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Two-Port Analysis of Switched-Capacitor 
Networks Using Four-Port Equivalent 

Circuits in the z-Domain 

CARL F. KURTH, FELLOW, IEEE, AND GEORGE S. MOSCHYTZ, FELLOW, IEEE 

Abshc-In a preview publication by the authors it was shown how 
swhbed-capacitor (SC) networks can bc analyzed by using nodal charge 
qUatfons. The result was a description of SC networks as time-variant 
sampled-data networks which led to a four-port e4@valent circuit rep* 
sent&ion in tbe z-domain. In this paper, the four-port representation is 
expanded by considering six basic building blocks for the design of any 
general active or passive SC network. Witb the four-port equivalent circuit 
representatioq traditional two-port analysis took such as the transmision 
m&lx and two-port transfer functions, can be used conveniently. An 
SC-filter design example is given and the measured response is shown to 
coincide witb tbe response predicted by the theory. 

I. INTRODUCTION 

I N a previous publication by the authors [I] switched- 
capacitor (SC) networks were analyzed using nodal 

charge equations. As a result, a closed form representation 
of SC networks as time-variant sampled-data networks 
was obtained. Physically, the topology of an SC network 
is changed periodically between two states, assuming that 
the switches change position at even and odd switching 
times, periodically. By transforming the time-varying 
equations into the z-domain, it was shown that any SC 
network can be represented by a four-port, in which even 
and odd time slots correspond to an input-output port 
combination, respectively. A general method was pre- 
sented with which the appropriate four-port equations can 
be obtained. The equations can be used for analysis in the 
frequency domain, either by an analytical computation or 
by means of a numerical analysis with a computer. Simple 
examples, however, indicated that without a computer the 
analysis rapidly becomes unmanageable for only slightly 
more complex SC networks. Even with the use of a 
computer, the loss of insight may be a deterrent for the 
use of this general method. This fact and the desire to use 
traditional network analysis tools, like transmission 
matrices, transfer functions, y- and z-matrices, etc., 
stimulated the development of the four-port equivalent 
circuits presented in this paper. As will be shown, they 
readily provide insight into the performance of SC 
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networks in the frequency domain. In addition, they open 
avenues for the exact synthesis of more complex SC 
networks, without the need for opamp isolation. Thus, for 
example, cascades of passive SC networks can now be 
analyzed in a manner similar to the analysis of passive LC 
two-ports [2]-[4]. 

II. BUILDING BLOCK ANALYSIS OF SC NETWORKS 

A. The Six Basic Passive Building Blocks 

Any passive SC network can be constructed with the six 
basic building blocks shown in Fig. 1. The nonswitched 
shunt capacitor and its dual are the only storage elements 
in SC networks. Periodically switched capacitors act like 
resistors, since their memory is destroyed during the clos- 
ing period of the switch. The ideal switches can be consid- 
ered as zero-valued capacitors with a switch in parallel. By 
connecting the building blocks in Fig. 1 in tandem, or by 
combining parallel, serial, and tandem connections of the 
building blocks, arbitrary higher order passive SC 
networks can be obtained. In what follows, the equivalent 
four-port circuits will be derived in the z-domain. They 
are listed in Table I. As we shall see, the interconnection 
of. these equivalent four-port circuits will readily provide 
insight into the behavior of more complex SC networks in 
the frequency domain. This building block analysis 
follows the idea developed in Section V and particularly 
Fig. 14 of [l]. 

B. Four-Port Equivalent Circuits of Passive SC Building 
Blocks 

I) Shunt Capacitor: The shunt capacitor shown in Fig. 
2 can be described as a two-port in the time domain by 
applying the nodal charge equations as explained in Sec- 
tion III-A of [l] 

VI(n) = 44 

Cv,(n)=i,(n)-i,(n)+Cv,(n-1) 

or in the z-domain in matrix form 

(1) 

[ II 
h(z) = 1 0 W) 
II(Z) I[ 1 c (1-z-i) 1 I*(z) * 

(2) 
The matrix in (2) can be interpreted as an equivalent 
two-port, as shown in Fig. 2. It consists of two compo- 
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“Storages” 

“Switches” 

0 0 0 0 

Fig. 1. The six basic components (building blocks) in SC networks. 

TABLE I 
EQUIVALENT CIRCUITS FOR SIX BASIC ELEMENTS IN SC FILTIXS 
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nents, namely, a conductance 

G’=C 

and a storage element 

Go=-Cz-’ (3b) 

(3a) where the superscripts e and o denote even and odd, 
respectively. 
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Fig. 2. Shunt capacitor and i$b,“,“ihp”rt equivalent circuit in the z- 

Fig. 3. Equivalent circuit of the storage element G”: the storistor. 

