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Two-point statistics are presented for a new direct simulation of the zero-pressure-

gradient turbulent boundary layer in the range Reθ = 2780–6680, and compared

with channels in the same range of Reynolds numbers, δ+ ≈ 1000–2000. Three-

dimensional spatial correlations are investigated in very long domains to educe the

average structure of the velocity and pressure fluctuations. The streamwise velocity

component is found to be coherent over longer distances in channels than in bound-

ary layers, especially in the direction of the flow. For weakly correlated structures,

the maximum streamwise length is O(7δ) for boundary layers and O(18δ) for chan-

nels, attained at the logarithmic and outer regions, respectively. The corresponding

lengths for the spanwise and wall-normal velocities and for the pressure are shorter,

O(δ-2δ). The correlations are shown to be inclined to the wall at angles that depend

on the distance from the wall, on the variable being considered, and on the correlation

level used to define them. All these features change little between the two types of

flows. Most the above features are also approximately independent of the Reynolds

number, except for the pressure, and for the streamwise velocity structures in the

channel. Further insight into the flow is provided by correlations conditioned on the

intensity of the perturbations at the reference point, or on their sign. The statistics

of the new simulation are available in our website. C© 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4899259]

I. INTRODUCTION

Large-scale motions in wall-bounded flows have received considerab attention since the late

fifties, when Townsend1 and Grant2 realized that the long tails of time-delayed streamwise velocity

autocorrelations3 implied large structures carrying a substantial part of the kinetic energy. Examples

are velocity streaks,4 Reynolds-shear-stress structures,5 and bulges in the outer region of turbulent

boundary layers.6, 7 The best-known among them are the alternating high- and low-momentum

velocity streaks of the buffer layer, which were first visualized and described in the experiments of

Kline et al.,4 Bakewell and Lumley,8 and Corino and Brodkey.9 This near-wall region is nowadays

fairly well understood,10 but the pattern of alternating high- and low-speed fluid is not restricted

to the buffer layer, and extends to the logarithmic region with dimensions of the order of the flow

thickness.11, 12 An early review of the coherent structures of wall-bounded turbulence is Robinson,13

although the low Reynolds numbers available at the time restricted its focus to the near-wall and

outer regions of boundary layers. Even today, our understanding of the associated kinematics and

dynamics remains limited, in spite of the numerous models that have been proposed.14–17

In this paper we present fully three-dimensional two-point statistics of a new zero-pressure-

gradient turbulent boundary layer18 up to Reθ ≈ 6600 (δ+ ≈ 2000), and compare them to turbulent
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channels at similar Reynolds numbers.19, 20 To some extent, this work is a continuation of the paper

of Sillero, Jiménez, and Moser,18 in which one-point statistics of the velocity and pressure were

presented and discussed for the new simulation, and of the comparison of boundary layers and

channels at lower Reynolds numbers in Jiménez et al.21 Those two types of flows are used as

archetypes of external and internal wall-bounded flows, respectively. They are compared at constant

Kármán number, δ+ = uτ δ/ν, defined in terms of the kinematic viscosity ν, the streamwise-dependent

friction velocity uτ , and the flow thickness δ. The latter is taken to be the 99% thickness in boundary

layers, and the half-width in channels.22 The “+” superscript denotes normalization with uτ and

ν. The Reynolds number Reθ = U∞θ /ν is defined for boundary layers in terms of the momentum

thickness θ and of the free-stream velocity U∞. Throughout the paper, the velocity components in

the streamwise (x), wall-normal (y), and spanwise (z) directions are u, v, and w, respectively, and

the kinematic pressure p incorporates the constant fluid density. We often classify results as relating

to the buffer, logarithmic, or outer regions, arbitrarily defined as y+ < 80, 80ν/uτ < y < 0.2δ, and

y > 0.2δ, respectively, and pay special attention to the last two regions. To our knowledge, this is

the first detailed comparison between boundary layers and channels at moderately high Reynolds

numbers using fully three-dimensional correlation functions.

Historically, the early one-dimensional correlations obtained by Grant2 to investigate the large-

scale structures in several turbulent flows were first extended by Tritton,23 who compared his

boundary layer with the channel in Ref. 24. He found no differences between the near-wall region

of the two flows, and observed that the correlation length of the streamwise velocity greatly exceeds

the distance to the wall, supporting Townsend25 attached-eddy model. He also found that that length

decreases above the logarithmic layer.26–29 A similar effect was later found for internal flows,30–32

although the length of the structures starts to decrease in this case beyond the middle of the outer

region. Using large-eddy simulations of channels (δ+ ≈ 640) in relatively short and narrow boxes,

Moin and Kim33 found that the one-dimensional streamwise velocity correlation in the flow direction

extended over much longer distances than for the transversal velocity correlations when measured

at four heights, spanning from the near-wall to the center of the channel, in agreement with previous

numerical results.34 Further analysis of the streamwise velocity correlation in the near-wall region

was shown to be compatible with the elongated streaky structures previously reported in several

experimental works.4, 8, 9 The authors extended their work in Ref. 35 to include one-dimensional

correlations of the vorticity fluctuations, and analyzed these one-dimensional correlations along two

different inclined lines at ±45◦ to the wall, supporting a flow model consisting of dominant vortical

structures inclined at 45◦.

The reasons for the differences between internal and external flows are still unclear, and several

explanations have been proposed. For instance, Ganapathisubramani et al.26 computed velocity

correlations at several heights of an experimental boundary layer (δ+ ≈ 1000), and found differences

in the length of the structures of the streamwise velocity with respect channels.31 They argued that

a significant part of the outer layer of channels behaves as if it were logarithmic, while boundary

layers are contaminated in this region by the “wake” component, which they attributed to the

interactions with the potential free stream. Similar conclusions were reached in Ref. 21 from the

detailed examination of a numerical data base, and could explain both the observed locations for the

maximum correlation lengths, and the longer structures in channels.

Accurate experiments and simulations of the largest scales in the logarithmic region have only

become possible in the last decades, due in part to the high Reynolds numbers required to observe

that region.36 Nowadays, spatial flow reconstructions are commonly obtained experimentally by

particle image velocimetry (PIV), although rarely in more than planar sections. For instance, Adrian,

Meinhart, and Tomkins37 conducted measurements of a turbulent boundary layer (δ+ ≈ 2000), and

found streamwise velocity structures as long as 2δ that were tilted from the wall38 by about 12◦.

They explained them as “hairpin packets”37, 39 in which a collection of hairpins of size O(δ) align

with each other and propagate with small velocity dispersion. As a result, they create the longer

streamwise structures of length O(10δ–20δ) that have been detected from spectral measurements,

both experimentally and numerically.20, 29, 40, 41

Liu, Adrian, and Hanratty42 compiled two-dimensional spatial correlations in an experimental

turbulent channel (δ+ ≈ 1400) to study the structure of the velocity fluctuations and of the Reynolds

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

138.4.116.65 On: Tue, 28 Oct 2014 12:50:22
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shear stress. They observed correlation lengths of at least 2δ–4δ for the streamwise velocity along

the flow direction, and much shorter ones for the wall-normal velocity, 0.3δ–0.4δ. The interaction

between the streamwise and wall-normal velocities, described by their cross-correlation, revealed that

the long structures carried a significant fraction of the Reynolds shear stress, but little energy in the

wall-normal component. Other experimental investigations on the structure of the turbulent velocities

using spatial correlations are those of Ganapathisubramani et al.26 and Wu and Christensen43 for

boundary layers. Unfortunately, all the above PIV experiments are restricted to fairly short windows

of streamwise size O(δ). To overcome this limitation, other investigators have used techniques

such as hot-film,12, 44 multisensor hot-wire anemometry,29, 45–47 or PIV in conjunction with Taylor

hypothesis,48 which allow two- and three-dimensional flow-reconstructions over longer extents at

the expense of extra hypotheses.

Direct numerical simulations (DNS) provide high-quality databases with very good spatial

and velocity dynamic ranges.20, 27, 28, 32, 40, 49–51 They often include two-point spatial correlations and

spectra which, in contrast to experiments, can easily be made three-dimensional. For instance, the

first available three-dimensional velocity correlations were computed by Moin and Moser52 in the

late eighties, using a channel flow at low Reynolds number (δ+ ≈ 180). The extra information

has often led to different models than those from experiments. For example, del Álamo et al.17

found long conditional low-velocity structures in the wake of vorticity clusters, spreading conically

downstream as in the attached-eddy model of Townsend,14 but concluded that the vortices were

organized by the wake, rather than the other way around.53 Lee and Sung27 simulated a boundary

layer (δ+ ≈ 1000), and reported correlation lengths as long as O(6δ) for the streamwise velocity

at the outer edge of the logarithmic region, inclined away from the wall by about 15◦–20◦. They

extended their analysis to numerical pipes at similar Reynolds number,32 finding longer structures

than in boundary layers. The largest differences were located, as in the case of the channel, near the

middle of the outer region.

In our study, spatial velocity and pressure correlations are computed within fairly long domains,

O(20δ), to allow the fluid structures to fully decorrelate and to observe the largest scales present in

the flow. The Reynolds number is carried up to δ+ ≈ 2000. Particularly interesting are the two-point

statistics of the pressure fluctuations, which are generally harder to obtain experimentally than the

velocities. Power spectra of the pressure at the wall have been available for some time, both from

experiments54 and from simulations,55, 56 but it is only recently that experiments away from the

wall have become available.57 Even in the case of DNS, less information is often reported for the

pressure than for the velocities, but one- and two-dimensional spectra at all wall distances are also

available.21, 22, 58 During the refereeing of the present paper, Shinde, Laval, and Stanislas59 published

three-dimensional pressure and velocity correlations in the near-wall region of two numerical chan-

nels with and without pressure gradients, at δ+ ≈ 950. To our knowledge, the three-dimensional

pressure correlations presented here are the first available in the literature for the logarithmic layers

of turbulent boundary layer and channel flows.

The article is organized as follows. Section II briefly describes the simulations and defines

the post-processing procedures. The two-point correlations of the velocity are discussed in some

detail in Sec. III, both for turbulent boundary layers and for channels, followed by the results for the

cross-correlation of u and v in Sec. IV and of the pressure in Sec. V. Section VI describes conditional

correlations, and Sec. VII summarizes and concludes.

II. NUMERICAL DATABASES AND METHODS

Table I summarizes the parameters of the direct numerical simulations used in this paper. In

particular, we use previously published channels from our group at δ+ = 934 (CH950),19 and

δ+ = 2003 (CH2000),20 together with a turbulent boundary layer (BL6600) in the same range of

Reynolds numbers, δ+ ≈ 980–2025.18

The numerical code for the channels integrates the Navier–Stokes equations in the form of an

evolution problem for the wall-normal vorticity ωy and for the Laplacian of the wall-normal velocity

∇2v.49 The spatial discretization uses Fourier expansions in the two wall-parallel directions, fully

dealiased using the 2/3 rule. CH950 uses Chebychev polynomials in the wall-normal direction,
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TABLE I. Parameters of the numerical simulations used in the text. Lx, Ly, and Lz are the box dimensions along the three axes,

and Nx, Ny, and Nz are the collocation grid sizes. The corresponding resolutions, measured at the middle of the computational

box, are ℓx, ℓy (measured at y = δ), and ℓz. Nf is the number of fields used to accumulate statistics, T is the time spanned

by those fields, and Ncor is the number of wall-normal locations at which correlations are compiled. The boundary layer

properties, δ and uτ , are taken at the middle of the box.

