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Two-Port Network Modeling and Stability Analysis

of Grid-Connected Current-Controlled VSCs
Shih-Feng Chou, Member, IEEE, Xiongfei Wang, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—Converter-grid interactions tend to bring in
frequency-coupled oscillations that deteriorate the grid stabil-
ity and power quality. The frequency-coupled oscillations are
generally characterized by means of multiple-input multiple-
output (MIMO) impedance models, which requires using the
multivariable control theory to analyze resonances. In this paper,
instead of the MIMO modeling and analysis, the two-port
network theory is employed to integrate the MIMO impedance
models into a single-input single-output (SISO) open-loop gain,
which is composed by a ratio of two SISO impedances. Thus,
the system resonance frequency can be readily identified with
Bode plots and the classical Nyquist stability criterion. Case
studies in both simulations and experimental tests corroborate
the theoretical stability analysis.

Index Terms—Impedance model, resonances, stability analysis,
two-port network, voltage source converters (VSCs)

I. INTRODUCTION

Voltage source converters (VSCs) have been widely used

in the modern power grid for renewable energy generation,

flexible power transmission, and energy-efficient power con-

sumption. As the penetration level of VSCs increases in the

power grid, the VSC-grid interactions tend to cause harmonic

instability phenomena across a wide frequency range, due

to the multi-timescale control dynamics of VSCs [1]. The

harmonic instability phenomena are further divided into the

frequency-decoupled resonances at harmonic frequencies and

the sideband (frequency-coupled) resonances around the grid

fundamental frequency [2].

The impedance-based analysis method is commonly used

to analyze the system stability and identify the resonance

frequency in the frequency-domain [2]. It has been shown

that the harmonic resonances are mainly caused by the inner

current control loop, where the time delay of the digital

control system brings in a negative damping close to the

resonance frequencies of passive filters and grid impedance

[3], [4]. Since the inner control loop has symmetric dynamics

in the dq- or αβ-frame, it can be represented by two single-

input single-output (SISO) transfer functions or one complex

transfer function [3], [5], and thus the resonance frequency

can be readily identified in Bode plots based on the Nyquist

stability criterion.

In contrast, the sideband resonances of the fundamental

frequency [6]–[14], which are resulted from the asymmetric
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dq-frame dynamics of the phase-locked loop (PLL) [6]–[11],

and the outer power control loops, e.g. the constant power

load with the regulated dc-link voltage loop [12], [13], or the

alternative voltage magnitude control loop [14]. In those cases,

the negative damping are introduced at either d- or q-axis,

instead of symmetrically on both d- and q-axes. Consequently,

the sideband resonances cannot be simply modeled by SISO

transfer functions [5], and the multiple-input multiple-output

(MIMO) transfer function matrices are needed to characterize

the frequency-coupling dynamics [10]–[12].

There are two general approaches for developing the MIMO

impedance matrices in respect to the used reference frame, i.e.

the dq-frame impedance matrices [6]–[8], [13] and the αβ-

frame impedance matrices [9]–[12]. The mathematical rela-

tionships between the two reference-frame impedance matrices

has been explicitly revealed in [10], and the same stability

implications of two impedance matrices have been proved.

An important difference between two impedance matrices is

that the dq-frame impedance matrices are derived based on

the linear time-invariant (LTI) operating points, where the

dynamic couplings between different frequencies in the phase

domain are hidden in the dq-frame [6]–[8], whereas the αβ-

frame impedance matrices are essentially developed based on

the linear time-periodic (LTP) operating trajectories [2], [10],

[11], which enables to directly capture the frequency-coupling

dynamics. However, both impedance matrices are MIMO

systems, which require using the generalized (multivariable)

Nyquist stability criterion to predict the system stability, and

the Bode plots of the eigenvalues of the MIMO return-

ratio matrix were drawn to identify resonance frequencies of

the marginally stable system, yet they provide little insight

into how the grid impedance affect the system resonance

frequencies in [12]. Therefore, two SISO impedances derived

in the αβ-frame, which are known as the sequence-domain

impedance model, were used to predict the system stability

in [9], yet the method overlooks the non-zero off-diagonal

elements in the derived impedance matrix, which implies the

frequency-coupling dynamics were not considered and the

inaccurate stability implication may be resulted [10]–[12].

