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ABSTRACT

Taylor expansions of analytic functions are considered with respect to two points.
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1. Introduction

In deriving uniform asymptotic expansions of a certain class of integrals one encounters
the problem of expanding a function, that is analytic in some domain Ω of the complex
plane, in two points. The first mention of the use of such expansions in asymptotics is
given in [1], where Airy-type expansions are derived for integrals having two nearby (or
coalescing) saddle points. This reference does not give further details about two-point
Taylor expansions, because the coefficients in the Airy-type asymptotic expansion are
derived in a different way.

To demonstrate the application in asymptotics we consider the integral

Fb(ω) =
1

2πi

∫
C

eω( 1
3 z3−b2z)f(z) dz, (1)

where ω is a large positive parameter and b is a parameter that may assume small
values. The contour starts at ∞e−iπ/3 and terminates at ∞eiπ/3, and lies in a domain
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where the function f is analytic. In particular, f is analytic in a domain that contains
the saddle points ±b of the exponent in the integrand. One method for obtaining an
asymptotic expansion of Fb(ω) that holds uniformly for small values of b is based on
expanding f at the two saddle points:

f(z) =
∞∑

n=0

An(z2 − b2)n + z
∞∑

n=0

Bn(z2 − b2)n, (2)

and substitute this expansion into (1). When interchanging summation and integration,
the result is a formal expansion in two series in terms of functions related with Airy
functions. A Maple algorithm for obtaining the coefficients An and Bn, with applications
to Airy-type expansions of parabolic cylinder functions, is given in [4].

In a future paper we use expansions like (2) in order to derive convergent expansions
for orthogonal polynomials and hypergeometric functions that also have an asymptotic
nature. The purpose of the present paper is to give details on the two-point Taylor
expansion (2), in particular on the region of convergence and on representations in
terms of Cauchy-type integrals of coefficients and remainders of these expansions. Some
information on this type of expansions is also given in [6], p. 149, Exercise 24.

Without referring to applications in asymptotic analysis we include analogous prop-
erties of two-point Laurent expansions and of another related type, the two-point Taylor-
Laurent expansion.

2. Two-point Taylor expansions

We consider the expansion (2) in a more symmetric form and give information on the
coefficients and the remainder in the expansion.
Theorem 1. Let f(z) be an analytic function on an open set Ω ⊂ C/ and z1, z2 ∈ Ω
with z1 �= z2. Then, f(z) admits the two-point Taylor expansion

f(z) =
N−1∑
n=0

[an(z1, z2)(z − z1) + an(z2, z1)(z − z2)] (z−z1)n(z−z2)n+rN (z1, z2; z), (3)

where the coefficients an(z1, z2) and an(z2, z1) of the expansion are given by the Cauchy
integral

an(z1, z2) ≡ 1
2πi(z2 − z1)

∫
C

f(w) dw

(w − z1)n(w − z2)n+1
. (4)

The remainder term rN (z1, z2; z) is given by the Cauchy integral

rN (z1, z2; z) ≡ 1
2πi

∫
C

f(w) dw

(w − z1)N (w − z2)N (w − z)
(z − z1)N (z − z2)N . (5)

The contour of integration C is a simple closed loop which encircles the points z1 and
z2 (for an) and z, z1 and z2 (for rN ) in the counterclockwise direction and is contained
in Ω (see Figure 1 (a)).
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The expansion (3) is convergent for z inside the Cassini oval (see Figure 2)

Oz1,z2 ≡ {z ∈ Ω, |(z − z1)(z − z2)| < r}

where
r ≡ Infw∈C/ \Ω {|(w − z1)(w − z2)|} .