This storage element, or “storistor,” has the property of 
delaying the current flowing through it by one .delay unit 
z - ’ with respect to a voltage sample applied across the 
element. It was found to be a useful device throughout the 
following analysis. Its equivalent circuit, shown in Fig. 3, 
is derived by a series expansion of t - t = e -jwr. Notice that 
for w7< 1 the storistor can be approximated by a negative 
conductance (- C) in parallel with a physical capacitor C, 
an approximation which becomes convenient later when 
comparing SC networks with conventional RC networks. 

In continuing the analysis of the shunt capacitor, (2) 
can be rewritten by using G’= C and G” = - Cz-’ as an 
even and odd part, respectively, of the z-transform in the 
matrix of (2) 

This can be expanded into a four-port equation by 
separating even and odd parts corresponding to the de- 
rivations given in Section III-B of [l]. By observing that 

X’. y” = W”, X’. ye = We, and X”. Y’J = ~+‘e 

and with h(z) = l:(z) + Z:(z) and V,(z) = y!(z) + V:(z) the 
four-port transmission matrix for a shunt capacitor is 
obtained from (4a), namely 

c 
ve 1 0 0 0 v; 

vp 0 1 0 ‘0 v; 

= ’ 1: G’ G” 1 0 1; * (4b) 

4 G” G’ 0 1 I,0 

The remaining task is to find an equivalent four-port 
circuit for (4b) [5]. The input and output voltages in the 
even as well as in the odd path of this four-port must be 
equal, i.e., 

v;= v;, vp= v;. 

Fig. 4. Two-port equivalent circuit for (6). Link between even and odd 
path for shunt capacitor. 

- - 

GO.-Z-‘C 

Fig. 5. Four-port equivalent circuit for shunt capacitor. 

- - - - 
0 0 0 0 

Fig. 6. Series capacitor and its two-port equivalent circuit in r-domain. 

Furthermore, from (4b), the even and odd parts are re- 
lated as follows: 

[ :;I=[ ,“I :I]*[ ;I+[; ;I-[ ;] (5) 
or 

(6) 

1 l 

I” and I” denote the current differences If- 1; and 
Ii’- 120, respectively. Equation (6) can now be interpreted 
as the two-port shown in Fig. 4; the s - configuration was 
chosen for convenience, since it yields simple expressions 
for the elements. By redrawing the equivalent circuit 
shown in Fig. 4 one obtains the final four-port equivalent 
circuit for the shunt capacitor as shown in Fig. 5, and 
Table I. 

2) Series Capacitor: The series capacitor shown in Fig. 
6 can be described as a two-port in the time domain with 
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the following equations: y: 

i,(n) = i*(n) 

C{u,(n)-tr,(n)}=i,(n)+C{u,(n-1)-&-l)}.(7) 

With the even and odd elements G’ and G”, as defined in 

+--fqj+~~o~v~ 

(3a) and (3b), th e corresponding equation in the z-domain Fig. 7. Two-port equivalent circuit for (11). Link between even and 

can be obtained 
odd path for series capacitor. 

This can be interpreted as an equivalent two-port in the 
z-domain, as shown in Fig. 6. 

Applying the same technique, separating even and odd 
parts, and multiplying out the terms in (8), yields the 
four-port transmission matrix. From (8) 

(G’+G”)(V,“+ V;)=(G’+G”)(V,+ V;) 

+z;+z; 

II’+Ip=z;+z; 

and in matrix form, with even and odd parts already 
separated 

+ 
VP 

odd path 

If I; 

[ I[ zp = I,0 * I 

Writing (9) in terms of voltage differences 

J? 
Fig. 8. Four-port equivalent circuit for series capacitor. 

(10) 

Fig. 9. 11-T equivalents for two-port linking even and odd paths in 
capacitor equivalent circuits. 

This equation is similar to the one obtained for the 
shunt capacitor in (6). The only difference is that current 
differences occur here instead of voltage differences. Thus 
the even and odd path of the series-capacitor four-port is 
linked by the same two-port, as shown in Fig. 4. However, 
the port vectors are the voltage differences and the input 
and output currents, If= I,’ and If= I,“. This is demon- 
strated in Fig. 7. 

The entire four-port equivalent circuit corresponding to 
(9) and (10) is shown in Fig. 8 and Table I. With the help 
of ideal transformers it is possible to make Zf- I,’ and 
I:= I,“, independent of one another. The voltage dif- 
ferences still appear across the input ports of the link 

(11) 
I inner 7T I I gyrator I 

Fig. 10. Gyrator equivalent circuit for the LTP in storage elements. 

two-port (LTP), i.e., the two-port which represents the link 
between the odd and even path. 

In Figs. 9 and 10 two other equivalent circuits for, the 
LTP are shown. Whichever is the most convenient can be 
used in any given analysis. 

3) Switched Shunt Capacitor: The switched shunt capa- 
citor (line 3, Table I) is described by two sets of equations 
in the time domain. At even times the switch Se is closed 
and the equations are 

n=odd 

~,(n)=u2(n)+O~iz(n) 

i,(n)= Cu,(n)+i2(n) 
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n = even 

q(n) = uz(n) +0$(n) 

O-i,(n)= Ct+(n)+O*i,(n). 