In order to avoid using the generalized Nyquist stability

criterion, a method based on the MIMO closed-loop transfer

function matrix of the entire system is recently introduced

in [14]. In the approach, instead of deriving the MIMO

impedance matrix describing the VSC terminal behaviors,

the MIMO closed-loop transfer function matrix of the entire

system is derived considering the impacts of the PLL, the

inner current control loop, and the outer power control loops

along with the grid impedance. It is then found that the SISO
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Fig. 1. Single-line diagram of a three-phase grid-connected VSC with current control and SRF-PLL.
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Fig. 2. Small-signal block diagram of the current control loop with the effect of SRF-PLL in the dq-frame.

transfer function entries of the MIMO closed-loop transfer

matrix share a common denominator, from which a SISO

open-loop gain is extracted for predicting the system stability

based on the classical stability criterion. A prominent feature

of this method is that the design-oriented stability analysis

can be performed based on the SISO transfer functions, i.e.

how do controller parameters affect the overall system stability

can be characterized. However, the VSC-grid interactions are

implicitly exposed since the grid impedance is embedded

in the MIMO closed-loop transfer function matrix of the

entire system. Furthermore, the derivation of the SISO transfer

function in [14] is non-trivial due to the dynamic coupling

between different control loops.

In this paper, instead of analytically deriving the common

SISO open-loop gain of the MIMO system for stability

analysis, the two-port network theory that is used for an-

alyzing large-scale integrated circuits [15] is applied to the

impedance-based modeling method to reorganize the MIMO

impedance matrices of the VSC and the grid impedance, where

the common SISO open-loop gain is then directly derived

with the output admittances at the terminals of the VSC

and the grid impedance. Therefore, there is thus no need

of prior knowledge on system parameters, and the common

SISO open-loop gain can be even derived with the “black

box” models of grid-connected VSCs, which, consequently,

provide a more efficient and intuitive method than that in

[14]. Moreover, based on the two-port impedance network, the

common SISO open-loop gain can be further transformed into

two SISO impedance ratios seen from the network terminals,

and the VSC-grid interactions can be separately analyzed

on each terminal. Therefore, only the equivalent admittances

seen from the terminals is required, and the measurements

of the entire MIMO impedance matrices are avoided [16],

which significantly facilitates the stability analysis and the

resonance frequencies caused by the asymmetric dq-frame

control dynamics can be readily identified with the Bode plots

of SISO impedance ratios. Simulations and experimental tests

validate the effectiveness of the proposed stability analysis

method.

II. GRID-CONNECTED VSCS

In this section, the derivation of the αβ-frame impedance

model for a current-controlled grid-connected VSC with the

effect of PLL [10] is reviewed, which provides a basis for

utilizing the two-port network theory in the next section.

A. System Description

Fig. 1 illustrates a single-line diagram of a three-phase

grid-connected current-controlled VSC, where a stiff dc volt-
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Fig. 3. The complex transfer function equivalent of an asymmetric transfer function matrix.

age source Vdc is used. Similar to [6]–[11], the frequency-

coupled resonance caused from the synchronous reference

frame (SRF)-PLL [17] is focused in this study. The L-filter

is used at the ac side, and an LC-resonant grid impedance is

considered at the point of common coupling (PCC), including

a grid inductance Lg and a capacitance Cg . The PCC voltage,

ie. the voltage across the filter capacitor vc is measured by the

SRF-PLL for the grid synchronization purpose.

B. dq-Frame Impedance Modeling

The current controller is implemented in the dq-frame,

whose dynamic is thus affected by the phase angle θ measured

by the SRF-PLL [5]. Considering the dynamic effect of

the SRF-PLL, the small-signal block diagram of the current

control loop in the dq-frame can be drawn in Fig. 2, which

has been explicitly derived in [2].