In particular, if f(z) is an entire function (Ω = C/), then the expansion (3) converges ∀
z ∈ C/.
Proof. By Cauchy’s theorem,

f(z) =
1

2πi

∫
C

f(w) dw

w − z
, (6)

where C is the contour defined above (Figure 1 (a)). Now we write

1
w − z

=
z + w − z1 − z2

(w − z1)(w − z2)
1

1 − u
, (7)

where

u ≡ (z − z1)(z − z2)
(w − z1)(w − z2)

. (8)

Now we introduce the expansion

1
1 − u

=
N−1∑
n=0

un +
uN

1 − u
(9)

in (7) and this in (6). After straightforward calculations we obtain (3)-(5).
For any z ∈ Oz1,z2 , we can take a contour C in Ω such that |(z − z1)(z − z2)| <

|(w − z1)(w − z2)| ∀ w ∈ C (see Figure 1 (b)). In this contour |f(w)| is bounded
by some constant C: |f(w)| ≤ C. Introducing these two bounds in (5) we see that
limN→∞ rN (z1, z2; z) = 0 and the proof follows. �	

C
z1

z2

z
C

z1

z2

z
Oz ,z1 2

(a) (b)

Figure 1. (a) Contour C in the integrals (3)-(5). (b) For z ∈ Oz1,z2 , we can take a contour

C in Ω which contains Oz1,z2 inside and therefore, |(z − z1)(z − z2)| < |(w − z1)(w − z2)| ∀
w ∈ C.
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z

z

1

2 z2 z2

z1

z1

(a) 4r > |z1 − z2|2 (b) 4r = |z1 − z2|2 (c) 4r < |z1 − z2|2
Figure 2. Shape of the Cassini oval depending on the relative size of the parameter r and the

focal distance |z1 − z2|.

2.1. An alternative form of the expansion
The present expansion of f(z) in the form (3) stresses the symmetry of the expansion
with respect to z1 and z2. In this representation it is not possible, however, to let
z1 and z2 coincide, which causes a little inconvenience (the coefficients an(z1, z2) be-
come infinitely large as z1 → z2; the remainder rN (z1, z2; z) remains well-defined). An
alternative way is the representation (cf. (2)),

f(z) =
∞∑

n=0

[An(z1, z2) + Bn(z1, z2) z] (z − z1)n(z − z2)n,

and we have the relations

An(z1, z2) = −z1an(z1, z2) − z2an(z2, z1),

Bn(z1, z2) = an(z1, z2) + an(z2, z1),

which are regular when z1 → z2. In fact we have

An(z1, z2) =
1

2πi

∫
C

w − z1 − z2

[(w − z1)(w − z2)]n+1
f(w) dw,

Bn(z1, z2) =
1

2πi

∫
C

f(w) dw

[(w − z1)(w − z2)]n+1
.

Letting z1 → 0 and z2 → 0, we obtain the standard Maclaurin series of f(z) with even
part (the An series) and odd part (the Bn series).

2.2. Explicit forms of the coefficients
Definition (4) is not appropriate for numerical computations. A more practical formula
to compute the coefficients of the above two-point Taylor expansion is given in the
following proposition.
Proposition 1. Coefficients an(z1, z2) in the expansion (3) are also given by the for-
mulas:

a0(z1, z2) =
f(z2)

z2 − z1
(10)
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and, for n = 1, 2, 3, ...,

an(z1, z2) =
n∑

k=0

(n + k − 1)!
k!(n − k)!

(−1)n+1nf (n−k)(z2) + (−1)kkf (n−k)(z1)
n!(z1 − z2)n+k+1

. (11)

Proof. We deform the contour of integration C in equation (4) to any contour of the
form C1 ∪ C2 also contained in Ω, where C1 (C2) is a simple closed loop which encircles
the point z1 (z2) in the counterclockwise direction and does not contain the point z2 (z1)
inside (see Figure 3 (a)). Then,

an(z1, z2) =
1

2πi(z2 − z1)

{∫
C1

f(w)
(w − z2)n+1

dw

(w − z1)n
+

∫
C2

f(w)
(w − z1)n

dw

(w − z2)n+1

}
=

1
(z2 − z1)

{
1

(n − 1)!
dn−1

dwn−1

f(w)
(w − z2)n+1

∣∣∣∣
w=z1

+
1
n!

dn

dwn

f(w)
(w − z1)n

∣∣∣∣
w=z2

}
.