Case Reθ δ+ (Lx, Ly, Lz)/δ ℓ+
x , ℓ+

y , ℓ+
z Nx, Ny, Nz Nf Ncor Tuτ /δ

CH950 . . . 934 8π , 2, 3π 9.2, 7.6, 3.8 3072, 385, 2304 74 112 12

CH2000 . . . 2003 8π , 2, 3π 8.2, 8.9, 4.1 6144, 633, 4608 233 34 11

BL6600 2780–6650 980–2025 21π , 3.5, 3.2π 6.5, 10.2, 3.8 15 361, 535, 4096 212 22 11.5

whereas CH2000 uses seven-point compact finite differences. Further numerical details can be

found in the original publications.

The boundary layer is simulated in a parallelepiped over a flat plate with periodic spanwise

boundary conditions and non-periodic streamwise and wall-normal directions. The numerical code

solves the primitive-variable formulation of the incompressible Navier-Stokes equations, using

a fractional-step method to ensure mass conservation.60 Staggered three-points compact finite

differences61 are used for the spatial discretization of the derivatives in the x and y directions,

except for the Poisson equation for the pressure, for which second-order finite differences are used.

The representation in the spanwise direction is dealiased Fourier. A detailed description of the

problem formulation, the numerical scheme, and its validation can be found in Simens et al.62 The

parallelization and implementation strategies are discussed in Borrell, Sillero, and Jiménez,63 and

the one-point statistics of the boundary layer are described in Sillero, Jiménez, and Moser.18 The

time marching for all the simulation codes is semi-implicit three-step Runge–Kutta.64

A. Two-points statistics

The paper discusses the average three-dimensional organization and structure of the flow in

terms of spatial two-point correlation functions. For convenience, correlations are computed in

Fourier space for all the homogeneous directions, and transformed to physical space whenever

required for comparing different flows. For instance the covariance in boundary layers is defined as

R̂ψφ(x, x ′, y, y′, kz) = 〈ψ̂(x, y, kz)φ̂∗(x ′, y′, kz)〉, (1)

where ψ and φ are generic variables of zero mean, ψ̂ stands for Fourier transformation with respect

to z, and 〈 · 〉 is the expected value. The asterisk is complex conjugation, and kz is the spanwise wave

number. In streamwise-homogeneous channels, the covariance reduces to R̂ψφ(�x, y, y′, kz), where

�x = x − x′, and can be computed directly in terms of the streamwise wavenumber kx. In all cases,

the covariance in physical space, Rψφ(x, x′, y, y′, �z), is obtained as the inverse Fourier transform of

R̂, where �z = z − z′ is the distance between the two points in the homogeneous spanwise direction.

The autocorrelation coefficient,

Cψφ(r, r
′) = Rψφ(r, r

′)/σψ (r)σφ(r′), (2)

is obtained by normalizing the covariance with the product of the standard deviations at the two

points involved in the measurements, denoted by r
′ for the reference point and by r for the moving

one. This is the normalization adopted by most researchers,23, 26–28, 42, 43 although the normalization

of Rψψ with σψ (r′)2 is also used occasionally.46, 65 Statistically, the definition (2) has a well-defined

interpretation, and is known to be asymptotically unbiased.66 For example, it can be shown by direct

calculation that the expected relative error in the least-square fit of ψ(r) as a function of φ(r′) is

ε2/σ 2
ψ (r) = 1 − C2

ψφ . We have tested the effect of using both normalizations, and found only minor

differences in the resulting correlations, mostly associated with the effect of the small standard

deviations near the outer edge of the boundary layer. From now on, we will refer to the correlation

coefficient defined in (2) as correlation, unless otherwise stated.
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Covariances are accumulated over the number of flow fields specified in Table I. Since boundary

layers are not homogeneous in the streamwise direction, correlations are only compiled at three

reference sections, chosen so that δ(x′)+ = 1313, 1530, and 1990. In each case, the streamwise

range is x = x′ ± 10δ, except for the most downstream location, where the computational box

ends at xend ≈ x′ + 2δ. Inspection of the resulting velocity and pressure correlations reveals that

they typically decay within such domains to below a few percent, which is also the order of their

statistical uncertainty. This suggests that the largest scales of the flow are properly captured.22, 67

To decrease noise, the covariances and standard deviations in boundary layers are averaged over

windows x ′ = x ′
nom ± δ/2 around their nominal reference position x ′

nom , keeping �x constant. This

produces smoother correlations while keeping the systematic error small.21 The correlations in

channels are computed over the whole computational box, x = x′ ± 4πδ, which corresponds to a

domain similar to those used in the boundary layer. In all cases, the correlations are compiled for a

range of different heights distributed over the inner, logarithmic, and outer regions of the flow (see

Table I).

III. VELOCITY CORRELATIONS

One of the “advantages” of numerical simulations over experiments is that an adequate rep-

resentation of the problem requires that the domain size should contain the largest relevant flow

structures. The observational domain is therefore not generally a limiting factor, although at the cost

of considerable computational expense. In the present case, this will allow us to spatially characterize

turbulent structures with lengths of the order of O(20δ), which have only previously been reported

in experiments in terms of passing times.29, 68

Figure 1 is a three-dimensional representation of Cuu for the boundary layer, centered in the

outer region, y′/δ = 0.6, and δ(x′)+ = 1530. The domain in the figure is 6δ × 1.2δ × 2δ in the

streamwise, wall-normal, and spanwise direction, respectively, which corresponds to the central part

of the larger correlation box (20δ × 3.4δ × 10δ). In describing the size of the correlations we will

use Lm
j to denote the maximum distance between points of a given three-dimensional correlation

isosurface along the j direction, even if those points are not at the same distance from the wall, where

j may vary from x to z (see Fig. 8). We will reserve Lj for the length of the one-dimensional section

FIG. 1. Three-dimensional representation of the correlation of the streamwise velocity fluctuations, Cuu, for a boundary

layer at δ+ = 1530 and y′/δ = 0.6. The flow goes from left to right. Several isosurfaces are shown at Cuu = −0.09 (white),

+0.09 (turquoise), +0.4 (yellow), and +0.8 (blue). For the last three isosurfaces a transparency of 40% is set. In the planes

going through the correlation origin, the contour lines of positive and negative correlation values are colored red and white,

respectively, ranging from 0.09 to 1.0 and from −0.04 to −0.1. The contour lines of the zy-plane at �x/δ = −2.2 range from

0.03 to 0.1, and from −0.02 to −0.06. Cuts are colored by the correlation value, ranging from red (most positive) to white

(most negative), passing through blue (zero).
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FIG. 2. Three-dimensional representation of the correlation of the wall-normal velocity fluctuations, Cvv , and of the spanwise

velocity fluctuations, Cww , for a boundary layer at δ+=1530 and y′=0.6δ. The flow goes from left to right. Several isosurfaces

are shown at C = −0.09 (white), +0.1 (turquoise), +0.2 (yellow), and +0.6 (blue). For the last three isosurfaces a transparency

of 40% is set. In the planes going through the correlation origin, the contour lines of positive and negative correlation values

are colored red and white, respectively, ranging from 0.1 to 1.0 for both correlations, from −0.01 to −0.02 in Cvv , and from

−0.02 to −0.08 in Cww . A transparency of 40% is set for these planes. Cuts are colored by the correlation value, ranging

from red (most positive) to blue (most negative), passing through white (zero).

of the isosurface along the j axis. For the isosurface Cuu = 0.09, there is a positively correlated

region extending about Lm
x ≈ 4δ between its farthermost points in the streamwise direction, from 3δ

upstream to δ downstream of the reference point. In the wall-normal and spanwise directions, its size

is Lm
y ≈ δ and Lm

z ≈ 0.5δ, respectively. Two negatively correlated regions flank the positive one,

separated from each other by �z ≈ δ. Their Cuu = −0.09 isosurfaces are shorter than the positive

one, Lm
x ≈ 1.7δ, and are also smaller in the wall-normal and spanwise directions: Lm

y ≈ 0.55δ and

Lm
z ≈ 0.35δ. Both the positive and negative regions are slightly inclined with respect to the wall, as

will be quantified in Sec. III C.

Some weaker correlation isocontours are included in Fig. 1 in the form of two-dimensional

sections. Two of them pass through the origin (y = y′ and x = x′), and a third is an upstream cross

plane at �x/δ = −2.2.

Note that the form of the correlations in those sections is not completely arbitrary. Townsend14

showed that it follows from incompressibility that the covariance must satisfy
∑

j∂ jRji(r, r
′)

= 0, where ∂ j is the derivative with respect to rj, and j refers to the coordinate direction or to

the corresponding velocity component. Integrating over the whole domain, and noting that the

correlation vanishes at large |r − r
′|, or whenever r is at a no-slip wall, it follows that

∫∫
Ruu dz dy =

∫∫
Rvv dx dz =

∫∫
Rww dx dy = 0. (3)

The integrations in (3) are over a full plane normal to each velocity component: from (−∞, ∞) in

the case of x and z; from one wall to the other in the case of y in channels; and from the wall to the

potential stream in the case of y in the boundary layer. Therefore, the correlation flux over planes

orthogonal to a given velocity component has to vanish, implying the coexistence of positive and

negative correlation regions within each plane. This can be seen in Fig. 1 for the two cross-flow

sections of Cuu. Note that (3) does not require the plane to pass through the origin, and that it

does not apply strictly to the correlation coefficient in inhomogeneous flows, because of the spatial

dependence of the standard deviations.

Figure 2 displays the three-dimensional correlations of the transversal velocities, Cvv and Cww,

taken at the same height and Reynolds numbers as in Fig. 1. The domains displayed in the figure are

shorter than in Fig. 1, but not much narrower: δ × 1.2δ × δ for Cvv , and 2δ × 1.2δ × 1.5δ for Cww.

Cvv is a tall structure elongated in the wall-normal direction. In the wall-parallel (xz) plane, the

section of the positively correlated region is elliptical, with the major axis at Cvv =0.1 aligned in
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the free-stream direction, and axes lengths ax ≈ 0.55δ and az ≈ 0.4δ. Weaker negatively correlated

regions are found outside the ellipse Cvv =−0.01, with axes ax ≈ 1.5δ and az ≈ 0.8δ. The most

intense anticorrelated regions form a quadrupole centered at �z ≈ ±0.4δ and �x ≈ ±0.5δ, which

we will see later to be specific to this wall distance.

The spatial organization of Cww is particularly interesting. It consists of a positively corre-

lated region inclined with respect to the wall at a steeper angle than the one of Cuu, flanked by

four negatively correlated regions. The strongest anticorrelated regions are the white isosurfaces

Cww =−0.09 above and below the positive one. Barely visible in the figure are two weaker negative

objects in the spanwise direction. One consequence of this quadrupole structure is that the intersec-

tions of the positive correlation isosurface with the xz- and zy-planes are characteristically squarish

for Cww, rather than elliptical (see Fig. 4(f)). Only the intersections with the longitudinal xy-plane are

elliptical. The dimensions of Cww =0.1 in the xz- and zy-planes are Lx ≈ Lz ≈ 0.65δ and Ly ≈ 0.35δ.