The superscript ”m” in the block of Fig. 2 implies the

MIMO transfer function matrix, instead of SISO transfer

functions. In Fig. 2, Y m
p,dq (s) and Y m

o,dq (s) illustrate the L-

filter plant. Gm
c,dq (s) and Gm

del (s) are diagonal matrices, where

Gm
c,dq (s) represents the PI current controller transfer function

matrix with the proportional gain Kcp and the integral gain

Kci, and Gm
del (s) denotes the time delay, which is introduced

by the digital computation (Ts) and the pulse width modula-

tion (0.5Ts) [18], where Ts is the sampling period. Y m
PLL (s)

and Gm
PLL (s) represent the dynamic effect of the SRF-PLL,

through the Park- and the inverse Park-transformations on the

current ∆ic,dq and the voltage command v∗o,dq , respectively.

Y m
PLL (s) and Gm

PLL (s) are given as

Y m
PLL (s) =

[
0 −HPLL (s)Vc,q

0 HPLL (s)Vc,d

]

(1)

Gm
PLL (s) =

[
0 −HPLL (s) Ic,q
0 HPLL (s) Ic,d

]

(2)

where HPLL (s) is the small-signal model of the SRF-PLL

[17], which is linearized as a 2nd-order dynamic system [3].

From Fig. 2, the reference-to-output transfer function ma-

trix, Gm
cl,dq (s) and the closed-loop output admittance matrix,

Y m
cl,dq (s) can be derived, respectively, as

[
∆ic,d
∆ic,q

]

︸ ︷︷ ︸

∆ic,dq

= Gm
cl,dq (s)

[
id,ref
iq,ref

]

︸ ︷︷ ︸

idq,ref

+Y m
cl,dq (s)

[
∆vc,d
∆vc,q

]

︸ ︷︷ ︸

∆vc,dq

(3)

where Gm
cl,dq (s) is given by

Gm
cl,dq (s) =

[
Im + Tm

dq (s)
]−1

Tm
dq (s) (4)

where Tm
dq (s) is the open-loop gain of the transfer function

matrix, which is given by

Tm
dq (s) = Y m

p,dq (s)G
m
del,dq (s)G

m
c,dq (s) (5)

The closed-loop output admittance matrix, Y m
cl,dq (s), de-

notes the disturbance (the PCC voltage)-to-output transfer

function, and it can be derived as [7]

Y m
cl,dq (s) = Gm

cl,dq (s)Y
m
PLL (s)

+
[
Im + Tm

dq (s)
]−1

Y m
p,dq (s)G

m
del,dq (s)G

m
PLL (s)

−

[
Im + Tm

dq (s)
]−1

Y m
o,dq (s)

(6)

As given by (1) and (2), Y m
PLL (s) and Gm

PLL (s) are asym-

metric matrices, which make Y m
cl,dq (s) asymmetric, and thus

it cannot be analyzed as SISO complex transfer functions [5].

C. αβ-Frame Impedance Modeling

The dq-frame impedance matrix derived in (6) is based

on real vectors which is LTI, and thus it cannot explicitly

disclose the dynamic couplings between different frequencies

in the phase domain. Thus, the transformation from a general

real-valued transfer function matrix to its equivalent based on

complex vectors, yet still in the dq-frame, has been earlier

introduced in [19]. This transformation matrix is recently

applied to the dq-frame impedance matrix in [8], while in

[2], this transformation is derived from the complex transfer

function equivalent of an asymmetric transfer function matrix,

which is summarized and shown in Fig. 3. y∗+,dq (s) and

y∗
−,dq (s) are the complex conjugates of the complex transfer

functions y+,dq (s) and y−,dq (s), respectively. Hence, the

frequency coupling dynamics caused by asymmetric control

loops in the dq-frame are implanted into the system.

Then, considering the frequency translation between the

dq- and αβ-frame, the αβ-frame complex-valued impedance

matrix can be derived as [10]:
[

∆ic,αβ
ej2θ∆i∗c,αβ

]

=

[
y+ (s) y− (s)
y∗− (s) y∗+ (s)

]

︸ ︷︷ ︸

Y m
±cl

(s)

[
∆vc,αβ

ej2θ∆v∗c,αβ

]

(7)

where Y m
±cl (s) shows the electrical relations of complex

vectors at different frequencies, and ∆v∗c,αβ is the complex
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Fig. 4. General two-port network representation of a grid-connected VSC based on impedance matrices.

conjugate vector of ∆vc,αβ in the αβ-frame. For a given

voltage vector at the frequency ω, a frequency-coupled current

vector at the frequency 2ω1 − ω is generated according to

(7), where ω1 is the grid fundamental frequency. It is worth

mentioning that the αβ-frame impedance (or admittance)

matrix has been validated in [10], and the model validation

will not be repeated in this work.