From here, equations (10)-(11) follows after straightforward computations. �	

C
z

1

z2

z

C

1

2

z

0

z1

z2

z

z2

z1

0

C1

C2 C2

C1

(a) (b) (c)

Figure 3. (a) The function (w− z2)−n−1f(w) is analytic inside C1, whereas (w− z1)−nf(w)
is analytic inside C2. (b) The function (w − z2)−n−1g1(w) is analytic inside C1, whereas (w −
z1)−ng2(w) is analytic inside C2. (c) The function (w − z2)−n−1g(w) is analytic inside C1,

whereas (w − z1)−nf(w) is analytic inside C2.

2.3. Two-point Taylor polynomials
Next we can define the two-point Taylor polynomial of the function f(z) at in the
following way:

Definition 1. Let z be a real or complex variable and z1 and z2 (z1 �= z2) two real or
complex numbers. If f(z) is n − 1−times differentiable at those two points, we define
the two-point Taylor polynomial of f(z) at z1 and z2 and degree 2n − 1 as

Pn(z1, z2; z) ≡
n−1∑
k=0

[ak(z1, z2)(z − z1) + ak(z2, z1)(z − z2)] (z − z1)k(z − z2)k,

where the coefficients ak(z1, z2) are given in (10)-(11).
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Proposition 2. In the conditions of the above definition, define the remainder of the
approximation of f(z) by Pn(z1, z2; z) at z1 and z2 as

rn(z1, z2; z) ≡ f(z) − Pn(z1, z2; z).

Then, (i) rn(z1, z2; z) = o(z − z1)n−1 as z → z1 and rn(z1, z2; z) = o(z − z2)n−1 as z →
z2. (ii) If f(z) is n−times differentiable at z1 and/or z2, then rn(z1, z2; z) = O(z−z1)n

as z → z1 and/or rn(z1, z2; z) = O(z − z2)n as z → z2.
Proof. The proof is trivial if f(z) is analytic at z1 and z2 by using (5). In any case, for
real or complex variable, the proof follows after straightforward computations by using
l’Hôpital’s rule and (10)-(11). �	
Remark 1. Observe that the Taylor polynomial of f(z) at z1 and z2 and degree 2n−1
is the same as the Hermite’s interpolation polynomial of f(z) at z1 and z2 with data
f(zi), f ′(zi),...,f (n−1)(zi), i = 1, 2.

3. Two-point Laurent expansions

In the standard theory for Taylor and Laurent expansions much analogy exists between
the two types of expansions. For two-point expansions, we have a similar agreement in
the representations of coefficients and remainders.
Theorem 2. Let Ω0 and Ω be closed and open sets, respectively, of the complex plane,
and Ω0 ⊂ Ω ⊂ C/. Let f(z) be an analytic function on Ω \ Ω0 and z1, z2 ∈ Ω0 with
z1 �= z2. Then, for any z ∈ Ω \ Ω0, f(z) admits the two-point Laurent expansion

f(z) =
N−1∑
n=0

[bn(z1, z2)(z − z1) + bn(z2, z1)(z − z2)] (z − z1)n(z − z2)n+

N−1∑
n=0

[cn(z1, z2)(z − z1) + cn(z2, z1)(z − z2)] (z − z1)−n−1(z − z2)−n−1+

rN (z1, z2; z),

(12)

where the coefficients bn(z1, z2), bn(z2, z1), cn(z1, z2) and cn(z2, z1) of the expansion are
given, respectively, by the Cauchy integrals

bn(z1, z2) ≡ 1
2πi(z2 − z1)

∫
Γ1

f(w) dw

(w − z1)n(w − z2)n+1
(13)

and
cn(z1, z2) ≡ 1

2πi(z2 − z1)

∫
Γ2

(w − z1)n+1(w − z2)nf(w) dw. (14)

The remainder term rN (z1, z2; z) is given by the Cauchy integrals

rN (z1, z2; z) ≡ 1
2πi

∫
Γ1

f(w)dw

(w − z1)N (w − z2)N (w − z)
(z − z1)N (z − z2)N−

1
2πi

∫
Γ2

(w − z1)N (w − z2)Nf(w)dw

w − z

1
(z − z1)N (z − z2)N

.