The length of the negative objects for Cww =−0.09 is Lm
x ≈ 0.5δ for the object located at the top,

and Lm
x ≈ 0.65δ for the one at the bottom, both with wall-normal size Lm

y ≈ 0.3δ.

In summary, the spatial organization of the two velocity correlations in Fig. 2 is that the

negatively correlated regions of w are above and below the origin, while those of v are located

spanwise. It suggests that, at least at this distance from the wall, the dominant structures of the

velocity is a quasi-streamwise roller inclined with respect to the wall, rather than a spanwise one.

A. Two-dimensional sections

We next discuss two-dimensional sections of the velocity correlations, taken through the origin,

centering initially on one location in the lower logarithmic layer, y′ ≈ 0.1δ (y+ ≈ 200), and another

one in the outer region, y′ ≈ 0.8δ. Two-dimensional sections of the three-dimensional correlations

correspond to one-dimensional energy spectra, in that they include integrated information from all the

scales along the direction being discarded. Therefore, they are easier to compare with experimental

information than the full three-dimensional object. For example,

Rψφ(x, x ′, y, y′) ≡ Rψφ(x, x ′, y, y′,�z = 0) =

∫
R̂ψφ(x, x ′, y, y′, kz) dkz . (4)

The streamwise (xy) sections of Cuu and Cww are given in Fig. 3, and show that Cuu is longer than

Cww at the two chosen heights (note the different horizontal scales of the left and right columns of

the figure). Figures 3(a) and 3(b) present the correlations at y′ ≈ 0.1δ for boundary layers. They

show inclined structures of length Lm
x ≈ 8δ for Cuu, and Lm

x ≈ 1.5δ for Cww.

More interesting are Figs. 3(c)–3(f), farther from the wall. They clearly show that structures

in channels are longer than boundary layers, specially for Cuu in Figs. 3(c) and 3(e). This agrees

qualitatively with published spectra,21 but it is important to understand that correlations and spectra

are not strictly equivalent. In the first place, streamwise spatial spectra in inhomogeneous boundary

layers can only be defined approximately.21 Second, a spectrum at a fixed y, or even a set of spectra at

several heights, contain different information from that in a two-dimensional correlation. Consider,

for example, Cww in Fig. 3(d). Taking as a reference the isocontour Cww =0.05, any analysis

involving only y = 0.8δ would suggest correlations lengths of the order of Lx ≈ 0.7δ, while the

two-dimensional correlation shows that the structure is longer. The maximum streamwise distance,

Lm
x ≈ 2.5δ, is between points at different heights, because the structure is relatively thin but long and

inclined forwards. Figures 3(a), 3(c), and 3(e) show that the effect is also present in Cuu, although

less marked.

Centering on the same correlation isocontour for the streamwise velocity at y′ = 0.8δ,

Cuu = 0.05 extends for Lm
x ≈ 6δ in boundary layers, and for Lm

x ≈ 15δ in channels. In the wall-

normal direction, Cuu spans the whole flow thickness, from very close to the wall to either the

potential stream or to beyond the channel centerline, whereas Cww is flatter. Both correlations are in-

clined forwards, presumably as a consequence of the shearing by the mean velocity profile. Figure 2

shows that Cvv is essentially perpendicular to the wall.

Very long features have been reported in the logarithmic and outer layers of all wall-bounded

flows, variously referred to as “largest,”11 “very large,”12 or “global.”19, 40 They are known to
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FIG. 3. Streamwise (xy) sections of the correlations at: (a) and (b) y′/δ = 0.1, and (c)–(f) y′/δ = 0.8. Left column is Cuu, and

right column is Cww . (a)–(d) Boundary layers. (e) and (f) Channels. Positive contours (black) are (0.05:0.1:...), and negative

ones (red) are (−0.05:−0.05:...). ——, δ+ ≈ 2000; - - - -, boundary layer at δ+ = 1313, and CH950. Note the different aspect

ratios of the two columns of panels. Flow is from left to right.

be correlated across the full boundary layer thickness,19, 30 and to penetrate the sublayer.20, 30, 40

The streamwise lengths given for Cuu in boundary layers are typically of the order of O(4δ–5δ),

independent of the Reynolds number,27, 29, 46 while those in channels and pipes tend to be closer to

O(9δ–20δ).19, 30, 40, 67 Those numbers are in general agreement with Figs. 3(c) and 3(e). On the other

hand, Hoyas and Jiménez69 surveyed u-spectra from a wide variety of flows, including experimental

and atmospheric boundary layers, and found evidence for structures of the order of 20δ in most of

them. Hutchins and Marusic29 presented visual evidence for essentially infinite streaky u-structures

in boundary layers, and showed that the shorter correlations and spectra could be explained by their

meandering, rather than by their intrinsic length. Different correlation lengths could thus depend on

the property being measured.

It is interesting that the near-wall correlations at y′ = 0.1δ in Figs. 3(a) and 3(b) are not much

shorter than those at y′ = 0.8δ,23 in agreement with the previously mentioned evidence that energy

from the larger outer structures reaches the near-wall layer.20, 70, 71 In fact, the horizontal dimensions

in Figs. 3(c) and 3(d) constrain those in Figs. 3(a) and 3(b). It follows from (2) that C(y, y′, x, x′)

= C(y′, y, x′, x), so that, if the correlations centered far from the wall extend into the inner layer, those

centered near the wall must extend into the outer layers with comparable streamwise dimensions.

For example, neglecting the streamwise inhomogeneity of the boundary layer, the correlation along

y = 0.1δ in Fig. 3(c) is the x-reflection of the correlation along y = 0.8δ in Fig. 3(a), and their

streamwise dimensions must be identical.

One of the consequences of that reciprocity is that, except in strictly symmetric cases, a corre-

lation that is biased downstream from the reference point near the wall corresponds to a backward-

biased one far from the wall. For example, as y′ moves away from the wall from Fig. 3(a) to

Fig. 3(e), the upstream end of Cuu gets longer, while the downstream one gets shorter. We will see

in Sec. III C that this is part of a continuous trend, in essence because all the correlations in that
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FIG. 4. Cross-flow (zy) sections of the correlations at: (a)–(c) y′/δ = 0.1, and (d)–(f) y′/δ = 0.8. (a) and (d) Cuu; (b) and (e)

Cvv ; (c) and (f) Cww . For each panel, the left side are boundary layers, and the right side are channels. Positive and negative

contours are colored in black and red, respectively. The positive contours (black) are (0.05:0.1:...). In (a), (c), (d), and (f),

the negative contours (red) are (−0.05:−0.05:...). In (b) and (e), they are (−0.01:−0.02:...). In all panels: ——, δ+ ≈ 2000;

- - - -, boundary layer at δ+ = 1313, and CH950.

range of wall distances represent, at least in part, different aspects of the same large-scale structure

extending from the top of the buffer layer to the outer edge of the flow.

In contrast to the streamwise sections, Fig. 4 shows that the spatial organization of the corre-

lations in the cross-flow (zy) plane is qualitatively similar for boundary layers and channels. Note

that, because the correlations in this plane are symmetric with respect to z, the two flows are shown

side-by-side in each panel, with boundary layers on the left and channels on the right.

The streaky pattern of the u-structures is revealed in Figs. 4(a) and 4(d), with alternating low-

and high-momentum regions separated by distances of the order of δ. As in the case of the streamwise

sections, Cuu is also the correlation in which channels differ more from boundary layers, with the

longer streaks of the channels associated to somewhat wider and taller cross-sections. It is interesting

that, although the streak separation gets wider with increasing wall distance, it grows more slowly

than proportionally to y′.

This is more clearly seen in the right-hand side of Figs. 5(a) and 5(d), which contains one-

dimensional spanwise sections of Cuu as functions of z and y = y′. The growth of the negative

correlation contours is roughly linear in y below y ≈ 0.9δ, but with a relatively large intercept at

y = 0. Reference 16 found a similar result for the width of the low-momentum regions in a boundary

layer, Lz ≈ 0.1δ + 0.75y below y/δ = 0.25. This growth rate is faster than the one for y/δ in 0.1–0.9

in Fig. 5(d), but agrees approximately with the near-wall boundary between positive and negative

correlations in that figure. Note that the dashed and solid lines in Fig. 4 correspond to two Reynolds

numbers separated by a factor of 1.5, and that their rough agreement suggests that the streak spacing

scales in outer units. In fact, the reciprocity discussed above for Figs. 3(a) and 3(c) also applies to

the cross sections of any wall-attached structure, such as those of u. If the wall-parallel dimensions

of the correlations scale in outer units far from the wall, they should do the same near it.

The sections of Cvv in Figs. 4(b) and 4(e) are narrower than those of Cuu near the wall, although

the dimensions of the two variables are much closer to each other in the outer layer. Figures 4(b)

and 4(e) confirm that Cvv is not attached to the wall.25 The contours in Fig. 4(b) do not extend

into the outer layer, and those in Fig. 4(e) do not reach the wall. Reciprocity cannot therefore be

invoked, and the scale of Cvv varies strongly with y′, as repeatedly shown, for example, by spectral

measurements.10 It will be seen below, when discussing Fig. 5, that the spanwise separation of the
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FIG. 5. Single-height (y = y′) sections of the velocity correlations as functions of y′/δ for channels (in the top row) and

boundary layers (bottom). δ+ ≈ 2000. The left half of each panel is the upstream streamwise section (�z = 0), and the right

half is the spanwise one (�x = 0). (a) and (d) Cuu. (b) and (e) Cvv . (c) and (f) Cww . For all panels, the shaded contours are

positive correlations (0.1, 0.2, 0.3, 0.5, 0.7, 0.9). For Cuu and Cww , the negative line contours are (−0.02:−0.03:...). For Cvv ,

they are (−0.01:−0.01:...).

“return” negative lobes of Cvv is roughly proportional to y in the logarithmic layer. Note that, although

the continuity relation (3) requires the wall-parallel integrals of Cvv to vanish, its return lobes are

weaker and wider than those of u and w, suggesting that either the v structures are formed by a

central compact down(up)-wash surrounded by a more diffuse counter-flow, or the relative positions

of neighboring counter-flowing structures is less ordered than for other velocity components.

The cross-sections of Cww are shown in Figs. 4(c) and 4(f). Their positive lobes are thinner in the

wall-normal direction than either Cuu or Cvv , but the full correlation, including positive and negative

regions, spans a large fraction of the flow thickness. In this sense, this is also an attached variable,25

and its wall-parallel dimensions vary relatively little with y′. On the other hand, its wall-normal

thickness, which is unconstrained by reciprocity, grows linearly with the distance to the wall (see

Fig. 10 in Sec. III C). As a consequence, the positive contours of Cww are relatively flat near the

wall, and more square away from it. It follows from the continuity condition (3) that the integral

of Cww should vanish over the streamwise xy-plane, and Figs. 3(b), 3(d), and 3(f) show that the

cancellation takes the form of alternating relatively thin layers stacked in the wall-normal direction.