III. TWO-PORT NETWORK FOR STABILITY ANALYSIS

This section presents first a general two-port network rep-

resentation of grid-connected VSCs based on the MIMO

impedance matrices, and then elaborates the principle of

deriving the common SISO open-loop gain from the two-

port network. The essential differences between the proposed

approach and the conventional impedance-based stability anal-

ysis method are highlighted.

A. General Two-Port Network Representation

Fig. 4 illustrates a general two-port network representation

of grid-connected VSCs based on the MIMO impedance

matrices, where the grid impedance matrix in the αβ-frame

is diagonal, which is expressed as [10], [11]
[

∆vc,αβ
ej2θ∆v∗c,αβ

]

=

[
∆vg,αβ

ej2θ∆v∗g,αβ

]

−

[
Zg (s) 0

0 Z∗
g (s)

]

︸ ︷︷ ︸

Zm
g (s)

[
∆ic,αβ

ej2θ∆i∗c,αβ

]

(8)

In order to preserve the physical property at the PCC of VSC

and meanwhile illustrate the frequency-coupling dynamics, the

two grid impedance entries are distributed on two ports of the

network.

B. Conventional Impedance-Based Stability Analysis

In the conventional impedance-based approach, the grid

impedance matrix is cascaded with the VSC admittance matrix

as shown in Fig. 5, and the open-loop transfer function matrix

of the MIMO system is derived directly from the ratio of

impedance matrices, i.e. the return-ratio matrix Lm (s), which

is given by

Lm (s) = Zm
g (s)Y m

±,cl (s) (9)

Then the generalized Nyquist stability criterion is applied

to the return-ratio matrix for the stability prediction. This

is basically a MIMO system analysis method, and has been

widely used with three-phase VSC systems [6]–[13]. To utilize

this method, all entries of the impedance matrices need to be

known, either by analytical derivations or through impedance

measurements [16]. Moreover, the Nyquist plots of eigenvalues

of the return-ratio matrix provide little insight into how the

grid impedance affect the system resonance frequency [14].

C. Proposed Stability Analysis Method

Instead of utilizing the multivariable control theory, the

active network analysis theory [20] is employed to analyze the

VSC-grid interactions. Given a general LTI two-port network

model constituted by admittance matrices, which is shown in

Fig. 6, the dynamic interactions at each port can be analyzed

by applying the superposition principle and using the SISO

impedances seen from each port, which are illustrated as

follows.

First, considering the input voltage vS only and v∗S is set to

zero, the current at Port 2 can be derived as

i2 = −v2YL (10)

and the electrical relations of the two-port network is shown

as [
i1
i2

]

=

[
y11 y12
y21 y22

] [
v1
v2

]

(11)

Substituting (10) into (11),the following transfer functions

can be derived:

Gv =
v2
v1

=
−y21

y22 + YL

(12)

❝✈∆�✐∆ ( )♠
❣❩ s ✁✂∆
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Fig. 5. Impedance equivalent model of the current-controlled

grid-connected VSC.
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Yin =
i1
v1

= y11 + y12
v2
v1

= y11 −
y12y21

y22 + YL

(13)

where Gv is the internal two-port gain, and Yin is the equiv-

alent input admittance seen from the Port 1. Then, including

the admittance YS , the SISO closed-loop gain from vS to v1
can be derived as

v1
vS

=

YS

YS + y11

1−
y12y21

(YS + y11) (YL + y22)

(14)

Based on (12) and (14), the SISO closed-loop gain from vS
to v2 can then be calculated as

v2
vS

=
v2
v1

v1
vS

= −

y21YS

(YS + y11) (YL + y22)