(15)
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In these integrals, the contours of integration Γ1 and Γ2 are simple closed loops contained
in Ω\Ω0 which encircle the points z1 and z2 in the counterclockwise direction. Moreover,
Γ2 does not contain the point z inside, whereas Γ1 encircles Γ2 and the point z (see
Figure 4 (a)).

The expansion (12) is convergent for z inside the Cassini annulus (see Figure 5)

Az1,z2 ≡ {z ∈ Ω \ Ω0, r2 < |(z − z1)(z − z2)| < r1} (16)

where

r1 ≡ Infw∈C/ \Ω {|(w − z1)(w − z2)|} , r2 ≡ Supw∈Ω0
{|(w − z1)(w − z2)|} .

Proof. By Cauchy’s theorem,

f(z) =
1

2πi

∫
Γ1

f(w)dw

w − z
− 1

2πi

∫
Γ2

f(w) dw

w − z
, (17)

where Γ1 and Γ2 are the contours defined above. We substitute (7)-(8) into the first
integral above and

1
w − z

=
z1 + z2 − z − w

(z − z1)(z − z2)
1

1 − u
, u ≡ (w − z1)(w − z2)

(z − z1)(z − z2)
,

into the second one. Now we introduce the expansion (9) of the factor (1−u)−1 in both
integrals in (17). After straightforward calculations we obtain (12)-(15).

For any z verifying (16), we can take simple closed loops Γ1 and Γ2 in Ω\Ω0 such that
|(z−z1)(z−z2)| < |(w−z1)(w−z2)| ∀ w ∈ Γ1 and |(z−z1)(z−z2)| > |(w−z1)(w−z2)|
∀ w ∈ Γ2 (see Figure 4 (b)). On these contours |f(w)| is bounded by some constant
C: |f(w)| ≤ C. Introducing these bounds in (15) we see that limN→∞ rN (z1, z2; z) = 0
and the proof follows. �	

z

Az ,z
1 2

1
0

z1

z2

2

z

1
0

z1

z2
2

(a) (b)
Figure 4. (a) Contours Γ1 and Γ2 in the integrals (12)-(15). (b) For z ∈ Az1,z2 , we can take

a contour Γ2 in Ω situated between Ω0 and Az1,z2 and a contour Γ1 in Ω which contains Az1,z2

inside. Therefore, |(z− z1)(z− z2)| < |(w− z1)(w− z2)| ∀ w ∈ Γ1 and |(w− z1)(w− z2)| <

|(z − z1)(z − z2)| ∀ w ∈ Γ2.
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z1

z1

z 2

z1

z2

z2

z1

(a) 4r1 > 4r2 > |z1 − z2|2 (b) 4r1 > |z1 − z2|2 = 4r2 (c) 4r1 > |z1 − z2|2 > 4r2

z
2

z
1

z
2

z
1

(d) 4r1 = |z1 − z2|2 > 4r2 (e) |z1 − z2|2 > 4r1 > 4r2

Figure 5. Shape of the Cassini annulus depending on the relative size of the parameters r1, r2

and the focal distance |z1 − z2|.
If the only singularities of f(z) inside Ω0 are just poles at z1 and/or z2, then an

alternative formula to (13) and (14) to compute the coefficients of the above two-point
Laurent expansion is given in the following proposition.
Proposition 3. Suppose that g1(z) ≡ (z − z1)m1f(z) and g2(z) ≡ (z − z2)m2f(z) are
analytic functions in Ω for certain m1, m2 ∈ N| . Then, for n = 0, 1, 2, ..., coefficients
bn(z1, z2) and cn(z1, z2) in the expansion (12) are also given by the formulas:

bn(z1, z2) =
n+m1−1∑

k=0

(
n + m1 − 1

k

)
(−1)k+1(n + 1)kg

(n+m1−k−1)
1 (z1)

(n + m1 − 1)!(z1 − z2)n+k+2
+

n+m2∑
k=0

(
n + m2

k

)
(−1)k(n)kg

(n+m2−k)
2 (z2)

(n + m2)!(z2 − z1)n+k+1
,

(18)

where (n)k denotes the Pochhammer symbol and

cn(z1, z2) = −
m1−n−2∑

k=0

k!
(

m1 − n − 2
k

)(
n
k

)
(z1 − z2)n−k−1g

(m1−n−k−2)
1 (z1)

(m1 − n − 2)!
+

m2−n−1∑
k=0

k!
(

m2 − n − 1
k

)(
n + 1

k

)
(z2 − z1)n−kg

(m2−n−k−1)
2 (z2)

(m2 − n − 1)!
.