The two equations can be combined by using the switch- 
ing function A “(n), as introduced in Section 3.1 of [ 11. For 
all times n 

A”(n)i,(n)= Cq(n)+A”(n)i,(n). (12) 

With formula (2) in Table II of [ 11, (12) can be trans- 

formed into the z-domain 

v;+ vp= v;+ v; 

zp = CVf + cvp + I;. (13) 

Separating the even and odd parts in (13) yields the 
following set of equations, which correspond to the four- 
port equivalent circuit as shown in Table I: 

v;= v; 

vp= v; 

zp=cv;+z; 

o= v;. (14 

Note when the switch Se is closed, i.e., n =even, the 
corresponding path is shorted. This erases all memory on 
the capacitor, which appears as a shunt resistor in the 
path corresponding to those time slots in which the switch 
is open. 

In Table I the equivalent circuit corresponds to a switch 
Se, which is closed at even times. For a switch S”, which 
is closed at odd times, the short and the shunt resistor are 
interchanged between the two paths. Notice that due to 
the elimination of memory on the capacitor, the equiv- 
alent circuit in the z-domain has no link between the even 
and odd paths. This is typical for all building blocks 
comprising a parallel capacitor-switch combination. 

4) Switched Series Capacitor: The switched series capa- 
citor can be analyzed similarly to the shunt configuration. 
The resulting equivalent four-port is shown on line 4 in 
Table I. 

5) Shunt Switch and Series Switch: The shunt switch 
and the series switch are obtained from the SC circuits by 
letting the capacitor value equal zero. Consequently, the 
resistor values in the open-switch paths of the four-port 
equivalent circuits will go to infinity (see lines 5 and 6 in 
Table I). By using these equivalent circuits for the ideal 
switches, the nontransmitting signal path can easily be 
identified, therefore permitting the transmitting path to be 
analyzed directly. This procedure will provide the key for 
the reduction of the four-port equivalent circuit to the 
two-port equivalent circuit of an SC network. 

C. Active Elements, Sources, and Loads 

I) Controlled So’urces: The simplest active element in an 
SC network is a voltage-controlled voltage source. It has 
no storage capability. Its equivalent circuit in the time 

v:(z) V;(Z) . K V;(Z) 

A7 
@I 

Fig. 11. (a) Voltage-controlled voltage source. (b) Four-port equivalent 
circlllt 

domain, and its corresponding four-port equivalent circuit 
is shown in Fig. 11. 

A current-controlled voltage source in an SC network is 
somewhat more complex, since it must have the property 
of a capacitor, namely that of building up a voltage in 
response to a current surge, i(n). It must therefore follow 
the equation 

$i(n)=v(n)-v(n-1). (15) 

If the memory is periodically erased by a switch (similar 
to an SC), (15) reduces to 

u(n) = jj i(n) (16) 

where n is either only even or only odd. 
The equivalent circuit for a current-controlled voltage 

source with memory according to (15) and its four-port 
equivalent circuit is shown in Fig. 12. In Fig. 13 the 
corresponding circuits for a current-controlled voltage 
source without memory are. shown. The timing of the 
switch determines in which path the resistor or the short 
occurs. The use of controlled sources will be shown later 
in an example. 

2) Driving Voltage Sources: As has been assumed 
throughout this analysis, an SC network must be driven 
from a sampled voltage or current source. This is achieved 
by sampling a continuous source by a periodically oper- 
ated switch. The impedance of a voltage source must be 
very small, that of a current source very large in order to 
guarantee an instantaneous voltage buildup across the 
capacitor of the SC network. 

If the source is to have a finite source resistance this 
must be simulated by an SC combination as indicated in 
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0 
I Q 

Vl -0 for V,‘LD 

(a) 

Fig. 12. (a) Current-controlled voltage source with storage. (b) Four- 
port equivalent circuit. 

(4 

1 o 
for K * Q) 

R-+- 

WV. 

Fig. 13. (a) Current-controlled VI+ e source without memory. (b) 
Four-port eqrv&nt circmt. 

Fig. 14(a). There, the continuous voltage source v,(t) 
(whose output impedance is assumed to be practically 
zero) is sampled by the switch Se. The capacitor C, and 
switch S” represent the ‘source resistor for the SC 
network. Using the four-port equivalent circuits of Table 
I, the equivalent circuit of Figure 14(b) is obtained. Since 
the sampling switch Se is closed at even times, the current 

(9 
Rs - ‘/cs 11’ 
WV. 

+ 
even path 

5’ 

- I - 
1 I ^ 

1 Sampling ’ Switched Cop. ’ 

1 Switch se 1 CS I I \ 

(3) 

Fig. 14. (a) Sampled voltage source with simulated source resistor R,. 
(b) Four-port equivalent circuit. 

I 0 I I .A 0 

Fig. 15. Thevenin’s equivalence for SC network sources. 