The intersection of these inclined layers with the cross plane appears in Figs. 4(c) and 4(f) as negative

lobes above or below the primary positive contours. As already mentioned, the combination of

Figs. 4(b) and 4(e), and Figs. 4(c) and 4(f) suggests a quasi-streamwise roller with dimensions of

order δ, which the streamwise sections in Fig. 3 show to be inclined with respect to the wall. Note that

the discussion in this section does not refer to structures in the buffer region. The reference heights

of the correlations in Fig. 4 are y′+ = 200 and y′+ = 1600. The cross-flow dimensions of these

rollers, as measured by the distance from the reference point to the first negative minimum of the

correlation, are relatively constant at Ly ≈ 0.5δ in the wall-normal direction for Cww, and grow from

Lz ≈ 0.2δ at y′/δ = 0.1 to Lz ≈ 0.9δ at y′/δ = 0.8, for Cvv . As in the case of the cross-sections of the

u-streaks, the agreement of the two Reynolds numbers in Fig. 4 suggests that the roller dimensions

scale in outer units.

Figure 5 contains one-dimensional sections of the correlations at y = y′, and summarizes the

dimensions of the three velocity correlations. As in the case of Fig. 4, the exact or approximate

symmetries of the flow allow us to include in the figure the three velocity components, which are

separated into the three columns of panels, the two flows, with the channel in the upper row and the

boundary layer in the lower one, and both the streamwise sections (�z = 0) on the left half of each
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FIG. 6. Wall-parallel (xz) sections of the correlations at (a) and (b) y′/δ = 0.1, and (c) and (d) y′/δ = 0.8. (a) and (c) Cuu; (b)

and (d) Cvv . For each panel, top are channels, and bottom are boundary layers. Positive contours (black) are (0.05:0.1:...).

Negative contours (red) are (−0.01:−0.05,...) for Cuu, and (−0.01:−0.01:...) for Cvv . In all panels: ——, δ+ ≈ 2000; - - - -,

boundary layer at δ+ = 1313, and CH950. Note the different aspect ratios of the two columns of panels. Flow is from left to

right.

panel, and the spanwise sections (�x = 0) on its right half. In those cases in which the symmetry is

only approximate, such as in the streamwise sections of the boundary layer, only the upstream part

of the correlation is included, but it was checked that there are no qualitative differences with the

downstream part. The lower row of Fig. 5 extends slightly above y = δ, to show how the turbulent flow

merges into the mostly potential free stream. The channel in the upper row is statistically symmetric

with respect to y = δ, but the domain is kept as in the boundary layer to facilitate comparisons.

In all panels, there is a clear distinction between a near-wall region below y/δ = 0.2–0.3, where

the correlations grow wider and longer, and a layer above it, where the dimensions either remain

constant or decrease slightly. Another transition takes place above y ≈ δ in the boundary layers,

where all the correlations grow rapidly in size, clearly because the small rotational scales die rapidly

above the turbulent interface, and the larger potential structures predominate.

A more interesting transition occurs around y/δ ≈ 0.6 in boundary layers. Consider Cvv in

Fig. 5(e). Below y/δ = 0.6 the negative lobe of the correlation is in the spanwise direction, on the

right-hand side of the panel. Above that level, that lobe disappears, and is substituted by another

one in the streamwise direction (on the left-hand side of the panel). At the same time, the spanwise

dimensions of the positive lobe begin to widen, and its aspect ratio switches from streamwise to

spanwise elongation.26 A similar transition occurs around y/δ = 0.8 in the channel, although in

that case the spanwise negative lobe weakens but does not disappear. While these changes take

place in v, the correlations of u and w also change. For example, Cuu in Fig. 5(d) shortens at the

heights where the spanwise negative lobe of Cvv weakens, and its spanwise lobe, representing the

spanwise alternation of streaks, also weakens. Eventually, a negative streamwise lobe also appears

for Cuu near the edge of the boundary layer, and the structure of the correlations suggests a transition

from a streamwise-oriented organization of the layer in the near-wall region, to a more isotropic, or

spanwise-oriented, one far from the wall. The channel correlations in Fig. 5(a) can be interpreted

as an incomplete version of the boundary layer transition, with Cuu shortening, as in the boundary

layer, but without the appearance of a fully negative streamwise lobe.

Further detail of this behavior is presented in Fig. 6 with wall-parallel (xz) sections of Cuu and

Cvv , revealing the more complex organization. As before, the spanwise symmetry of the correlations

allows us to represent together the channels in the top part of each panel, and the boundary layers
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in the bottom. The two sections near the wall, Figs. 6(a) and 6(b), and the outer section of Cuu in

Fig. 6(c), hold no surprises. They are consistent with the organization of the streamwise velocity into

streamwise streaks alternating in the spanwise direction, and the corresponding organization of v

into quasi-streamwise rollers. The already mentioned difference between the streamwise length of u

in boundary layers and channels is also clearly visible. On the other hand, the wall-parallel sections

of Cvv in Fig. 6(d) are qualitatively different from those closer to the wall. The lateral correlation

minima in Fig. 6(b) are substituted by a roughly circular annular trough in the case of the channel,

and by localized minima up- and down-stream from the central peak in the boundary layer. The

quadrupole structure of the correlation minima in Fig. 2(a) is now seen to be a transitional stage

between the spanwise structure of Cvv near the wall, and its streamwise organization in the outer

layer. The transition is clearer in boundary layers, where the spanwise negative lobes of Cvv all but

disappear far from the wall, but it is also present in the channel.

The behavior of Cww in Figs. 5(c) and 5(f) is more difficult to interpret, because we know from

Figs. 3(d) and 3(f) that its negative lobes are above and below the primary peak, rather than in

front or to the side. They are therefore not captured well by the wall-parallel sections in Fig. 5. For

example, the disappearance from the x-section of the negative correlation lobes towards the center

of the channel, or near the edge of the boundary layer, simply means that the body of the correlation

tends to be horizontal at those locations, from symmetry. In fact, most of the negative correlation

contours in Figs. 5(c) and 5(f) are too weak to be visible in either of the cross sections in Figs. 3 or

4. The main exception is the strong spanwise negative peak in the upper-right corner of Fig. 5(f),

whose main role is to satisfy continuity with the streamwise negative peak of Cuu in the upper-left

corner of Fig. 5(a).

Another interesting feature is the near-wall “nose” of Cww. Comparison of different Reynolds

numbers (not shown) reveals that this is a buffer-layer feature, peaking about y+ = 15, and scaling

in wall units. It represents elongated narrow regions that are almost surely associated with the

quasi-streamwise vortices in that part of the flow.49

The most striking difference is between the streamwise halves of Figs. 5(a) and 5(d) which

show the length disparity between boundary layers and channels. What makes it interesting is that

it extends over the whole flow thickness, including heights below y/δ = 0.4 in which the effect of

the intermittency in the outer edge of the boundary layer should be negligible. However, we have

argued that the correlations of attached variables, such as u, are bound to be essentially uniform in

y, because they represent different aspects of vertically correlated structures. We will see in Fig. 9

in Sec. III C that u is correlated across the flow thickness, both in boundary layers and in channels.

Therefore, its relatively uniform streamwise length over the whole flow can be understood as an

outer-layer effect in both cases, transmitted near the wall by the pressure fluctuations.70

B. The effect of box size and Reynolds number

Figures 3, 4, and 6 contain data from the two extreme Reynolds numbers of the present

boundary-layer data set, which differ by a factor of 1.5. In general, they agree well, showing that

the correlations scale in outer units at the two chosen wall distances.29, 46 More complete scaling

results can be obtained by redrawing Fig. 5 for a wider range of Reynolds numbers. Although not

shown here to avoid clutter, this was done for all the available channel simulations from our group

(δ+ = 350–2000),19, 20, 40 and for six stations of the present and earlier21 boundary-layer simulations,

covering δ+ = 450–1950. Where appropriate, they were supplemented by results from channels at

δ+ = 4200 in a smaller box, and at δ+ = 550 in a very large one.67 The results are summarized next.

The kink in the streamwise correlations of Cvv occurs at the top of the logarithmic layer,

y/δ = 0.15, for boundary layers and channels, and scales well in outer units. Above the kink, the

correlation length at Cvv =0.1 stabilizes at Lx ≈ 0.7δ. As already mentioned, the near-wall nose

in Cww is a viscous feature, scaling in wall units. The spanwise correlation Cuu generally scales in

outer units, except for y+ � 30, where both boundary layers and channels have a width L+
z ≈ 100,

clearly related to the sublayer streaks.72 The streamwise sections of this correlation collapse near the

wall in mixed units, Lx/δ vs. y+, but they are different for the two flows. The boundary layers keep

growing up to y/δ ≈ 0.15, where they stabilize at Lx/δ ≈ 1.5 for Cuu = 0.1. The channels are roughly
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FIG. 7. Effects of the Reynolds number and computational box size on Cuu at y′/δ = 0.6 in channels. (a) Filtered Cuu. A

low-pass sharp Fourier filter is applied in the streamwise direction, with cut-off λco
x /δ = 8π . Positive contours (black) are

(0.02:0.1:...), and negative ones (red) are (−0.02:−0.05:...). ——, CH2000; - - - -, CH950. (b)–(d) Single-height (y = y′)

streamwise (�z = 0) correlations. Symbols stand for Reynolds numbers: ▽ (red), δ+ ≈ 550; �, δ+ ≈ 950; ©, δ+ ≈ 2000; △,

δ+ ≈ 4200.67 Lines stand for the length of the simulation box: - - - -, Lx/δ = 2π ; ——, 8π ; — - —, 60π .67 (b) No windowing.

Different simulation boxes, and δ+ = 550 and 2000. (c) Same cases as in (b), with a data window of size 2πδ. (d) With a

window of size 8πδ. δ+ = 550–4200. The symbol + is the Blackman-Harris76 data window.

twice longer than the boundary layers at the same height, even in the buffer region, and keep getting

longer up to y/δ ≈ 0.5.

The longitudinal sections of Cuu in channels are the exception to the scalings in the previous

paragraph, in that they do not scale in outer (or wall) units even far from the wall. For example,

reducing the Reynolds number by a factor of two in Fig. 3(e) reduces its length by 20%. The trend

of shorter Cuu at lower Reynolds numbers continues for all the channels tested with similar box size,

down to δ+ = 350. Liu, Adrian, and Hanratty42 also found that the length of Cuu in channels depends

on the Reynolds number (δ+ = 300–1400), but their results are different from ours. They find that

increasing the Reynolds number leads to longer structures near the wall, and to shorter ones farther

away, while the trend in our case is to longer correlations everywhere.

A failure in the Reynolds-number scaling of the streamwise velocity fluctuations far from the

wall has been noted before.19, 22, 73 At its simplest level, it manifests itself as an increase of u′+

measured at a fixed y/δ as the Reynolds number increases, at least for δ+ � 104. The references

just cited include several kinds of wall-bounded flows. Later measurements in boundary layers and

pipes at much higher Reynolds numbers74, 75 suggest that this could still be a low-Reynolds-number

phenomenon, but the question is still unsettled and the effect should be present at the Reynolds

numbers discussed here. It has been shown before that the problem is related to the longest structures,

because it mostly disappears when the spectra are filtered beyond λx/δ ≈ 6, both in numerics and

in experiments.19 This is also the case here. Figure 7(a) shows Cuu for the two channels used in

Fig. 3(e), with their kx = 0 modes removed by a sharp Fourier filter that only retains wavelengths

λx/δ ≤ 8π . Most of the discrepancies have disappeared.