1−
y12y21

(YS + y11) (YL + y22)

(15)

Next, considering the input voltage v∗S only and setting vS
as zero, the SISO closed-loop gains from v∗S to v1 and v2 can

be derived similarly, which are given by

v1
v∗S

= −

y12YL

(YS + y11) (YL + y22)

1−
y12y21

(YS + y11) (YL + y22)

(16)

v2
v∗S

=

YL

YL + y22

1−
y12y21

(YS + y11) (YL + y22)

(17)

From (14)-(17), it is clear that all the SISO closed-loop gains

share the same characteristic equation, and a common open-

loop gain GL can be identified from that, which is given by

GL = −

y12y21
(YS + y11) (YL + y22)

(18)

Then, the stability of the two-port network can be evalu-

ated based on (18), which, differs from the conventional

impedance-based approach, is a SISO transfer function. Thus,

the classical Nyquist stability criterion can be applied, which

significantly simplifies the stability analysis and the system

resonance frequency can be readily identified through the Bode

plots of (18).

It is worth mentioning that the concept of the common

SISO open-loop gain has been introduced in [14] for the

stability analysis of grid-connected VSCs. However, instead

of utilizing the impedance-based representation, the common

SISO open-loop gain given in [14] is analytically derived

from a closed-loop MIMO transfer function matrix of the

entire system, which contains the VSC with the pre-defined

control structure and controller parameters along with the grid

impedance. Moreover, the whole computation process is more

complicated than Fig. 6.

In addition, although the SISO open-loop gain given in (18)

is based on admittance matrices, it requires knowing all the en-

tries of the admittance matrices, similarly to the conventional

impedance-based approach. It is shown that measuring all the

entries of the αβ-frame admittance matrix is difficult, yet the

measurement of the equivalent terminal admittances can be

readily obtained. Hence, a refined frequency scan approach

that considers the frequency coupling dynamics of VSCs is

introduced in [16]. Thus, to deal with this challenge, the SISO

closed-loop gains are reformulated as follows:

v1
vS

=
YS

YS + Yin

=

YS

Yin

1 +
YS

Yin

(19)

v2
vS

= Gv

YS

YS + Yin

= Gv

YS

Yin

1 +
YS

Yin

(20)

v1
v∗S

= G∗

v

YL

YL + Yout

= G∗

v

YL

Yout

1 +
YL

Yout

(21)

v2
v∗S

=
YL

YL + Yout

=

YL

Yout

1 +
YL

Yout

(22)

where

G∗

v =
−y12

y11 + YS

(23)

It is seen that the SISO open-loop gain can be reformulated

as two impedance ratios, where Yout is the equivalent output

admittance seen from Port 2, which is given as

Yout = y22 −
y12y21

y11 + YS

(24)

Thus, instead of identifying all the entries of the admittance

matrix, only the equivalent input and output admittances at the

Port 1 and Port 2 are required for the stability analysis.

Following this principle, the general two-port network

model shown in Fig. 6 can be replaced by that shown in

Fig. 4, and then the corresponding equivalent admittances can

be derived as

YS =
1

Zg (s)
(25)

YL =
1

Z∗
g (s)

(26)
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Fig. 7. Configuration of the experemental platform.

TABLE I. Identical system parameters used in the four cases.

System symbol Parameter Description Value

Vdc Dc bus voltage 650 V

Id,cmd Current command in d-axis 21.2 A
fsw Switching frequency 10 kHz
Ts Sampling time 100 µs

Kcp/Kci Current controller parameters 7.9 / 2742

Lo Converter side inductor 1.5 mH
Cg Grid capacitor 15 µF

Yin = y+ (s)−
y− (s) y∗− (s)

(

y∗+ (s) +
1

Z∗
g (s)

) (27)

Yout = y∗+ (s)−
y− (s) y∗− (s)

(

y+ (s) +
1

Zg (s)

) (28)

IV. CASE STUDIES AND VERIFICATIONS

In order to validate the effectiveness of the proposed stabil-

ity analysis method, four different cases based on the system

diagram shown in Fig. 1 are studied in this section, including

the frequency-domain stability analysis, time-domain simu-

lations and experimental verifications. In experimental tests,

the experimental platform is shown in Fig. 7 that a constant

dc voltage source is used at the dc-side of the VSC, and a

regenerative grid simulator is used to emulate the grid voltage.