If is zero in the odd path and the source is completely 
disconnected during odd time slots. Thus its zero imped- 
ance does not cause any loading effect. The input signal is 
fed only into the even path, with the source resistance 
R, = C,- ‘. Note that the timing of the sampling switch 
(even or odd time slot) determines along which path the 
four-port equivalent circuit of the SC network is driven. 
The switch across the capacitor C,’ has to be closed 180” 
out of phase with the sampling switch, in order to 
eliminate the memory of C,. 

3) Driving Current Sources: It is interesting to note that 
Thevenin’s theorem is applicable. By redrawing the driv- 
ing circuit in Fig. 14(a) with a current source and a 
capacitor in parallel, which is periodically charged and 
discharged by a subsequent sampling switch Se, the same 
driving conditions for the SC network can be accom- 
plished. This suggests a general “Thevenin’s Equivalent” 
for SC sources as shown in Fig. 15. The current source 
corresponding to v,Jt) then results as 

.i,(n) = v,(n)/R, = v,(n)-C,. (17) 

4) Loading Resistors: Similarly, loading resistors can be 
simulated by a switched shunt capacitor. By setting the 
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-----‘3Y- 
Cm 

x EJ? 
(b) 

Fig. 16. (a) Cascade of alternating series switches and shunt capacitors. (b) Four-port equivalent 
circuit. 

voltage source in Fig. 14 to zero a typical resistive loading 
condition is obtained. 

D. Cascading SC Building Blocks 

After the four-port equivalent circuits for the basic SC 
building blocks have been established, they can readily be 
connected in cascade. Clearly a cascade of shunt or series 
capacitors, i.e., storage elements, merely leads to a parallel 
(or series) connection of LTP’s without providing any 
filtering effect. However, alternating the tandem connec- 
tion of storage elements with switched elements results in 
SC networks that are suitable for filtering purposes. 

In Fig. 16(a) the cascade connection of m alternating 
shunt capacitors and series switches is shown. Using the 
equivalent circuits in Table I the four-port equivalent 
circuit is obtained (Fig. 16(b)). Notice that the timing of 
the switches alternates along the chain. This leads to the 
alternating position of the R,‘s in the even and odd path. 
Since the currents through the Q’s are zero, the signal 
flows through the network like through a meander, alter- 
nating between even and odd paths. The network there- 
fore corresponds to a straight tandem connection of all 
LTP’s, which can be unfolded into a regular two-port 
network. This important observation will be pursued in 
Section III. 

As can be seen from Fig. 16 the proper timing of the 
switches in an SC cascade can be determined by the 
equivalent four-port network. For nonideal‘switches, i.e., 
with parasitic capacitors, the R,‘s will assume finite val- 
ues. This introduces resistive bypasses and complicates the 
analysis. A straight cascade analysis of the LTP’s is then 

no longer possible. Interestingly enough, as much as the 
parasitic capacitors helped to avoid singular matrices for 
the example in [ 11, they ultimately complicate a straight 
two-port analysis of SC networks. However, it still seems 
preferable to analyze a cascade of two-ports with resistive 
bypasses, than to proceed rigorously through the matrix 
analysis of the entire SC network. Parasitic capacitors 
across the switches can be taken into account, by in- 
troducing finite values for the R,‘s corresponding to the 
capacitor values. 

Similarly the cascade of alternating shunt switches and 
series capacitors can be modeled. 

Other topologies can be obtained by cascading storage 
capacitors with SC’s, as shown in Figs. 17(a) and 18(a). In 
Fig. 17(a) shunt capacitors are cascaded with switched 
series capacitors. The corresponding four-port equivalent 
circuit is shown in Fig. 17(b). Due to the ideal series 
switches Se(Roo’s in the odd path), the current flowing in 
the odd path is zero and the ports of all LTP’s connected 
to the odd path are decoupled. This leaves only the even 
path as the signal path. The input impedances of the 
open-circuited LTP’s are shunted across the even path, 
alternating with the series resistors related to the switched 
series capacitors. A similar mechanism applies to the 
circuit shown in Fig. 18. It can be considered as the dual 
circuit to the one shown in Fig. 17. 

As we shall see in the next section, by unfolding the 
signal meanders resulting from the four-port representa- 
tion, most SC circuits of the kind shown in Figs. 16-18 
can be reduced to a two-port equivalent circuit that can 
be further analyzed as such. Naturally other combinations 
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53 C(m-*)m 

(4 

@I 

Ct.2 c23 c (m-4)m 
----- 

(4 

Fig. 17. (a) Cascade of shunt capacitors and switched series capacitors. (b) Four-port equivalent 
circuit. (c) Fiial ladder equivalent circuit. 

-2 -2 -2 
-c,z -c2z -c,z 

- ---- 

$ P 

c23 Cm-dm Cm 

(4 
Fig. 18. (a) Cascade of series capacitors and switched shunt capacitors. (b) Four-port equivalent 

circuit. (c) Final ladder equivalent circuit. 
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of tandem connections of SC building blocks can be 
found which will lead to a two-port cascade (e.g., combi- 
nations of the circuits in Figs. 16-18). However, the 
examples given here should suffice to demonstrate the 
principle of representing SC building blocks by four-port 
equivalent circuits. In the following, the ensuing step of 
reducing the four-port to a two-port cascade will be 
discussed. 