However, Fig. 3(e) is also the only one in which our correlations extend over dimensions

comparable to the computational box, and it is important to clarify whether the effect is real or

numerical.
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Consider Fig. 7(b), which shows several one-dimensional streamwise correlations, Cuu from

channels at δ+ = 950 and δ+ = 2000, with simulation boxes ranging from 2π to 60π . There is a

substantial difference between the correlations from the different box sizes at the same Reynolds

number, including the two boxes at δ+ = 550 with Lx/δ = 8π (red solid line) and Lx/δ = 60π (chain-

dotted), even if both boxes are much longer than the range of separations shown in the figure. The

simplest solution that comes to mind is to damp the edges of the data with a streamwise data window,

W (�x) similar to those used in computing modified periodograms.77 It is easy to see that this is

equivalent to windowing the correlation with W (�x). Figure 7(c) displays the result of applying a

Blackman–Harris data window76 extending from �x/δ = −π to π . It cures the problem, including

the correlations in boxes of length 2πδ, which are minimal with respect to that window. The collapse

of the two Reynolds numbers also confirms that there is little Reynolds number dependence for

wavelengths below λx/δ ≈ 2π .19 Encouraged by this result, we apply a �x/δ = ±4π window to the

correlations of all our channels with box lengths 8πδ. The result is in Fig. 7(d), and recovers the

trend in Fig. 3(e) to longer correlations at higher Reynolds number. Note that we have added to this

figure a channel with δ+ = 4200 and box length Lx = 2πδ, for completeness. It follows the same

trend as the other three Reynolds numbers, although it should be emphasized that the experiments

in Fig. 7(c) do not necessarily imply that its correlations can be trusted in this wider window.

C. Three-dimensional geometric properties

We have already mentioned that distances measured at y = y′ do not necessarily represent

the correlation dimensions, because the structures are inclined with respect to the wall. The three-

dimensional geometry of the correlations is discussed in this section using a variety of measures.

The largest dimensions along the three coordinate axes are defined in Fig. 8 as the limits of the

bounding box of the correlation contour being considered, measured with respect to the reference

correlation point. For example, Lu
x and Ld

x are the maximum distances upstream and downstream of

the center, and the maximum correlation length discussed in Sec. III A is Lm
x = Lu

x + Ld
x .

The results for Cuu are shown in Fig. 9, where the upper row contains channels, and the lower one

boundary layers. Shaded regions and line contours correspond to high and low Reynolds numbers,

respectively. Note that the left (upstream) half of Figs. 9(a) and 9(d) should be compared with the left

(streamwise) half of Figs. 5(a) and 5(d), while each (symmetric) half of Figs. 9(c) and 9(e) should

be compared with the right (spanwise) half of Figs. 5(a) and 5(d).

The large-scale features of u are also shorter in boundary layers than in channels in this

representation, putting to rest one of the possible reasons for why boundary layers might have

been found to be shorter than channels at y = y′, which would be that their downstream growth

makes their structures more inclined with respect to the wall. We saw in Sec. III A that the total

correlation length of the attached structures should be relatively constant across their height, although

their position with respect to the central reference point may change. That is indeed the case for

Cuu = 0.1 between y′/δ = 0.2–0.8 in Fig. 9(a), where Lm
x /δ ≈ 10 for CH2000 and Lm

x /δ ≈ 8 for

CH950. As we move away from the wall, Lu
x increases and Ld

x decreases, but in such a way that Lm
x

remains roughly constant. That this behavior is connected with the vertical coherence of the global

modes19 can be seen more clearly in Fig. 9(b), which reveals that Cuu = 0.1 entirely fills the lower

half of the channel within that range of y′. The same is true for boundary layers in Fig. 9(e), at least

below y′/δ = 0.5. As briefly discussed at the end of Sec. III A, this large vertical dimension provides

(a) (b)

FIG. 8. Sketch of the three-dimensional geometrical properties of the isocontours of given correlation function. (a) Stream-

wise (xy) section of Cuu. The flow is in the direction of the arrow. (b) Dimensions of the bounding box of a given correlation

threshold. •, Reference correlation point.
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FIG. 9. Three-dimensional maximum correlation size for Cuu along the streamwise (a) and (d), wall-normal (b) and (e),

and spanwise (c) and (f) directions for channels (top) and boundary layers (bottom). The contours are (0.1,0.2,0.3:0.2:0.9).

For all the panels, the shaded contours are CH2000 and BL6600 at δ+ ≈ 2000, and solid lines are CH950 and BL6600 at

δ+ ≈ 1300. The dashed lines in (b) and (e) mark the positions of the wall, y=0, and of y=δ.

a direct link between the wall and the intermittent outer part of the boundary layer. Note that the

scaling of Ly with δ is very good, and CH950 falls right on top of CH2000.

Note also that the lengths in Fig. 9 are generally larger than the y = y′ ones in Figs. 5(a) and 5(d),

and are distributed differently. While the upstream length of Cuu peaks around y′/δ = 0.5 in Fig. 5(a),

it keeps growing up to y′/δ = 0.75 in Fig. 9(a). Similar differences occur for the boundary layers in

Figs. 5(d) and 9(d). The effect is less marked for the spanwise widths, because the structures are not

inclined in that direction.

As the correlation threshold increases, the coherence length decreases, and the contribution of

the large-scale global modes weakens. For instance, at Cuu = 0.25, Lm
x is no longer independent of

y′, nor do the u-structures remain correlated across δ.

A more conventional integral length is defined from the correlation function as78

� j,ψ =

∫
Cψψ (r, r

′) dr j . (5)

Unfortunately, the interpretation of this definition is not always straightforward. For example,

for a one-dimensional homogeneous signal, (5) is proportional to the energy spectrum at zero

wavenumber78 and, for signals with zero large-scale energy component, it vanishes. Even when this

is not the case but the correlation is not everywhere positive, different parts of the integral partially

cancel, making the physical interpretation of � unclear. In other cases the problem is numerical and,

if the integration limits in (5) are chosen too wide, or the number of samples is not large enough, the

integration of the noisy correlation tails can lead to errors of the same order as the quantity being

measured. Several choices for the integration limits have been proposed to avoid these problems,

and the accuracy of the different methods depends on the particular case being considered.79 For

example, it is common to limit the integration to within the first zeros of the correlation function,

if they exist, or to the closest intersections with C = 0.05. We have adopted this last convention,

with the modification that the integral in the wall-normal direction is also truncated to at most

y = δ, to avoid the irrotational region in boundary layers. A consequence of this choice is that �

does not reflect a property of the correlation as a whole, but only of its central positive peak, and

tends to track the behavior of the one-dimensional intersections in Fig. 5. On the other hand, since

similar procedures are often used in experiments, it is easier to find existing data with which to

compare.
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FIG. 10. Integral lengths for boundary layers and channels at δ+ ≈ 2000. (a) �x. (b) �y. (c) �z. For all the panels: ——

and ©, u; — - — and �, v; - - - - and ▽, w. Lines without symbols (black) are the present boundary layer, those with open

symbols (red) are channels, and closed symbols (gray) are for the compressible boundary layer in Ref. 28.

This is done in Fig. 10, which presents integral lengths for the three velocity components as

functions of height. It also includes data from the low-Mach-number boundary layer in Ref. 28, with

good agreement.

The difference between �x,u in boundary layers and channels is again obvious in Fig. 10(a). The

integral length grows very fast in both cases across the buffer layer, but it stops growing around y′/δ

≈ 0.2 in the boundary layer,23, 26, 28, 32 and keeps increasing up to y′/δ ≈ 0.5 in the channel, mimicking

the behavior in Figs. 5(a) and 5(d). What Fig. 10(a) suggests is that the main difference between

the two flows is a large-scale structure of u, filling the whole flow thickness and peaking around

y′/δ ≈ 0.5, which is present in the channels but not in the boundary layers, presumably because the

outer-flow intermittency prevents it from forming in the latter. This is probably related to the often

quoted observation that the wake component in channels is much weaker than in boundary layers,

and that the logarithmic velocity profile extends deeper into the outer region of the former.22, 26 It

has been hypothesized that the reason why the correlation length in channels also begins to decrease

around y′/δ ≈ 0.5 is that the ejections from the opposite wall act as a weaker version of the irrotational

inrushes from the free stream.26, 80 That explanation would be consistent with the higher location in

Fig. 10(a) of the length maximum in channels than in boundary layers.

The wall-normal and spanwise integral lengths in Figs. 10(b) and 10(c) broadly confirm the

behavior of the sections in Fig. 5, but it is interesting to note that Fig. 10(b) illustrates some of the

limitations mentioned above for �. For example, all the �y decrease above y′/δ ≈ 0.5, but mainly

because their integral is only taken up to y = δ. More seriously, �y,w increases linearly away from

the wall in the logarithmic region, suggesting self-similarly, but it is always very narrow. Referring

back to Figs. 3 and 4, this is seen to be true only for the vertical sections of these structures, and only

for its central positive peak. The definition of the integral length fails to capture both the inclination

of the correlation and the significance of its negative lobes.

Inspection of the (xy) sections in Fig. 3 shows that any measure of the inclination angle of the

correlations depends of the isocontour being considered. A procedure to quantify this dependence

is illustrated in Figs. 11(a)–11(c) for CH950. Similar results are obtained for CH2000. Consider a

correlation isocontour for a given variable at a given y′. Its (xy) section is generally not elliptical, but

it can be approximated by an ellipse having the same second-order tensor of inertia. We do this by

assuming that the isocontour bounds a solid shape of constant density, without taking into account

the distribution of C within it. The inclination α is defined as the angle between the major semiaxis

of that ellipse and the positive x axis. At the same time, the isocontour has a maximum length Lm
x ,

defined as in Fig. 8. Figures 11(a)–11(c) are maps of both α (shaded contours) and of the isolevels of

Cψψ used for their computation, drawn as functions of y′ and Lm
x for the three velocity components.

In general, more intense isocontours have shorter lengths and tend to be more vertical with respect

to the wall, probably because the structures become both uncorrelated from their cores and tilted by
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(c)

(d)

(b)

FIG. 11. Inclination angle α for BL6600 at δ+ ≈ 2000, and CH950. (a)–(c) Inclination angle for CH950 as a function of

Lm
x /δ and y′/δ for Cuu, Cvv , and Cww , respectively. Shaded contours are (0:1:13) degrees in (a), (86:2:100) degrees in (b),

and (0:5:15 and 17:2:40) degrees in (c). Dashed contours are correlation isolevels (0.1:0.05:0.3 and 0.4, 0.5, 0.6). See text

for details. (d) Maximum inclination angle as a function of y′/δ: ——, αu; — - —, αv ; - - - -, αw . Lines without symbols are

BL6600, and those with empty symbols (red) are CH950. (gray) is a numerical compressible boundary layer,28 and (blue)

are experimental smooth and rough boundary layers.43

the shear as they evolve. A characteristic inclination angle, defined as the maximum angle found at

a given height over the range of correlation levels C ∈ 0.1–0.85 (to avoid numerical inaccuracies), is

given as a function of y′ in Fig. 11(d). It should be borne in mind in interpreting this figure that other

inclination angles of the same variable can be defined at the same wall distance, and that the maps

in Figs. 11(a)–11(c) are a more complete representation than any single number. Also, inspection of

the correlations in Fig. 3 shows that the elliptical model is sometimes only a rough approximation.