(19)

In these formulas, empty sums must be understood as zero. Coefficients bn(z2, z1) and
cn(z2, z1) are given, respectively, by (18) and (19) interchanging z1, g1 and m1 by z2,
g2 and m2 respectively.
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Proof. We deform both, the contour Γ1 in equation (13) and Γ2 in equation (14), to
any contour of the form C1 ∪ C2 contained in Ω, where C1 (C2) is a simple closed loop
which encircles the point z1 (z2) in the counterclockwise direction and does not contain
the point z2 (z1) inside (see Figure 3 (b)). Then,

bn(z1, z2) =
1

2πi(z2 − z1)

{∫
C1

g1(w)
(w − z2)n+1

dw

(w − z1)n+m1
+

∫
C2

g2(w)
(w − z1)n

dw

(w − z2)n+m2+1

}
=

1
z2 − z1

{
1

(n + m1 − 1)!
dn+m1−1

dwn+m1−1

g1(w)
(w − z2)n+1

∣∣∣∣
w=z1

+

1
(n + m2)!

dn+m2

dwn+m2

g2(w)
(w − z1)n

∣∣∣∣
w=z2

}

and

cn(z1, z2) =
1

2πi(z2 − z1)

{∫
C1

(w − z2)ng1(w)
(w − z1)m1−n−1

dw +
∫
C2

(w − z1)n+1g2(w)
(w − z2)m2−n

dw

}
=

1
z2 − z1

{
dm1−n−2

dwm1−n−2

[
(w − z2)ng1(w)
(m1 − n − 2)!

]∣∣∣∣
w=z1

+
dm2−n−1

dwm2−n−1

[
(w − z1)n+1g2(w)

(m2 − n − 1)!

]∣∣∣∣
w=z2

}

From here, equations (18) and (19) follow after straightforward computations. �	
Remark 2. Let z be a real or complex variable and z1, z2 (z1 �= z2) two real or

complex numbers. Suppose that g1(z) ≡ (z − z1)m1f(z) is n−times differentiable at z1

and g2(z) ≡ (z − z2)m2f(z) is n−times differentiable at z2. Define

g(z) ≡ f(z) −
M−1∑
n=0

[cn(z1, z2)(z − z1) + cn(z2, z1)(z − z2)] (z − z1)−n−1(z − z2)−n−1,

where M ≡Max{m1, m2}. Then, the thesis of Proposition 2 holds for f(z) replaced by
g(z). Moreover, if (z− z1)m1(z− z2)m2f(z) is an analytic function in Ω, then the thesis
of Theorem 1 applies to g(z).

4. Two-point Taylor-Laurent expansions

Theorem 3. Let Ω0 and Ω be closed and open sets, respectively, of the complex plane,
and Ω0 ⊂ Ω ⊂ C/. Let f(z) be an analytic function on Ω \ Ω0, z1 ∈ Ω0 and z2 ∈ Ω \Ω0.
Then, for z ∈ Ω \ Ω0, f(z) admits the Taylor-Laurent expansion

f(z) =
N−1∑
n=0

[dn(z1, z2)(z − z1) + dn(z2, z1)(z − z2)] (z − z1)n(z − z2)n+

N−1∑
n=0

en(z1, z2)(z − z2)n(z − z1)−n−1 + rN (z1, z2; z),

(20)
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where the coefficients dn(z1, z2), dn(z2, z1) and en(z1, z2) of the expansion are given by
the Cauchy integrals

dn(z1, z2) ≡ 1
2πi(z2 − z1)

∫
Γ1

f(w) dw

(w − z1)n(w − z2)n+1
(21)

and

en(z1, z2) ≡ z1 − z2

2πi

∫
Γ2

(w − z1)n

(w − z2)n+1
f(w) dw. (22)

The remainder term rN (z1, z2; z) is given by the Cauchy integrals

rN (z1, z2; z) ≡ 1
2πi

∫
Γ1

f(w) dw

(w − z1)N (w − z2)N (w − z)
(z − z1)N (z − z2)N−

1
2πi

∫
Γ2

(w − z1)Nf(w) dw

(w − z2)N (w − z)
(z − z2)N

(z − z1)N
.