The digital control system of the VSC is implemented in the

dSPACE DS1007 system, where the voltage and current are

measured by using the DS2004 high-speed A/D board, and

the gate signals are generated using DS5101 digital waveform

output board.

Descriptions of Cases

TABLE I-III provide the electrical system and controller

parameters used in the four cases, where the same current

controller parameters are used, yet different PLL parameters

are compared. Moreover, to evaluate the stability of VSC under

weak grid conditions, four different grid inductances yet the

same grid capacitance, corresponding to different short-circuit

ratio (SCR) values are considered, and the q-axis current

commands are adjusted in order to compensate the voltage

drop caused by the grid inductance variation.

First, a reference case is introduced in Case I, where the

VSC is tested with the SCR of 2.5, the d-axis current command

is equal to 21.2 A, and the q-axis current command is set as

-4.5 A. The proportional gain used in the SRF-PLL Kpp is

designed as 1.05 [17]. Then, in the Case II, a lower bandwidth

of SRF-PLL than that in Case I is tested, and hence all the

parameters are the same as Case I, expect that Kpp is set

as 0.35. Next, in Case III, a weaker grid condition with the

SCR of 1.6 is tested, which corresponds to an increase of the

grid inductance from 11 mH to 16.4 mH, and accordingly,

the q-axis current command is tuned from -4.5 A to -7.2 A.

The other parameters are the same as Case I. Lastly, a different

grid voltage amplitude, i.e. 400 Vrms, is considered in the Case

IV, yet the grid inductance remains unchanged from Case I,

and thus the SCR is increased from 2.5 to 4.4, and the q-axis

current command is changed from -4.5 A to -2 A.

It is important to note that in all cases, the integral gain of

the SRF-PLL, Kpi, is tuned to make the system marginally sta-

ble in simulations and experiments. Due to the non-idealities in

the experimental setup, the critical PLL parameters that cause

the system marginally stable are slightly different between

simulations and experiments in the four cases (see TABLE III),

and consequently the resulted resonance frequencies are also

shifted with the maximum 1.5 Hz.

Case I - Reference Case

Fig. 8 shows the simulation results and the associated

frequency-domain analysis for the Case I, where the integral

gain of the SRF-PLL Kpi is identified as 237 to make the

system marginally stable in simulations. Fig. 8(a) show the

simulated VSC current and PCC voltage waveforms. However,

the resonance frequencies are hidden in the time-domain

simulation. The corresponding harmonic spectrum is given in

Fig. 8(b), where the frequency resolution is set as 0.5 Hz in

both simulations and experiments. It is clear that the resonance

frequencies are 8 Hz and 92 Hz. Then, Fig. 8(c) shows the

Bode plots of the admittance ratios derived in (19)-(22). It can

be seen that the magnitude response of the input admittance

ratio YS

Yin
reaches 0.32 dB at the phase crossover frequency

(91.9 Hz), which implies the gain margin of 0.32 dB, and

meanwhile the output admittance ratio YL

Yout
also reaches 0.32

dB at the phase crossover frequency (8.1 Hz). Both of them

match well with the resonance frequencies of 92 Hz and 8

Hz identified in the harmonic spectra analysis as shown in

Fig. 8(b).

Fig. 9 shows the experimental results and the associated

frequency-domain analysis for the Case I. Differs from the

simulation, the system encounters resonance when Kpi is

216, which is less than that in the simulation. The resonance

frequencies are also shifted with 1.5 Hz, as shown by the

harmonic spectra in Fig. 9(b). Fig. 9(c) shows the frequency-

domain analysis result with the Kpi used in the experiment.
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TABLE II. Different system parameters used in the four cases.