Nevertheless, the maximum angles for each velocity component are remarkably uniform across

most of the flow, although different from each other. They agree much better between boundary-layers

and channels than other measures, probably because, as seen in Figs. 11(a)–11(c), the maximum

inclinations correspond to relatively small structures controlled by local, rather than global, pro-

cesses. Figure 11(d) includes data for αu from a numerical compressible boundary layer,28 and from

a experimental one including smooth and rough walls.43 They agree well, especially considering the

different flows involved and the slightly different definitions of the inclination angle in each case.

The maximum inclinations for Cuu and Cww are achieved for C ≈ 0.3–0.5, where αu ≈ 10◦ and

αw ≈ 32◦, respectively. For Cvv in Fig. 11(b) there are two regions. Close to the wall, v is blocked

by impermeability, and the structures align in the direction of the flow because of the intense shear.

In that region, αv ≈ αu ≈ αw. These are the white shaded contours in Fig. 11(b), corresponding to

angles αv < 75◦. Farther away from the wall, the structures are more inclined, becoming almost

vertical, αv > 75◦, above y′+ ≈ 100. The maximum angle is achieved at y′/δ ≈ (0.5–0.6).

The different inclinations of the different variables had been qualitatively noted before,21 and

they are interesting because they seem to contradict the idea of a common structure incorporating the

three velocity components. However, this is not necessarily so. Correlations are statistical measures

that weight the geometry of a given velocity field with its squared intensity. Thus, any characteristic
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number extracted from the correlation of some variable most probably represents its geometry when

the variable is strongest. Figure 11(d) should therefore be interpreted to mean that u is strongest

when the structures are aligned to the streamwise direction, v is strongest when they are normal to

the wall, and w is intermediate between the two.81

IV. REYNOLDS STRESS CROSS-CORRELATIONS

The cross-correlations of u and v are often used as indications of the structure of the momentum

transfer in the form of Reynolds shear stress, −〈uv〉,23, 42 although it should be clear that Cuv actually

expresses the statistical dependence of u at one point on the value of v at another. True momentum

transfer is associated with fluctuations at the same location, i.e., r = r
′.

Figures 12(a) and 12(b) present sections of Cuv in the near-wall region, y′+ ≈ 15, for boundary

layers and channels, showing that there is no difference between the two flows at this wall distance.

Note that, as in the case of the velocities, continuity constrains the cross-correlations, and
∫∫

Ruv dz dy =

∫∫
Rvu dx dz = 0. (6)

The resulting positive secondary lobes of Cuv are clearly seen in Fig. 12(a). If we take their distance

to the central point, �z+ ≈ 50, as a measure of the width of the stress structure, and the maximum

length in Fig. 12(b), Lm+
x ≈ 400, as their streamwise extent or spacing, Figs. 12(a) and 12(b) agree

well with the quasi-streamwise vortices of the buffer region.49

Interestingly, the minimum (most negative) correlation between u and v in Figs. 12(a) and

12(b) does not occur at zero-distance, but slightly below, at y+ ≈ 6 and x+ ≈ −6. The stress-

structure coefficient derived from one-point statistics is cuv =−〈uv〉/u′v′ ≈ 0.40 at this location,

but the maximum value using two-point statistics is 30% higher, |Cuv|max ≈ 0.52. As we move

farther from the wall, the difference between the two values decreases. At y′/δ ≈ 0.8, cuv ≈ 0.26 and

|Cuv|max ≈ 0.32 in channel flows, and cuv ≈ 0.40 and |Cuv|max ≈ 0.43 in boundary layers.

The outer-layer correlations in Figs. 12(c) and 12(d) are quite different for boundary layers and

channels, reflecting the different dimensions of u in that region. In both cases, Cuv is intermediate

between Cuu and the much shorter Cvv . It is interesting that structures connected with the tangential

Reynolds stress have lengths of Lm
x > 1.5δ in boundary layers, and Lm

x > 2.5δ in channels, even

if Fig. 6 shows that there is very little energy in v at those scales. The cospectrum of u and v

contains even longer wavelengths extending across the whole flow thickness,41 corresponding to the

global modes mentioned several times in the present paper. These long correlations and spectra have
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0.8
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−0.8 0 0.8 1.6

−200 0 200
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FIG. 12. Contours of Cuv at δ+ ≈ 2000 at: (a) and (b) y′+ ≈ 15, and (c) and (d) y′/δ=0.8. (a) and (c) Cross-flow (zy) sections.

The left half of the figure is the boundary layer, and the right half is the channel. Contours are ±(0.05:0.05:...). Positive

contours are black, and negative ones are red. (b) and (d) Streamwise (xy) sections. - - - -, channel (red); ——, boundary layer

(black). Contours are (−0.05:−0.05:...). The flow is from left to right.
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been interpreted to mean that there are very long structures carrying Reynolds stresses,26, 41, 42, 46

but Lozano-Durán, Flores, and Jiménez5 studied the geometry of individual structures of strong uv

in channels, and found that they are generally only three times longer than they are high, which

is roughly the extent of the correlations in Fig. 12(d). The only exceptions are some extremely

long structures, filling most of the channel and roughly as long as the simulation box (∼25δ). This

agrees with the dimensions of the global modes, but the authors concluded that even these structures

are formed by the concatenation of smaller ones of more modest aspect ratio. Closer to the wall,

Refs. 82 and 83 analyzed the spatial relation between instantaneous v- and u-structures in the buffer

layer of channels, and found that each low-velocity streak is associated with a number of smaller v

structures, separated by an average streamwise distance x+ ≈ 300.

Liu, Adrian, and Hanratty42 noted that the cross-correlation of two stochastic variables can be

used to generate an optimal basis in which to express the spatial organization of its product, and they

used it to discuss the structure of the Reynolds stress. However, the same expansion is not necessarily

useful in cases with an underlying deterministic structure. For example, consider a train of pulses of

v trailed by another train of pulses of u at a distance �x = 1. The cross-correlation Cuv has a single

maximum at �x = 1, but the Reynolds stress is identically zero, because u and v never coincide. In

fact, Cuv in our flows (Fig. 12) looks like a shorter version of the Cuu sections in Sec. III A, while

Cvu (not shown) looks like a longer version of Cvv . The best interpretation is that they represent the

extent of the segments of the streamwise-velocity streaks associated with a single sweep or ejection

of v. In the different context of autocorrelation functions, Hutchins and Marusic29 also noted that

spectra and correlations are not necessarily good guides to the full length of individual structures.

V. PRESSURE CORRELATIONS

Pressure fluctuations are of interest in engineering because they contribute to noise, vibrations,

and material fatigue. They are also the main energy redistribution mechanism among the different

velocity components,36 and are therefore important in the formulation of turbulence models. How-

ever, our knowledge about them has improved more slowly than for others flow quantities, also

because of the technical difficulties in measuring them, and partly because the global character of

pressure requires the consideration of relatively large regions of the flow. Fortunately, DNS data are

beginning to change this situation.18, 21, 56, 58, 84

Here we discuss the three-dimensional two-point spatial correlations of the pressure, Cpp, for

the simulations in Table I. The pressure is computed from its Poisson equation, using the procedure

in Ref. 84 for channels, and the one in Ref. 62 for boundary layers.

Figure 13 is a three-dimensional representation of Cpp for the boundary layer, centered at y′/δ

= 0.6 and δ(x′)+ = 1530. The domain in the figure is 3δ × 1.2δ × 4δ in the streamwise, wall-

normal, and spanwise direction, representing the central part of the full correlation box. The positive

correlation peak is a tall wall-normal structure, moderately elongated in the spanwise direction. Its

wall-parallel section through the origin is elliptical, with major axes ax ≈ 0.75δ and az ≈ 1.8δ for

Cpp = 0.1. Its negatively correlated lobes are at �x ≈ ±δ, upstream and downstream of the center,

reminiscent of Cvv far from the wall (Fig. 6(d)).

A. Lower-dimensional sections

Figure 14 displays two-dimensional cross-flow sections of Cpp at three representative locations:

the wall, y′ = 0; the logarithmic layer at y′ = 0.1δ; and the outer region at y′ = 0.8δ. The representation

is the same used in Fig. 4 for the velocity correlations; the left half of each panel is the boundary

layer, and the right half is the channel. The figure reveals that the larger scales of the pressure,

represented by the weaker correlation contours, are of size O(δ) and extend across the whole flow

thickness.

Figure 15 contains wall-parallel sections through y = y′, at the same streamwise stations as in

Fig. 14. It shows that, in spite of the global nature of the pressure fluctuations, very localized regions

of strongly coupled structures are found near the reference point, especially as we approach the wall.

This agrees with the analysis in Ref. 22, which concluded from the pressure spectra in channels that
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FIG. 13. Three-dimensional correlation of the pressure fluctuations, Cpp, for BL6600 at δ+ = 1530 and y′/δ = 0.6. The flow

is from left to right. Several isosurfaces are shown at Cpp = −0.06 (white), +0.1 (turquoise), +0.2 (yellow), and +0.6 (blue).

In the plane sections through the correlation origin, the contour lines of positive and negative correlations are colored red and

white, respectively, ranging from 0.1 to 1.0 and from −0.01 to −0.06. The plane sections are also colored by the correlation,

ranging from positive red near the center to negative blue at the two streamwise ends of the figure. White is zero.

the structures of p contain a small-scale local component due to velocity structures of the order of

the Kolmogorov scales, and a more global one, of size O(δ) in the three coordinate directions. The

same is true for the correlations. The strongly correlated structures become more localized as the

wall is approached, but the weaker contours vary only slowly with y′. Both ranges of contours are

relatively isotropic. In particular, note that the weak correlations contours (Cpp < 0.2) in Figs. 14(a)

and 14(b) and Figs. 15(a) and 15(b) are almost identical at the wall and in the logarithmic layer,

suggesting that they represent the same wall-attached structure. At this distance from the wall, the

small-scale structure of the pressure correlation is very similar in boundary layers and channels, but

the larger-scale weaker contours are not, supporting the dual character of the pressure, with small

local scales and large global ones. A lower-Reynolds-number case is included for the boundary layer

in Figs. 14 and 15. The collapse of the correlation contours is generally poor, probably because the

global effects mix contributions from the whole range of scales.

In the outer-layer Fig. 14(c), the pressure remains attached to the wall. In boundary layers, these

outer correlations extend all the way from the wall to the potential region. In channels, they reach

across the full half-channel, but not to the opposite wall.

Further insight into the structure of the pressure is provided by the one-dimensional sections

of Cpp in Fig. 16. They are displayed in the same format as the velocities in Fig. 5. The left half
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FIG. 14. Cross-flow (zy) sections of Cpp. (a) y′ = 0. (b) y′/δ = 0.1. (c) y′/δ = 0.8. In each panel, the left half is BL6600, and

the right half is CH2000. ——, δ+ ≈ 2000; - - - -, δ+ ≈ 1313. Contour levels are (0.05:0.1:0.95).
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FIG. 15. Wall-parallel (xz) sections of Cpp, as in Fig. 14. In each panel, top is CH2000 and bottom is BL6600. The outermost

red dashed negative contour in (c) is Cpp = −0.05.

of each panel contains upstream streamwise sections, and the right half contains spanwise sections

as a function of y′. The two panels are for the boundary layer and the channel at roughly the same

Reynolds numbers. The boundary layer is both slightly longer and quite wider than the channel.

