frequency characteristics. The nematic of the fluid is parallel to the horizontal axis.
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Fig. 5. 
Symbols: averaged autocorrelation of the ∥ ( ) and ⊥ ( ) velocity components of the 

simulated particles, represented as a function of time separation τ. Lines: covariance kernels 

Σ∥ ( ) and Σ⊥ ( ) (equations 39–40), represented as a function of the time 

separation. The vicinity of τ = 0 is shown in the inset.
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Fig. 6. 
(a) ∥ and ⊥ velocity components of the simulated Brownian motion of an example simulated 

particle moving through a nematic Kelvin-Voigt fluid with μa = 0.5 Pa, μb = 0.01 Pa, μc = 1 

Pa and ηa = ηb = ηc = 0.1 Pa·s. The total velocity is shown in blue ( ) while the velocity 

contribution from hydrodynamic interactions is shown in red ( ). (b) Trajectories of a 

representative numerical simulation containing five interacting particles. The nematic is 

aligned in the horizontal direction. For reference, each trajectory is marked with a black 

arrow. The inset zooms in the trajectory of one of the particles.
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Fig. 7. 
(a) Experimental one-point MSD of N = 717 particles suspended in a 16 wt% nematic 

DSCG solution. Symbols: MSD along the direction of the capillary tube axis x ( ) and the 

perpendicular direction y ( ). Lines: MSD along the principal directions of maximal (∥, 

) and minimal (⊥, ) particle mobility. The dotted green line ( ) represents the 

∥-⊥ cross-correlation of the particle displacements. For reference, a line with unit slope has 

been included (--------). (b) Renormalized two-point MSD for M = 3315 particle pairs in the 

same DSCG nematic solutions: ⟨r·Δx∥,α, Δx∥,β⟩ ( ), ⟨r·Δx⊥,α, Δx⊥,β⟩ ( ), 
y

x
r ⋅ Δx ∥ , α

, Δx ⊥ , β
 (— - —) and y

x
r ⋅ Δx ⊥ , α

, Δx ∥ , β
 ( ). The data are plotted versus 

the time separation τ. The regions between the average MSD plus and minus one standard 

deviation are shaded, for each direction, in a corresponding color.
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Fig. 8. 
(a) One-point MSD of N = 1,000 simulated particle trajectories in the principal directions of 

a nematic Kelvin-Voigt fluid with μa = 0.5 Pa, μb = 0.01 Pa, μc = 1 Pa and ηa = ηb = ηc = 0.1 

Pa·s, projected along the ∥ ( ) and ⊥ ( ) directions. A line of unit slope is plotted 

as reference (--------). The inset shows the MSD ratio, ⟨Δx∥, Δx∥⟩/⟨Δx⊥, Δx⊥). (b) 

Renormalized two-point cross-MSD of the same simulated trajectories (M = 2,000 particle 

pairs): ⟨r·Δx∥,α, Δx∥,β⟩ ( ), ⟨r·Δx⊥,α, Δx⊥,β⟩ ( ), y

x
r ⋅ Δx ∥ , α

, Δx ⊥ , β
 (— - —) 

and y

x
r ⋅ Δx ⊥ , α

, Δx ∥ , β
 ( ). The data are plotted versus the time separation τ. The 

regions between the average MSD plus and minus one standard deviation are shaded, for 

each direction, in a corresponding color.
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Fig. 9. 
(a) Symbols: Miesowicz loss moduli recovered by applying D2PTM analysis on simulated 

particle trajectories; G
a
″ ( ), G

b
″ ( ) and G

c
″ ( ). Solid line: prescribed loss moduli of the 

material; ωηa = ωηb = ωηc (———). (b) Symbols: Miesowicz storage moduli recovered by 

applying D2PTM analysis on simulated particle trajectories; G
a
′  ( ), G

b
′  ( ) and G

c
′  ( ). Lines: 

prescribed storage moduli of the material; μa ( ), μb ( ) and μc ( ). The data 

are plotted versus the frequency ω.
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Fig. 10. 
Histograms of the experimental particle jumps in the ∥ and ⊥ directions for τ = δt = 0.02 s. 

Two Normal histograms with the same average and standard deviation than the ∥ (— — —) 

and ⊥ ( ) experimental distributions are included for reference.
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Fig. 11. 
(a) Experimental one-point MSD of N = 2,346 particles embedded in the F-actin nematic 

solutions. Symbols: MSD along the direction of the capillary tube axis x ( ) and the 

perpendicular direction y ( ). Lines: MSD along the principal directions of maximal (∥, 

) and minimal (⊥, ) particle mobility. The dotted green line ( ) represents 

the ∥-⊥ cross-correlation of the particle displacements. For reference, a line with unit slope 

has been included (--------). The inset shows the MSD ratio ⟨Δx∥, Δx∥⟩ / ⟨Δx⊥, Δx⊥⟩. (b) 