III. TWO-PORT ANALYSIS OF SC NETWORKS 

A. Cascade Analysis of Building Blocks 

As we have seen, the SC network shown in Fig. 16(a) 
can be reduced to an equivalent two-port which resembles 
the tandem connection of LTP’s as shown in Fig. 19(a). 
The two-port equivalent circuits for the SC networks in 
Figs. 17(a) and 18(a) can be reduced to the ones shown in 
Fig. 19(b) and (c), respectively. By, expressing the open 
circuit input impedance of the LTP’s in terms of their 
elements, the analysis of the two-ports in Fig. 19(b) and 
(c) reduces to that of a simple ladder structure. Using the 
gyrator representation for the LTP as in Fig. 10, its open 
circuit input impedance can be derived (see Fig. 20) [6], 

[71* 
By inspection we obtain 

(302 
=c-‘L* 

1-z-2 
(18) 

The final two-port equivalent circuits for the SC ladder 
networks shown in Figs. 17(a) and 18(a) are shown in 
Figs. 17(c) and 18(c), respectively. 

In order to continue the cascade analysis of LTP’s as 
shown in Fig. 19(a) it is necessary to derive the transmis- 
sion matrix for one LTP. This can be obtained by invert- 
ing they-matrix in (6) to an ABCD matrix. We obtain 

and with (3a) and (3b) 

[“c I],.=[ zc(l:z-I, z,c]* C20) 
The transmission matrix of an entire chain of m LTP’s 

is now obtained by multiplying the transmission matrices 
of the m individual LTP’s, thus 

[: ;lm= 4 [ zcv(~:z-2) “,“]* t21) 

(4 

R23 

Fig. 19.. Two-prt eqg uivalent circuits of SC ladder networks (a) corre- 
spondmg to ~gs. 1 and 19, (b) corresponding to Fig. 20, (c) corre- 
sponding to Fig. 21. 

Fig. 20. Open circuit input im dance of LTP derived via gyrator 
equivaEnt circuit. 

Fig. 21. II-equivalent circuit cascade of two LTF%. 

z2 l+g(l-z-2) 
[ 1 = ] z2(&+&) 

z2c, + C,(l -z-2) z2 l+g(l-z-2) 
1 2 1 

(22) 

This matrix represents the 7~ -configuration shown in Fig. 
21. This circuit can be modeled very easily by an RC 
circuit, as will be shown later in Section IV. 

B. General Two-Port Transfer Functions 

The previously described two-port analysis was re- 
stricted to cases where building blocks are cascaded bv - For m =2 (21) yields 
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= v, 
Z2 

z2 - ea%7 (254 

VP(z)=; [ V,(z)- V,(-z)] 

Fig. 22. SC network equivalent system. (a) Time domain. (b) Substituting v; and v; into (23) yields 
Frequency domam. 

tracing the signal flow through the four-port equivalent 
circuit. This is possible only if the signal is transmitted 
along either the odd or even path, or if it alternates from 
one path to the other. When the signal is transmitted 
through the even and odd path and when LTP’s are 
present, a more general approach must be used. 

For the general case the entire SC network may be 
considered as a two-port with an input signal and an 
output signal in the time domain. A convenient equivalent 
circuit is shown in Fig. 22(a). In it the entire SC network 
is represented by a linear, time discrete, or sampled-data 
system, in cascade with a sample-and-hold circuit. The 
latter restores the finite pulsewidth for each discrete value 
coming out of the sampled-data system [8]. The even and 
odd times are separated in order to provide a direct 
relationship to the four-port equivalent circuit in the 
frequency domain as shown in Fig. 22(b). In the general 
case four transfer functions H”, H”, H”, and H” must 
be distinguished. In the simple cases described in the 
previous section, two or three of these were zero. From 
Fig. 22(b), the output voltage V,(z) can be expressed in 
terms of the even and odd part of the sampled input 
function V,(z) as 

V,(z) = v;(z) + V,“(z) 

(25b) 

e{Hee(~)+Heo(~)+ei”@~-‘[Hw(~)+ H*(z)]}. 

(26) 

After dividing (26) by (24) we obtain the overall transfer 
function of the sampled-data system in the z-domain 

v,(z) _ H==(z) + H”(z) + eiw@z -I[ H”(z) + H”(z)] 

VI(Z) 1 + &%‘z - 1 

(27) 

This can be evaluated at the frequency w = wO, (z = e’“) 
which is the frequency of the sinusoidal input signal, or at 
any frequency w = wa + m/T of the spectrum generated by 
the sampling process. After further multiplying this 
frequency response with the response of the sample-and- 
hold device 

F(w) = sin w7/2 e+jim/2 

wr 

the overall transfer function can be -established. 