The negative lobe of the streamwise correlation is also deeper in the boundary layer than in the

channel, and extends farther from the wall, most probably due to the stronger pressure fluctuations

in the potential flow outside the former.21 In both cases, the length and width of the correlations

increases approximately linearly away from the wall, although we saw above that this is mostly due

to the intense cores of the correlations. The weaker outer contours are relatively independent of the

reference height y′, as seen in part by the location of the gap between positive and negative contours

in Fig. 16. In fact, their dependence on y′ is exaggerated in Fig. 16. We already mentioned in Sec.

III A that one-dimensional sections at y = y′ give only an incomplete view of the three-dimensional

correlations, and it is clear from Fig. 14 that most of the apparent growth of the spanwise correlations

in Fig. 16 is because they represent the intersections of similar objects at different heights.

The integral correlations lengths obtained from the one-dimensional sections of Cpp are given

in Fig. 17, computed as in Sec. III C. There are only minor differences between boundary layers

and channels for �x, p and �y,p, as could be expected from Fig. 16. The streamwise correlation

length increases almost linearly with the wall distance. The wall-normal correlation length, Ly,p, also

increases up to y′/δ ≈ 0.4, but stabilizes and later decreases above that height. As explained in Sec.

III C, this is an artifact of the truncation of the integral (5) to y ≤ δ. Note that neither correlation

length vanishes at the wall, emphasizing the attached nature of the pressure structures.

The major difference between the pressure correlations of boundary layers and channels in

Fig. 16 is their spanwise width, which is almost twice wider for the boundary layer. However, it is

unclear whether that result is reliable. The spanwise integral length is not given in Fig. 17 because

it was found that the simulation box is too narrow to allow Cpp to fully decay at the edge of the box.

Note that, because boundary layers grow downstream, their aspect ratio decreases as the Reynolds
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FIG. 16. Single-height (y = y′) sections of Cpp, as functions of y′/δ. (a) BL6600, δ+ ≈ 2000. (b) CH2000. The left half of

each panel is the upstream streamwise section (�z = 0). The right half is the spanwise section (�x = 0). For all panels, the

shaded contours are positive, (0.1,0.2, 0.3:0.2:0.9), and the line contours are negative, (−0.01:−0.01:...).
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FIG. 17. (a) and (b) Integral correlation lengths for Cpp as a function of y′/δ. Lines without symbols are BL6600 at δ+ ≈ 2000;

with symbols are CH2000. (a) �x, p. (b) �y,p. (c) Effect of the width of the computational box Lz/δ on the one-dimensional

pressure correlation, Cpp(�x = 0, y = y′, �z) at different heights. Three stations of the boundary layer are presented: — - —,

δ+ = 1313; - - - -, δ+ = 1530; ——, δ+ = 1990. · · · · · · · · · , CH2000. Correlations are offset vertically by 0.4, for clarity.

number increases. In our case, based on previous experience with the velocity correlation in channels,

the simulation was dimensioned so that Lz/δ ≈ 8 at the downstream end of the simulation box. The

actual values for three Reynolds numbers representative of the simulation range, δ+(x′) = 1313,

1530, and 1990, are Lz/δ ≈ 12, 10, and 7.5, respectively.

Those three Reynolds numbers are used in Fig. 17(c) as surrogates for the effect of the aspect

ratio on the one-dimensional Cpp(�z). No major Reynolds-number effects are found for y′/δ <

0.8 but beyond that limit the most downstream station begins to diverge from the other two, and

the differences become obvious once we move into the potential region. As already discussed for

the velocity correlations, Cpp must grow rapidly in size along the potential region to reflect the

organization of the large-scale irrotational motions.54 For example, at y′/δ = 0.4, the values of

the correlation at the edge of the box are Cpp(�z = Lz/2) = 0.0016, 0.005, and 0.02 for the three

boundary layer stations mentioned above. The corresponding values at y′/δ = 1.3 are Cpp(Lz/2) =

0.05, 0.2, and 0.28. It was already known from the pressure spectra in channels that the simulation

box of CH2000 (Lz = 3π ) is not wide enough to represent the pressure correctly.22 Even if it is

clear from Fig. 17(c) that the pressure correlations in channels are narrower than in boundary layers,

Cpp(Lz/2) = 0.14 at the centerline of CH2000.

It is a fair question whether these unresolved long-range pressure correlations have an influence

on the accuracy of the simulations, and the most likely answer is that they do. The incompressible

Navier–Stokes equations only contain pressure gradients, but it was argued in Ref. 22 that they are

equations for the accelerations, and that velocity differences correspond to pressure fluctuations. If

we take �p ∼ �(u2), the relative uncertainties given above for the pressure correspond to twice the

relative uncertainties in the velocities.

VI. CONDITIONAL VELOCITY CORRELATIONS

The correlation Cψφ describes the mean value of ψ(r) conditioned to that of φ(r′) but, because

it is an average, it retains no information about the functional relation between the two variables. If

that relation is assumed to be linear, Linear Stochastic Estimation (LSE)16 provides a best estimate

for ψ(r) in terms of φ(r′), but nonlinear relations require higher-order estimates, or conditional

statistics.
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FIG. 18. Wall-parallel (xz) sections of the conditional correlation Cuv |v at y′/δ = 0.6 and Ŵ = 0. (a) CH2000. (b) BL6600

at δ+ ≈ 1530. For all the panels: correlations conditioned to positive events C⊕
uv |v are shown at the top half, and those

conditioned to negative events C⊖
uv |v , on the bottom. See text for details. Contours are ±(0.02:0.03:...). ——, positive; - - - -,

negative.

Define the conditional correlations,

C⊕
ψφ(r, r

′)|ξ =
〈ψ(r) · φ(r′)〉|ξ (r′)>Ŵ

σψ (r) · σφ(r′)|ξ (r′)>Ŵ

and C⊖
ψφ(r, r

′)|ξ =
〈ψ(r) · φ(r′)〉|ξ (r′)<−Ŵ

σψ (r) · σφ(r′)|ξ (r′)<−Ŵ

, (7)

where the three variables involved are not necessarily the same, and the condition is that ξ (r′) has

to be stronger than a given threshold, ±Ŵ, typically chosen as a fraction of the standard deviation

σ ξ (y′). When Ŵ = 0, the two correlations separate positive from negative events.

Consider first the conditional cross-correlations Cuv|v in a wall-parallel (xz) section at y′/δ = 0.6,

presented in Fig. 18. The top half of each panel is conditioned to positive v > 0 (outwards motions),

whereas the lower half is conditioned to v < 0 (inwards motions). Using the classical quadrant

analysis terminology,85, 86 most of the inwards motions correspond to Q2 ejections (v > 0 and

u < 0), whereas to Q4 sweeps (v < 0 and u > 0) for the inwards motions case. Fig. 18(a) shows that

the ejections, that typically correspond to low-speed streaks, are considerably longer in channels than

the sweeps. This agrees with the analysis of Lozano-Durán, Flores, and Jiménez,5 who extracted

individual structures of strong −〈uv〉 in channels, and found that, although Q2s and Q4s were of

comparable size throughout the inner and logarithmic layer, the ejections became much longer than

the sweeps farther from the wall. Both conditional correlations in Fig. 18(a) are biased downstream

from the reference point, showing that the wall-normal velocity events are predominantly located

near the front of the streaks.82 Fig. 18(b) repeats the analysis for the boundary layer, and shows that

the lengths of the two types of streaks are closer to each other than in channels. This is especially

true for the outwards events, strongly suggesting that the differences discussed in Sec. III between

the lengths of Cuu in both types of flows are mostly due to the low-speed structures of the outer layer.

Note that the difference between the conditional correlations of inwards and outwards motions is not

unexpected, because the events associated to those quadrants contribute differently to the Reynolds

stress depending on the distance to the wall, even at r = r
′. That difference increases in the outer

layer,87 and at y′ = 0.6δ and zero separation the fractional contribution to the Reynolds stress of

the outward (Q1 and Q2) and inward (Q3 and Q4) events are, respectively, R⊕
uv|v/Ruv ≈ 0.78 and

R⊖
uv|v/Ruv ≈ 0.22 in the case of the channel flow, and 0.64 and 0.36 in the case of the boundary layer.

Note that the value of the denominator in (7) differs little between the two conditional correlations,

because the probability distribution of v is roughly symmetric at that height (not shown). Therefore,

the differences observed can be attributed first to the weaker inwards motions at the middle of the

outer layer, and secondly, to the much longer low-velocity streaks in channel flows.

Lee and Sung32 recently used the conditional Cuu|u in the wall-parallel sections of a pipe

(Ŵ = 0) to differentiate between the structure of high- and low-velocity streaks, and found very

little difference between the two. Baltzer, Adrian, and Wu51 repeated their analysis with a slightly

more complicated condition, and got similar results for the low-speed streaks. They did not analyze
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in detail the high-speed structures, citing Ref. 32 to justify the assumption they are similar to the

low-speed ones. On the other hand, previous visualizations had found that, at least near the wall,

low-velocity streaks are longer than high-velocity ones.13, 82 One reason for this discrepancy is

probably the conditioning threshold. Both correlation studies used Ŵ = 0, while visual analyses29 or

segmentation algorithms5, 17, 82, 83 usually rely on a higher threshold to separate high from low speed.

For example, the streaks in Refs. 82 and 83 were characterized as connected regions in which the

streamwise velocity is more than one standard deviation away from its mean (Ŵ = σ u). Both papers

found that the low-momentum streaks differ most from the high-momentum ones at y+ ≈ 10, where

they are 85% longer.

The analysis in Ref. 32 is repeated and compared in Fig. 19 for boundary layers and channels,

using two different thresholds. It is found that the threshold changes substantially the correlation

length, although in different ways for different flows and locations. Most visible in the figure are

the changes for the channel away from the wall, where a high threshold tends to make the two

conditional signs more equal. Although hard to see in the figure, the opposite is true below y′+ = 15.

The low-speed correlations, C⊖
uu |u , are longer in that region than the high-speed ones, and the ratio of

the lengths at y′+ = 10 changes from 1.15 at Ŵ = 0 to about 1.5 for Ŵ = 1.5σ u. However, the largest

difference in Fig. 19 is between the channel and the other two flows. Not only is the channel much

longer than both the pipe and the boundary layer, in agreement with the results for the unconditional

correlation, but it is also the only flow for which low-speed structures are substantially longer than

the high-speed ones far from the wall. The widths in Fig. 19(b) have a complicated dependence on

y′. In the three flows, high-speed structures are wider than low-speed ones below y′/δ ≈ 0.5, and

narrower above that level, although the differences are not great.

Another interesting set of correlations are those conditioned on the sign of w, because a

consequence of the symmetry of the problem is that correlations would be symmetric in z even if

the underlying structures were not. The wall-parallel sections of the unconditional correlations Cww,

which were not included in Fig. 6, are presented in Figs. 20(a) and 20(c). They are characteristically

squarish, suggesting that they are the superposition of two diagonals, presumably associated with

the sign of w. This is confirmed by Figs. 20(b) and 20(d), which present C⊕
ww|w. Both for the channel

and for the boundary layer, the conditional correlations are aligned to the 45◦ diagonal, most clearly

so for the boundary layer. By symmetry, C⊖
ww|w is aligned to the opposite diagonal, and is not shown.