Renormalized two-point MSD for M = 6,105 particle pairs in the same F-actin nematic 

solutions: ⟨r·Δx∥,α, Δx∥,β⟩ ( ), ⟨r·Δx⊥,α, Δx⊥,β⟩ ( ), y

x
r ⋅ Δx ∥ , α

, Δx ⊥ , β
 (— - 

—) and y

x
r ⋅ Δx ⊥ , α

, Δx ∥ , β
 ( ). The data are plotted versus the time separation τ. The 

regions between the average MSD plus and minus one standard deviation are shaded, for 

each direction, in a corresponding color.
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Fig. 12. 
(a) Directional loss moduli of the F-actin gel. i.e. G

a
″ ( ), G

b
″ ( ) and G

c
″ ( ). calculated with 

the two-particle data. (b) Directional storage moduli of the simulated material, i.e. G
a
′  ( ), G

b
′

( ) and G
c
′  ( ), calculated with the two-particle data. The standard deviation is indicated for 

each frequency.
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Fig. 13. 
Comparison of the directional shear moduli of the nematic F-actin gel calculated with 

D2PTM and the effective directional shear moduli predicted from one-point PTM. (a) 

Symbols: loss moduli G⊥″ = G
a
″ ( ), G∥″ = G

b
″ ( ), −GΔ″ = − (G

c
″ − G

a
″) ( ). Lines: effective loss 

moduli Geff, ⊥″  ( ), Geff, ∥″  ( ). Inset: ratio G∥″ G⊥″  ( ) and Geff, ∥″ Geff, ⊥″

( ). (b) Symbols: storage moduli G⊥′ = G
a
′  ( ), G∥′ = G

b
′  ( ), −GΔ′ = − (G

c
′ − G

a
″) ( ). 

Lines: effective storage moduli Geff, ⊥′  ( ), Geff, ∥′  ( ). Inset: ratio G∥′ G⊥′

( ) and Geff, ∥′ Geff, ⊥′  ( ).
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Fig. 14. 
Graphical interpretation of the three Miesowicz coefficients in a nematic complex fluid. The 

direction of the nematic director n  is represented by red bars. For a uniform shear flow 

along n , G
a
, is excited if n  is perpendicular to both the flow velocity and its gradient (left 

panel). G
b
 is excited if n  is parallel to the flow (middle panel), whereas G

c
 is excited if n  is 

parallel to the velocity gradient (right panel).
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Fig. 15. 
(a) Experimental one-point MSD of N = 284 particles suspended in a 14 wt% nematic 

DSCG solution. Symbols: MSD along the direction of the capillary tube axis x ( ) and the 

perpendicular direction y ( ). Lines: MSD along the principal directions of maximal (∥, 

) and minimal (⊥, ) particle mobility. The dotted green line ( ) represents 

the ∥-⊥ cross-correlation of the particle displacements. For reference, a line with unit slope 

has been included (--------). (b) Renormalized two-point MSD for M = 816 particle pairs in 

the same DSCG nematic solutions: ⟨r·Δx∥,α, Δx∥,β⟩ ( ), ⟨r·Δx⊥,β, Δx⊥,β⟩ ( ), 
y

x
r ⋅ Δx ∥ , α

, Δx ⊥ , β
 (— - —) and y

x
r ⋅ Δx ⊥ , α

, Δx ∥ , β
 ( ). The data are plotted versus 

the time separation τ. The regions between the average MSD plus and minus one standard 

deviation are shaded, for each direction, in a corresponding color.
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Fig. 16. 
(a) Directional loss moduli of the simulated material. Symbols: G

a
″ ( ), G

b
″ ( ) and G

c
′  ( ) 

calculated by D2PTM. Lines: actual loss moduli of the material ( ,  and ). 

(b) Directional storage moduli of the simulated material. Symbols: G
a
′  ( ), G

b
′  ( ) and G

c
′  ( ), 

calculated by D2PTM. Lines: actual storage moduli of the material ( ,  and 

).
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Fig. 17. 
MSD of 0.5 μm diameter particles embedded in a 50% (v/v) solution of glycerol in water, 

plotted as a function of time separation τ. Total ( ) MSD as well as MSD in principal 

directions of maximal ( ) and minimal ( ) mobility are shown. A line with unit 

slope has been included for reference (-------).
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Table 1

Miesowicz viscosity coefficients of a 14 wt% and a 16 wt% nematic DSCG solution, as measured by Zhou el 
al. (left column) and by using D2PTM (center column). Effective viscosity coefficients obtained by applying 

Directional One-Point PTM (right column). All viscosity coefficients were calculated for frequencies around 1 

Hz.

14 wt%

(Pa s) Zhou et al. D2PTM PTM

ηa n.a. 0.032 ± 0.001 n.a.

ηb 0.008 ± 0.002 0.011 ± 0.002 n.a.

ηc 3.2 ± 0.8 2.0 ± 0.3 n.a.

ηeff,∥ n.a. n.a 0.08 ± 0.005

ηeff,⊥ n.a. n.a 0.35 ± 0.01

16 wt%

(Pa s) Zhou et al. D2PTM PTM

ηa n.a. 0.04 ± 0.02 n.a.

ηb 0.011 ± 0.002 0.015 ± 0.001 n.a.

ηc 20 ± 5 24 ± 2 n.a.

ηeff,∥ n.a. n.a 0.13 ± 0.009

ηeff,⊥ n.a. n.a 0.8 ± 0.016
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