(28) 

H(w) 
Tot 

= V;(z)[ Hee(z) + He’(z)] 

+ V;(z)[ H”(z)+ H”(z)]. (23) 
. sin w7/2 e+jwr/2 

w7 

For a uniformly sampled sinusoidal input signal V,dOfi, 
The individual four transfer functions Hik have to be 

the z-transformed function is given by [8] 
calculated from the four-port equivalent circuit of the 
entire SC network. With the general equivalent circuit of 

2 { V,ei”o”‘} = V,(z) = -&. 

an SC network according to gig. 22(a) and (b), the analy- 

(24 
sis can be extended to arbitrary duty cycles, i.e., 7, and r2 
being different closing times for the switches. In reference 
to the 50-percent duty cycle, we have 2r= 7, + r2. Con- 

From [ 1, table 21, the even and odd part can be de- sider now that the input signal V1eioo’ is-phase shifted for 
termined as follows: odd sampling times by the time (7, - ~~)/2, as indicated in 
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Fig. 23(a) and (b). In this way, even and odd times again 
correspond to a system with 50-percent duty cycle. The 
shift (7, -r&/2 of the input signal guarantees that, at the 
odd time of the 50-percent duty cycle, the right value of 
the input signal (which was supposed to be sampled at r,) 
is processed. At the output of the sampled-data system the 
odd samples must be delayed by (rt - rJ/2 in order to 
bring the even and odd times back to a duty cycle that is 
no longer 50 percent. Since ri and r2 are different, the 
restoration to a finite pulse length of ri and r2 has to be 
carried out by two different sample and hold systems: 

FIG4 = 
sin w7,/2 e +&7,/2 

w7 

This is indicated in Fig. 23. 
By going through a derivation similar to the one in 

(23)-(29), and taking the phase-shifting and different sam- 
ple-and-hold devices into account, we obtain the overall 
transfer function for arbitrary duty cycles as follows: 

H(w) 
Tot 

Both transfer functions (29) and (32) are valid only if the 
SC network is fed by a staircase function, where at the 
end of the closing time of the switches information trans- 

\ 

C - small 

Fig. 24. RC analogies for shunt capacitor between toggle switch. 

/ 

for 2wr<<1 

y-----T 

L 

Fig. 25. RC low-pass approximation for shunt capacitor and switched 
series capacitor. 

fer occurs. A more systematic derivation of this general 
result in equation (32), with an extension to continuous 
input signals, will be published by one of the authors in 
the near future.’ 

IV. RC ANALOGIES OF SC NETWORKS 

An SC network frequently used and described in the 
literature is a shunt capacitor with a toggle switch [9], [lo]. 
It is the basic two-port associated with one LTP, as can be 
seen from Fig. 16. Its RC analogy can be demonstrated by 
substituting the relations (3a) and (3b) into the elements 
of the circuit in Fig. 9. As demonstrated in Fig. 24 the 
circuit can be interpreted as a capacitor for C=large and 
as a resistor for C = small. In both cases it is required that 
w7<< 1, which allows the approximation t-i = e-@, I- 
jot to be made. However, under the above mentioned 
conditions the circuit is a rather coarse approximation for 
a series resistor. 

A far more accurate low-pass filter approximation can 
be obtained by using the SC network structure shown in 
Fig. 17(a) with its equivalent ladder circuit shown in Fig. 
17(c). This is demonstrated in Fig. 25 for one section. 

‘The result expressed in-(32), in a different mathematical representa- 
tion, was independently obtained by Y. L. Kuo and M. L. Lieu, by using 
a drfferent approach for the analysis. Their work, which includes con- 
tinuous input signals, is scheduled for publication in the April issue of 
this TRANSACTIONS. Their cooperation in comparing the results and the 
subsequent discussions are very much appreciated. 



KUFU’H AND MOSCHYTZ: ANALYSIS OF SWITCHED-CAPACITOR NHWORKS 
177 

cl+% 
R- --cc 

The desired transfer function is 

T-++T 
2c’ L2c’ 

Fig. 26. RC analogy for circuit shown in Fig. 21. 

Letting 

~-~=e-j~~~l-j2~7, 2WTXl (33) 

the conductive part in the shunt branch can be eliminated 
and a capacitive component, related to the imaginary part 
in (33) remains. The only condition for the approximation 
is 2wr< 1, regardless of the size of the element values. 