(23)

In these integrals, the contours of integration Γ1 and Γ2 are simple closed loops contained
in Ω \ Ω0 which encircle Ω0 in the counterclockwise direction. Moreover, Γ2 does not
contain the points z and z2 inside, whereas Γ1 encircles Γ2 and the points z and z2 (see
Figure 6 (a)).

The expansion (20) is convergent in the region (Figure 7)

Dz1,z2 ≡ {z ∈ Ω \ Ω0, |(z − z1)(z − z2)| < r1 and |z − z2| < r2|z − z1|} (24)

where r1 ≡ Infw∈C/ \Ω {|(w − z1)(w − z2)|} and r2 ≡ Infw∈Ω0

{|(w − z2)(w − z1)−1|}.
Proof. By Cauchy’s theorem,

f(z) =
1

2πi

∫
Γ1

f(w) dw

w − z
− 1

2πi

∫
Γ2

f(w) dw

w − z
, (25)

where Γ1 and Γ2 are the contours defined above. We substitute (7)-(8) into the first
integral above and

1
w − z

=
z2 − z1

(z − z1)(w − z2)
1

1 − u
, u ≡ (w − z1)(z − z2)

(z − z1)(w − z2)
(26)

into the second one. Now we introduce the expansion (9) of the factor (1−u)−1 in both
integrals in (25). After straightforward calculations we obtain (20)-(23).

For any z verifying (24), we can take simple closed loops Γ1 and Γ2 in Ω\Ω0 such that
|(z−z1)(z−z2)| < |(w−z1)(w−z2)| ∀ w ∈ Γ1 and |(z−z1)(w−z2)| > |(w−z1)(z−z2)|
∀ w ∈ Γ2 (see Figure 6 (b)). On these contours |f(w)| is bounded by some constant
C: |f(w)| ≤ C. Introducing these bounds in (23) we see that limN→∞ rN (z1, z2; z) = 0
and the proof follows. �	
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z

Dz ,z1 2

1

z2

0z
1

z2
2

z1
0

z1
0

2

(a) (b)

Figure 6. (a) Contours Γ1 and Γ2 in the integrals (20)-(23). (b) For z ∈ Dz1,z2 , we can take a

contour Γ2 situated between Ω0 and Dz1,z2 and a contour Γ1 in Ω which contains Dz1,z2 inside.

Therefore, |(z − z1)(z − z2)| < |(w − z1)(w − z2)| ∀ w ∈ Γ1 and |(w − z1)(z − z2)| <

|(z − z1)(w − z2)| ∀ w ∈ Γ2.

z2 z2

z1 1

1

z2

z
z

(a) 4r1 > |z1 − z2|2, r2 > 1 (b) 4r1 > |z1 − z2|2, r2 = 1 (c) 4r1 > |z1 − z2|2, r2 < 1

z2
z2

z1

z1

z1

z2

(d) 4r1 = |z1 − z2|2, r2 > 1 (e) 4r1 = |z1 − z2|2, r2 = 1 (f) 4r1 = |z1 − z2|2, r2 < 1

z1

z2

z1

z2

z1

z2

(g) 4r1 < |z1 − z2|2, r2 > 1 (h) 4r1 < |z1 − z2|2, r2 = 1 (i) 4r1 < |z1 − z2|2, r2 < 1

Figure 7. The region Dz1,z2 defined in Theorem 3 is given by Dz1,z2 = D1

⋂
D2, where D1 is

the Cassini oval of focus z1 and z2 and parameter r1. On the other hand, for r2 < 1 (r2 > 1), D2

is the interior (exterior) of the circle of center z1+(1−r2
2)−1(z2−z1) = z2+r2

2(r2
2−1)−1(z1−z2)

and radius |z1 − z2|r2/|r2
2 − 1|. For r2 = 1, D2 is just the half plane |z − z2| < |z − z1|. The
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shape of the Cassini annulus depends on the relative size of the parameters
√

r1,
√

r2 and the focal

distance |z1 − z2|.