System symbol Vg,rms Iq,cmd Kpp SCR (Lg)

Grid Voltage Current command Proportional gain Short Circuit Ratio
in q-axis in SRF-PLL (Grid Inductance)

Case I 220 V , 50 Hz -4.5 A 1.05 2.5 (11.0 mH)
Case II 220 V , 50 Hz -4.5 A 0.35 2.5 (11.0 mH)
Case III 220 V , 50 Hz -7.2 A 1.05 1.6 (16.4 mH)
Case IV 400 V , 50 Hz -2.0 A 1.05 4.4 (11.0 mH)

TABLE III. Integral gain Kpi used in SRF-PLL where insta-

bility occurs.

Simulation Experiment

Case I 237 216

Case II 128 117

Case III 59 56

Case IV 285 285

It is clear that the gain margin of two admittance ratios is

increased to 0.72 dB, due to the reduced Kpi, and the phase

crossover frequencies are indicated as 9.3 Hz and 90.7 Hz.

Hence, even though the PLL parameters are slightly different

between the simulation and the experiment, the proposed

method predicts well the resonance frequencies by means of

two SISO admittance ratios, which greatly facilitate the system

stability analysis compared to the conventional impedance-

based approach.
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(a) Converter output current and PCC voltage
waveform

(b) Frequency spectrum of Fig. 8(a)
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Fig. 8. Simulation result and frequency-domain analysis for Case I.

(a) Converter output current and PCC voltage wave-
form (X-axis: 20 ms/div, Y-axis: Ia, Ib, Ic: 5 A/div,
Vab: 100 V/div)

(b) Frequency spectrum of converter output
current in Fig. 9(a)
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Fig. 9. Experimental result and frequency-domain analysis for Case I.
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(a) Converter output current and PCC voltage
waveform

(b) Frequency spectrum of Fig. 10(a)
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Fig. 10. Simulation result and frequency-domain analysis for Case II.

(a) Converter output current and PCC voltage wave-
form (X-axis: 20 ms/div, Y-axis: Ia, Ib, Ic: 5 A/div,
Vab: 100 V/div)

(b) Frequency spectrum of converter output
current in Fig. 11(a)
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Fig. 11. Experimental result and frequency-domain analysis for Case II.

Case II - Lower SRF-PLL Bandwidth

Fig. 10 shows the simulation result and the frequency-

domain analysis for the Case II. In this case, the proportional

gain of the SRF-PLL, Kpp is intentionally reduced to obtain a

lower bandwidth, as given by TABLE II, and then Kpi is found

to be 128 when the system becomes marginally stable. From

the harmonic spectra analysis in Fig. 10(b), it can be seen that

the resonance frequencies are 24.5 and 75.5 Hz, which are

higher than the Case I. This is because the reduced bandwidth

of SRF-PLL leads to a lower-frequency oscillation at the q-

axis [7], which leads to the frequency-coupled resonances at a

higher frequency in the αβ-frame [10], i.e. 50− 25.5 = 24.5
Hz and 50 + 25.5 = 75.5 Hz. Fig. 10(c) plots the frequency

responses of admittances, from which the gain margin can be

identified as 0.015 dB, and the phase crossover frequencies

are 24.6 Hz and 75.4 Hz, respectively.

Fig. 11 shows the experimental results and the frequency-

domain analysis for the Case II. The critical value of Kpi that

makes the experimental system marginally stable is changed as

117. Yet, the same resonance frequencies as that are identified

in the simulation can be observed from Fig. 11(b). Then, with

the updated Kpi, the frequency-domain analysis result for the

experimental test is shown in Fig. 11(c). It is seen that the

phase crossover frequencies of two admittance ratios are 25.5

Hz and 74.5 Hz, respectively, and their gain margin is 0.54

dB, which is higher than that in Fig. 10(c), due to the reduced

Kpi. This case once again confirms the effectiveness of the

proposed analysis method.

Case III - Weaker Grid with Lower SCR

Fig. 12 shows the simulation results and the associated

frequency-domain analysis for the Case III. It is clear that the

critical value of Kpi is reduced as 59 with the reduced SCR.