Finally, in Fig. 26, an RC analogy for the circuit shown 
in Fig. 21 is presented. It is again based solely on the 
approximation made in (33), and is independent of the 
capacitor values. In conclusion, it can be said that passive 

(34) 

For a simple derivation of (34) the four-port equivalent 
circuit can be reduced to a two-port equivalent circuit 
with feedback as shown in Fig. 27(c). The internal two- 
port ABCD thereby consists of the cascade of the four 
LTP’s in Fig. 27(b). The operational amplifier has been 
redrawn as a current controlled voltage source, where 
g-l/C,, thus 

J/p-*;+ 
g 

-I$ 

The transmission matrix ABCD can be obtained from (21) 
for m = 4, or from (22) for m = 2. It is more convenient to 
calculate the product of two matrices, therefore, with (22) 
and lettingp= 1 -z-’ 

A B I 1 C D 
m=4 

=z4 (l+~P)(l+~P)+(~+~)(c,+c,lp [(I-~P)(&+$--)+(l+~P)(&+&)] 

I (c,+c,) l+cp +(c,+c,) 1-r ( “: ) ( +) (l+~~)(l+~P)+(&+&)(c,+c3p * (35) 
1 

SC networks with two-phase switches have properties sim- 
ilar to those of passive RC circuits. They are not capable 
of generating complex conjugate pole pairs without in- 
cluding active devices. 

V. EXAMF-LE OF SECOND-ORDER SC NETWORK 

WITH OPERATIONAL AMPLIFIER 

The following example, shown in Fig. 27(a), was chosen 
to demonstrate how the described analysis method of 
cascaded SC networks can be used for the analysis of a 
second-order SC network with one active element. The 
choice is not based on any performance merits or techno- 
logical advantages of this particular circuit. A systematic 
evaluation of various circuits with active elements is pre- 
sently being undertaken. Thus the purpose of this example 
is to illustrate how to synthesize filter networks using the 
four-port equivalent circuits of the building blocks in- 
troduced in the previous sections. 

The first step in the analysis of the circuit shown in Fig. 
27(a) is to convert it into a four-port equivalent circuit. 
This is shown in Fig. 27(b). The signal flows through the 
cascade of LTP’s in the form of a meander. In terms of 
currents and the link two-ports the signal flow can be 
described symbolically as follows: 

Before considering the feedback loop, the following 
matrix relation can be derived from the circuit in Fig. 
27(c): 

The second matrix factor multiplying the ABCD matrix 
represents the current controlled voltage source. Equation 
(36) yields the following two simple relations: 

Vf- - BC, v; (37) 

I;= - DC,V;. (38) 

With this, the overall transfer function of the network 
in Fig. 27(c) results in 

1 

B(C,+C,)+ D+ c, 
(39) 

and after substituting the terms for B and D 

T(z)= 
Kz-4 

c, 
from (35) 

(40) 
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CS 

+y-y;& ~ T$ 
SP I’(n) 15(“) t 

s2 i,(n) “+ 

v,(t) V,(n) 
Cl 

Tpq-Q~v(+o IL - 

c2 c3 c4 s V,(n)--l If,(“ ) 

cq 
- - 

o 

(4 

VP 
m -4 

c c 

(9 

Fig. 27. (a) Second-order SC network with operational amplifier. (b) Four-port equivalent circuit. (c) TWO-prt 
equivalent cucuit. 

wherep= 1 -zd2 and 

c2c4 

a=c,c, 

Kc -+ 

L? 
(41) 

“,‘“[(c,‘c,,( $(&+g-)+gj$+&)) 
+g+g+ s+g!+g+z 1 (42) 

2 4 3 4 3 4 

a’)=(Y 1 (CF+Cs) ( g++++++ ) +1 1 . (43) 
1 2 3 4 

As can be observed in (40), the transfer function T(z) is 
actually a function of z -2, since no terms of z-r occur. 

Hence it can be considered as the transfer function of a 
sampled-data filter with a sampling period 27. C&se- 
quently the transfer function in (40) can be written with a 
new variable z* = z2(z* = &k2’) as follows: 

T(z*) = 
Kz*-~ 

C z*-2 l-Fa 
( ) c, 

-z*-‘(2+a,)+l+a,+u, 

(4) 

Equation (44) corresponds to the response of the sam- 
pled-data low-pass filter shown in Fig. 27(a). This circuit 
was built in the laboratory using discrete capacitors and 
discrete FET switches. Although all elements were non- 
ideal (i.e., on-resistors of the switches R,,x500 ii?), a 
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Capacitor values for measured model 

according to configuration m 

Fig. 57 

ct - 0.2186pF 

CP - 4,524 nF 

c3 - 0.1663j~F 

c4 = 4.516 nF 

cF - 4 514 nF 

cs - 4.506 nF 

C9 * 
73.6 pF 

x - measured 

-50-I 
0.t 4.1 6.1 12.1 

-f [kHz] 
16.t 

Fig. 28. Measured and calculated response of laboratory model. 

relatively good match between the measured and the 
predicted response was achieved, as shown in Fig. 28. The 
overall rolloff towards higher frequencies is due to a 
sin x/x response related to the finite pulsewidth at the 
output of the network. 