The effect is stronger far from the wall. The shaded contours that correspond to y′/δ = 0.1 in Figs.

20(b) and 20(d) are actually slightly inclined in the opposite direction to those away from the wall.

Since we saw in Fig. 4 that w is an attached variable in which the correlation of the large outer

scales changes sign near the wall, this negative inclination is probably due to that counterflow. The

dimensions of the near-wall correlations in Fig. 20, which are comparable to those away from the

wall, support this interpretation.
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FIG. 20. Wall-parallel (xz) sections of the correlation of the spanwise velocity at y′/δ = 0.1 (shaded) and y′/δ = 0.8 (lines).

(a) and (b) CH2000. (c) and (d) BL6600 at δ+ ≈ 1530. (a) and (c) Unconditional correlations. Positive contours (black solid

lines) are Cww=(0.1:0.2:...). Negative contours (red dashed lines) are Cww = −(0.02:0.1:...). The shaded contours are Cww

= 0.1,0.3. (b) and (d) Conditioned to w > 0, C⊕
ww|w . Contours are twice smaller than in (a) and (c). The dashed diagonal is

inclined at 45◦ to the mean velocity. (e) Instantaneous plane of w at y = δ(x) and Reθ = 3040–5870 (δ+ ≈ 1050–1810). The

axes are normalized with the thickness δ taken at the middle of the box, Reθ = 4500, and w with the x-dependent friction

velocity. Dark areas are 0 < w < 1.5σw . Dashed line as in (b).

The diagonal alignment of the structures of w is surprising, and strong enough to be seen in

instantaneous flow fields (Fig. 20(e)). Its scale is also large enough for visible stripes to cross the

whole spanwise simulation domain, ∼10δ. Weak diagonal structures of roughly similar orientation

have been reported in smoke visualizations of a boundary layer at very low Reynolds numbers.88

Baltzer, Adrian, and Wu51 isolated helical features of u in a pipe by separating Fourier modes

with different helicities, but their inclination with respect to x was only ∼5◦, much shallower than

those found here. These researchers were motivated by the “hourglass” shape of the unconditional

correlation Cuu, which is also visible in Fig. 6(a) and 6(c) above. Hutchins and Marusic,29 while

studying the meandering of the logarithmic-layer streaks of u in boundary layers, had noted that such

correlations were likely to correspond to the superposition of two independent diagonal structures.

The square shape of Cww in Figs. 20(a) and 20(c) is an extreme example of that phenomenon, but
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FIG. 21. Wall-parallel (xz) sections of the conditional correlation Cuu |w with w(r′) > 1.5σw . (a) CH2000. (b) BL6600 at δ+

≈ 1530. Lines and contours as in Fig. 20(b).
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note that we do not separate the two orientations by selecting inclined Fourier modes, but by the

sign of the conditioning spanwise velocity. In fact, it can be shown that the diagonal structure is

associated with relatively strong w. The elongated shape of the conditional correlation is accentuated

when the threshold is chosen as w(r′) > 1.5σw. It becomes more circular when only considering

weak conditioning velocities, |w(r′)| < 1.5σw, but it never completely disappears. We cannot offer

at the moment an explanation for this structure, but it is interesting that it is also present in channels,

where it appears to be contaminated by the opposite orientation of a similar structure coming from

the other half of the channel. In boundary layers, it is a property of the rotational turbulent flow. It

cannot be found beyond y′/δ = 1.05.

That the spanwise velocity is also able to distort u is tested by the conditional correlations Cuu |w
in Fig. 21. The skew is now only ∼7◦, closer to that in Ref. 51, and probably corresponds to the

meandering discussed in Ref. 29. It can only be clearly seen when conditioning by relatively strong

velocities, Ŵ=1.5σw, but it suggests that the meandering of u is a consequence of the more obvious

diagonal organization of w.

VII. SUMMARY AND CONCLUSIONS

Fully three-dimensional two-point statistics of a new zero-pressure-gradient turbulent boundary

layer18 up to Reθ ≈ 6600 (δ+ ≈ 2000) have been presented and compared with turbulent channels at

similar Reynolds numbers. We considered very large domains O(20δ) to observe the largest scales

present in the flow and to educe the average spatial structure of the velocity and pressure fluctuations

in the buffer, logarithmic, and outer regions.

We have shown that the streamwise-velocity correlations are coherent over longer distances in

channels than in boundary layers, especially in the direction of the flow. Along that direction, the

maximum length of the weakly correlated structures is O(18δ) in channels and O(7δ) in boundary

layers, attained within the outer and logarithmic layers, respectively. We argue that those correlation

lengths do not change significantly from the near-wall to the outer region because they essentially

reflect different aspects of a common large-scale structure, implying that the energy from the larger

outer structures reaches the neighborhood of the wall. The behavior of the integral correlation

lengths along the streamwise direction suggests that the main difference between the two flows

is a large-scale structure that fills the whole flow thickness and peaks around y′ ≈ 0.5δ. That

structure is only present in channels, most likely because the intermittent character of the edge of

the boundary layer prevents its growth. We have linked these very large structures with the global

modes identified by del Álamo et al.,19 whose intensity fails to scale either in outer or in wall

units. Such large scales are absent in the spanwise and wall-normal velocity components, whose

maximum streamwise lengths, O(δ–2δ), change little with the type of flow and with the Reynolds

number. On the other hand, the three velocity components have similar spanwise widths, O(δ). The

correlations are shown to be inclined to the wall with different angles that depend on the distance

to the wall and on the correlation level used to define them. Despite that, the maximum angle for

each velocity component is remarkably uniform across most of the flow, differing little between

channels and boundary layers. That is explained because those angles are associated with smaller

structures that are probably controlled by local processes rather than by global ones. The maximum

inclination angle of the velocity structures is αu ≈ 10◦ for the streamwise velocity and αw ≈ 32◦

for the spanwise velocity, whereas Cvv is essentially vertical. We have noted that these different

inclinations probably reflect the moments in the evolution of the structures at which each velocity

component is most intense.

The functional form of the velocity correlations is not arbitrary, because incompressibility

requires that the correlation flux over any plane normal to a given velocity component has to vanish.14

This cancellation is reflected in the cross-flow (zy) plane of Cuu as low- and high-momentum streaks

organized at δ-scale, and in the streamwise (xy) plane of Cww as alternating thin layers stacked in

the wall-normal direction. However, the return flow in the wall-parallel (xz) plane of Cvv is not as

clear, and is organized as a central compact down(up)-wash surrounded by a more diffuse counter-

flow. This flow configuration suggests that channels and boundary layers organize themselves into

inclined quasi-streamwise rollers of size O(δ), at least within the logarithmic layer and the inner part
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of the outer region. Two transitions take place beyond the middle of the outer region in boundary

layers, but are either absent or weaker in channel flows. The first transition is at y′ ≈ 0.6δ, where the

negative lobes of Cvv switch from a spanwise side-to-side configuration to an upstream-downstream

one, whereas in channels an incomplete version of that switch occurs at y′ ≈ 0.8δ. The second

transition is exclusive of boundary layers and is located at its edge, y′ ≈ δ, where all the correlations

grow rapidly in size to reflect the larger irrotational structures of the free stream. Similarly to Cvv ,

the spanwise negative lobes of Cuu are replaced by streamwise ones, suggesting that the flow is

organized in that region as a more isotropic or spanwise-oriented configuration, rather than as a

streamwise-oriented one.

We have studied the cross-correlation Cuv for the Reynolds shear stress, and argued that it

should be interpreted as reflecting the dimensions of the segments of the streamwise-velocity streaks

associated with a single sweep or ejection of v, rather than the organization of the true momentum

transfer. The latter is exclusively associated to fluctuations of u and v at a common location. At y′+ ≈

15 there are no differences between boundary layers and channels, whereas they differ considerably

in the outer layer, probably because of the corresponding differences in Cuu. The length of Cuv

is intermediate between that of Cuu and the much shorter Cvv . Its minimum value also differs

in magnitude and location from the one-point structure coefficient. The aspect ratios of Cuv are

roughly similar to those of the instantaneous Reynolds-stress structures studied by Lozano-Durán,

Flores, and Jiménez5 using segmentation algorithms, whose average length is three times their

height.

Using spectra, Jiménez and Hoyas22 concluded that the pressure structures contain a local

component at the Kolgomorov scale and a more global one with scales of O(δ) along the three

coordinate directions. Inspection of Cpp at the wall, in the logarithmic layer, and in the outer layer

reveals a similar behavior. Weakly correlated structures vary little with y in boundary layers and

channels, at least below the outer region, but they differ between the two flows, suggesting that

they represent different views of a single large-scale structure that is different for each flow. On the

contrary, strongly correlated structures are similar in both flows, but vary with y, emphasizing the

local character of the small-scale pressure. The weaker contours of Cpp collapse poorly with the

Reynolds numbers, probably because the global effects mix contributions from all scales. The major

difference between the two flows occurs in the spanwise width of Cpp, which is almost twice wider

for the boundary layer than for the channel. However, it is unclear whether that result is reliable,

because the pressure structures above y′ ≈ 0.8δ seem to be constrained by the box width in both

simulations.

Finally, to further investigate the relations between the different velocity components, we have

defined correlations conditioned on the intensity and sign of the perturbations at the reference point.

The cross-correlation of Cuv conditioned on the sign of v reveals that the ejections in channel flows

becomes much longer than the sweeps above the logarithmic layer, whereas that difference is only

moderate in boundary layers. That suggest that the differences observed in the length of Cuu are

mostly due to low-momentum structures in the outer layer, recalling the observation at the beginning

of this section that channels contain a large-scale outer structure that is absent from boundary

layers. The evolution with y of the correlation length of the low- and high-momentum streaks was

computed by considering Cuu conditioned on different intensities of the reference fluctuation of u,

and compared with the pipe flow simulation of Lee and Sung.32 We found that channels are the

only flow in which the low-momentum structures are substantially longer, when characterized via

correlations, than the high-momentum ones far from the wall, whereas the two lengths are similar

in pipes and in boundary layers.

The spatial organization of w was shown to be especially interesting. Its striking squarish shape

turns out to be the superposition of two diagonal orientations. Conditioning the wall-parallel sections

of Cww on the sign of w results in a correlation that is aligned at ±45◦ to the mean flow in the outer

layer, although not near the wall. This correlation is strong enough to be visible in instantaneous flow

visualizations of w. Similarly conditioning Cuu on intense events of w results in correlations inclined

at approximately ±7◦ with respect to x in the outer region, but not near the wall. This suggests that

the meandering of u is a consequence of the spatial organization of w, although further research is

needed to clarify the mechanism that leads to that diagonal organization.
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63 G. Borrell, J. Sillero, and J. Jiménez, “A code for direct numerical simulation of turbulent boundary layers at high Reynolds

numbers in BG/P supercomputers,” Comput. Fluid. 80, 37–43 (2013).
64 P. R. Spalart, R. D. Moser, and M. M. Rogers, “Spectral methods for the Navier-Stokes equations with one infinite and two

periodic directions,” J. Comput. Phys. 96, 297–324 (1991).
65 D. J. C. Dennis and T. B. Nickels, “Experimental measurement of large-scale three-dimensional structures in a turbulent

boundary layer. Part 1. Vortex packets,” J. Fluid Mech. 673, 180–217 (2011).
66 D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events (Methuen & Co., 1966).
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