If the only singularities of f(z) inside Ω0 are just poles at z1, then an alternative
formula to (21)-(22) to compute the coefficients of the above two-point Taylor-Laurent
expansion is given in the following proposition.

Proposition 4. Suppose that g(z) ≡ (z − z1)mf(z) is an analytic function in Ω for
certain m ∈ N| . Then, coefficients dn(z1, z2) and dn(z2, z1) in the expansion (20) are
also given by the formulas:

d0(z1, z2) =
f(z2)

z2 − z1
−

m−1∑
k=0

1
(m − k − 1)!

g(m−k−1)(z1)
(z2 − z1)k+2

, (27)

d0(z2, z1) =
1
m!

g(m)(z1)
z1 − z2

,

and, for n = 1, 2, 3...,

dn(z1, z2) = − (−1)n

n!

{
m+n−1∑

k=0

(n + k)!
k!(m + n − k − 1)!

g(m+n−k−1)(z1)
(z2 − z1)n+k+2

+

n
n∑

k=0

(n + k − 1)!
k!(n − k)!

f (n−k)(z2)
(z1 − z2)n+k+1

}
,

(28)

dn(z2, z1) = − (−1)n

n!

{
n

m+n∑
k=0

(n + k − 1)!
k!(m + n − k)!

g(m+n−k)(z1)
(z2 − z1)n+k+1

+

n−1∑
k=0

(n + k)!
k!(n − k − 1)!

f (n−k−1)(z2)
(z1 − z2)n+k+2

}
.

(29)

For n = 0, 1, 2, ..., coefficients en(z1, z2) are given by

en(z1, z2) =
(−1)n

n!

m−n−1∑
k=0

(n + k)!
k!(m − n − k − 1)!

g(m−n−k−1)(z1)
(z2 − z1)n+k

. (30)

Proof. We deform both, the contour Γ1 in equation (21) and the contour Γ2 in equation
(22) to any contour of the form C1 ∪ C2 contained in Ω, where C1 (C2) is a simple closed
loop which encircles the point z1 (z2) in the counterclockwise direction and does not
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contain the point z2 (z1) inside (see Figure 3 (c)). Then,

dn(z1, z2) =
1

2πi(z2 − z1)

{∫
C1

g(w)
(w − z2)n+1

dw

(w − z1)n+m
+

∫
C2

f(w)
(w − z1)n

dw

(w − z2)n+1

}
=

1
(z2 − z1)

{
1

(n + m − 1)!
dn+m−1

dwn+m−1

g1(w)
(w − z2)n+1

∣∣∣∣
w=z1

+

1
n!

dn

dwn

f(w)
(w − z1)n

∣∣∣∣
w=z2

}
,

an analog formula for dn(z2, z1), and

en(z1, z2) =
z1 − z2

2πi

∫
C1

g(w)
(w − z2)n+1

dw

(w − z1)m−n
=

(z1 − z2)
1

(m − n − 1)!
dm−n−1

dwm−n−1

g(w)
(w − z2)n+1

∣∣∣∣
w=z1

.

From here, equations (27)-(30) follow after straightforward computations. �	
Remark 3. Let z be a real or complex variable and z1 and z2 (z1 �= z2) two real

or complex numbers. Suppose that (z − z1)mf(z) is n−times differentiable at z1 for
certain m ∈ N| and f(z) is n−times differentiable at z2. Define

g(z) ≡ f(z) −
m−1∑
n=0

en(z1, z2)(z − z1)−n−1(z − z2)n.

Then, the thesis of Proposition 2 holds for g(z). If moreover, (z−z1)mf(z) is an analytic
function in Ω, then the thesis of Theorem 1 applies to g(z).
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