VI. CONCLUSIONS 

It has been shown in a previous publication by the 
authors that general SC networks can be analyzed using 
nodal charge equations, which can be transformed into 
the z-domain. While the nodal charge-equation approach 
bears some similarity to Kirchhoff’s current laws, an SC 
network can ultimately be considered as a sampled-data 
system described by a set of difference equations with 
periodically time-varying coefficients. Carried out 
routinely, this general analysis rapidly leads to unwieldy 
analytical expressions, if the SC network has the complex- 
ity generally encountered in practice. In order to avoid the 
resulting loss of insight and analytical complexity, a build- 
ing block analysis is introduced in this paper, based on six 
passive two-ports which are most commonly used in SC 
networks. These basic two-ports are interpreted as four- 
port equivalent circuits in the z-domain. They allow the 
separation of odd and even time slots (or off and on times 
of the switches) by introducing separate signal paths for 
the two time slots. It is shown that the even and odd 
signal path is linked by an LTP whenever a storage 
element, such as a shunt or series capacitor, occurs. A 
two-port equivalent circuit is derived for this LTP by 
introducing a one-port storage element, the storistor, 
which delays the current versus the voltage across it by 
one delay unit z - ‘. The analytical treatment of active 
devices in conjunction with SC networks is also presented. 
Finally it is shown how a cascade of SC building blocks 

can be analyzed using the four-port equivalent circuits. 
This approach ultimately leads to a two-port analysis with 
the LTP as the basic element. Some analogies between SC 
and RC networks are shown. SC networks with two-phase 
switches have RC network properties in that they cannot 
generate complex conjugate pole pairs. An example is 

presented to show how a complex conjugate pole pair for 
a second-order system can be generated by incorporating 
an operational amplifier in SC networks. Some measured 
results are presented; they agree well with the theoretical 
prediction. 

The analysis method presented here, in particular the 
building block approach, represents a systematic method 
of analyzing general SC networks. Using this analysis the 
performance of various practical circuits can be evaluated, 
and a design classification may be derived in a manner 
similar to that carried out for active networks [ 111. Such a 
classification and the analysis of SC networks with 
parasitics should provide fruitful ground for further work 
in this area. 
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On the Determination of the Smith-Macmillan 
Form’ of a Rational Matrix From 

Its Laurent Expansion 
PAUL M. VAN DOOREN, STUDENT MEMBER, IEEE, PATRICK DEWILDE, MEMBER, IEEE, AND 

JOOS VANDEWALLE, MEMBER, IEEE 

Abstmct-A novel method is presented to determine the Smitb- 
MacmiBan form of a rational m X n matrix R(p) from Laurent expansions 
in its poles and zeros. Based on that method, a numerically stable alge 
rithmisdedueed,whichusesonlyaminimalnumberoftermsofthe 
Lmrent expansion, hence providfng a shortcot with respect to cumkrsome 
and unstable procedo~ based on elementary transformations witb oni- 
modular matrices. 

The method can be viewed as a generalization of Kubhovkaya’s 
algorithm for the complete solution of the eigerMrucWe problem for 
AI-A. From a system’s point of view it provides a bandy and nomericaffy 
stable way to determhe the degree of a zero of a transfer function and 
nnifies a number of results from m&huiable realization and invertibiity 
theory. The paper present0 a systematic treatment of the relation between 
the eigen-information of a traosfer function and the information contained 
in partial fraction or Laurent expansions. Afthougb a number of results are 
known, they are presented in a systematic way which considerably sim- 
plffies the total picture and introdoces in a natural way a number of novel 
tecbniqua. 

I. INTR~Du~I~N 

T HE PROBLEM of efficient determination of the 
Smith-Macmillan form of a rational mX n matrix 

Manuscript received June 19, 1978; revised July 17, 1978. 
P. M. Van Dooren is with the Department of Electrical Engineering 

Systems, the University of Southern California, Los Angeles, CA. 
P. Dewilde is with Afdeling Elektrotechniek, T. H. Delft, The Nether- 

lands. 
J. Vandewalle is with the Department of Electrical Engineering, the 

University of California at Berkeley, Berkeley, CA. 

R(p) does not seem to have received a great deal of 
attention in the past, although its importance as a key 
element in systems analysis and design can hardly be 
denied. The classical method of using unimodular matrix 
manipulations is cumbersome and not suited for numeri- 
cal computations, because it results in an extraordinarily 
large number of polynomial manipulations. In all methods 
based hereon, numerical stability is lost because pivoting 
is not based on the coefficients of p but on its power [I]. 

On the other hand, a number of papers are devoted to 
the realization problem for system transfer functions and 
a host of algorithms have been devised [2]-[7]. Another 
set of algorithms were proposed for system inversion both 
in the case of systems over a finite field [8]-[ lo] and in the 
case of systems over C or Iw [ 111, and criteria for system 
invertibility where derived [12], [13]. Most of these 
methods require the handling of large size matrices and 
none devote any attention to the numerical stability prob- 
lem. 

An answer to the invertibility problem is needed, e.g., in 
coding .theory where one is interested in deciding whether 
the transfer function has a unique zero at infinity (of large 
degree) and if so, in determining the degree of that zero 
and the inverse of the matrix. Also, in invertibility theory 
one wishes to know whether there is actually a zero at 
infinity in which case the system cannot be inverted. In 
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