Fig. 12(b) shows the harmonic spectra of the simulated voltage

and current. It can be seen that the resonance frequencies are

17.5 Hz and 82.5 Hz, which imply that a lower-frequency

oscillation at the q-axis is introduced in the grid with a lower

SCR. The gain margin of two admittance ratios in this case is

shown in Fig. 12(c), which is 0.63 dB at the phase crossover

frequencies of 17.3 Hz and 82.7 Hz, respectively.

The experimental results and the frequency-domain analysis

for the Case III are shown in Fig. 13, where the critical value

of Kpi is further reduced as 56, which is slightly less than that

in the simulation. The observed resonance frequencies from

the harmonic spectra of the measured voltage and currents are

17.5 Hz and 82.5 Hz, which are the same as the simulation
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(a) Converter output current and PCC voltage
waveform

(b) Frequency spectrum of Fig. 12(a)
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Fig. 12. Simulation result and frequency-domain analysis for Case III.

(a) Converter output current and PCC voltage wave-
form (X-axis: 20 ms/div, Y-axis: Ia, Ib, Ic: 5 A/div,
Vab: 100 V/div)

(b) Frequency spectrum of converter output
current in Fig. 13(a)
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Fig. 13. Experimental result and frequency-domain analysis for Case III.

result in Fig. 13(b). Also, the resonance frequencies identified

from the frequency-domain analysis are also the same as that

in Fig. 13(c), yet the gain margin is slightly increased to 0.68

dB. Hence, the theoretical analysis results are well aligned

with the simulations and experimental tests.

Case IV - Different Grid Voltage Amplitude

In this case, by increasing the grid voltage from 220 Vrms

to 400 Vrms, a sequence-coupled, not only frequency-coupled,

resonance phenomenon is observed. The critical value of Kpi

that makes the system marginally stable is the same in the sim-

ulation and experiment, which is given in TABLE III. Fig. 14

shows the simulation result and the associated frequency-

domain analysis, while the experimental result is shown in

Fig. 15. It is clear that in both cases the resonance frequencies

which are observed from the simulation and experiment are the

same, which are 11 Hz and 111 Hz, as shown in Fig. 14(b)

and Fig. 15(b).

The frequency-domain analysis is provided in Fig. 14(c). It

is clear that the phase crossover frequencies of two admittance

ratios are -10.8 Hz and 110.8 Hz with a gain margin of 0.72

dB. This negative resonance frequency (-10.8 Hz) implies

a negative-sequence resonant component in the three-phase

system [2]. The presence of this negative-sequence resonance

is due to the oscillation induced by the PLL is 60.8 Hz

in the q-axis, which, when transforming into the αβ-frame,

turns as 50 − 60.8 = −10.8 Hz and 50 + 60.8 = 110.8
Hz. Since the harmonic spectra shown in Fig. 14(b) and

Fig. 15(b) cannot reflect the sequence information, only the

11 Hz and 111 Hz resonance frequencies are observed. This

case study again indicates that the proposed method can also

predict the sequence-coupled resonances by means of two

SISO admittance ratios.

V. CONCLUSIONS

In this paper, a SISO system stability analysis method has

been introduced for analyzing the stability of three-phase VSC

systems. Differing from the conventional impedance-based

approach, the proposed method utilizes the active two-port

network theory to intuitively formulate a SISO open-loop gain

for the MIMO dynamic system of VSCs. The SISO open-loop

gain is further translated into two SISO admittance ratios and

the need of measuring the four entries of the VSC admittance

matrix is avoided. This superior feature significantly facili-

tates the system stability analysis, and the frequency-coupled

resonances can be readily identified through the Bode plots of

two SISO admittance ratios. Comprehensive case studies in the
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(a) Converter output current and PCC voltage
waveform

(b) Frequency spectrum of Fig. 14(a)
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Fig. 14. Simulation result and frequency-domain analysis for Case IV.

(a) Converter output current and PCC voltage wave-
form (X-axis: 20 ms/div, Y-axis: Ia, Ib, Ic: 5 A/div,
Vab: 100 V/div)

(b) Frequency spectrum of converter output
current in Fig. 15(a)

Fig. 15. Experimental result and frequency-domain analysis for Case IV.

frequency-domain, time-domain simulations and experimental

tests have demonstrated the effectiveness of the proposed

stability analysis method.
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