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Two Poset Polytopes 

Richard P. Stanley* 

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 

Abstract. Two convex polytopes, called the order polytope d)(P) and chain 
polytope <~(P), are associated with a finite poset P. There is a close interplay 
between the combinatorial structure of P and the geometric structure of 
E~(P). For instance, the order polynomial fl(P, m) of P and Ehrhart poly- 
nomial i(~9(P),m) of O(P) are related by f~(P,m+l)=i(d)(P),m). A 
"transfer map" then allows us to transfer properties of O(P) to W(P). In 
particular, we transfer known inequalities involving linear extensions of P to 
some new inequalities. 

I. The Order Polytope 

Our aim is to investigate two convex polytopes associated with a finite partially 
ordered set (poset) P. The first of these, which we call the "order polytope" and 
denote by O(P), has been the subject of considerable scrutiny, both explicit and 
implicit, Much of what we say about the order polytope will be essentially a 
review of well-known results, albeit ones scattered throughout the literature, 
sometimes in a rather obscure form. The second polytope, called the "chain 
polytope" and denoted i f(P) ,  seems never to have been previously considered per 
se. It is a special case of the vertex-packing polytope of a graph (see Section 2) but 
has many special properties not in general valid or meaningful for graphs. There 
is a surprising connection (Section 3) between (P(P) and (~(P) which will allow 
us to "transfer" properties of O(P) over to r((p) .  

Given the poset P = { x 1 . . . . .  x ,  } (where by standard abuse of notation we 
identify p with its set of points), the set R e of all functions f :  P---, R is an 
n-dimensional real vector space with a scalar product defined by ( f ,  g ) =  
~-.~ E j ( x ) g ( x ) ,  which makes R e a Euclidean space. In particular, we can talk 
about convex subsets of R p and their volumes, orthogonal projections, etc. 

*Partially supported by NSF Grant No. 8104855-MCS and by a Guggenheim Fellowship. 
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Definition 1.1. The order polytope d)(P) of the poset P is the subset of R p 
defined by the conditions 

0 < f ( x )  < 1, for all x e P,  (1) 

f ( x )  < f ( y )  i f x  < y in P. (2) 

Note that O(P)  is a convex polytope since it is defined by linear inequalities 
and is bounded because of (1). Clearly, because of (2), we can replace (1) by the 
conditions 

0 < f ( x ) ,  if x is a minimal element of P, 

f ( x )  < 1, if x is a maximal element of P. (1') 

By the transitivity of P, we can replace (2) by the equivalent conditions 

f ( x )  < f ( y )  if y covers x in P. (2')  

Let o: P ~ {1 . . . . .  n } be a linear extension (order-preserving bijection) of P. 
We identify a with the permutation Yl . . . . .  Yn of the elements x 1 . . . . .  x n of P 
defined by o(y,) = i. All functions f ~ R e satisfying 0 < f(Yl)  < " '"  < f(Yn) < 1 
belong to 0 (P ) .  These functions form an n-dimensional simplex, so we conclude 
dim tV(P)= n. It is easily seen that conditions (1') and (2') are independent, so 
they define the facets [(n -1)-dimensional faces] of 0 (P ) .  More precisely a facet 
of O(P)  consists of those f ~d~(P) satisfying exactly one of the following 
conditions: 

f ( x )  = 0, for some minimal x ~ P,  (3a) 

f ( x )  = 1, for some maximal x ~ P, (3b) 

f ( x )  = f ( y ) ,  for some y covering x in P. (3c) 

It is convenient to state the above conditions in a more uniform way. Let 
be the poset obtained from P by adjoining a minimum element 0 and a maximum 
element i. Define a polytope ~ ( P )  to be the set of functions g ~ R ~' satisfying 

g(0) = 0, g ( i )  = 1, 

g(x)  <_ g(y)  if x _< y in ,b. 

The linear map P: ~ (P)  -* O(P)  obtained by restriction to P is clearly a bijection 
and hence (since P is linear) defines a combinatorial equivalence of polytopes. 
Thus by (3) a facet of O(P)  consists of those g ~ ~ ( P )  satisfying g(x) = g(y) for 
some fixed pair (x, y)~ for which y covers x in P. In particular, the number of 
facets of O(P)  or O(P)  is the number c ( t ' )  of cover relations in P, or 
equivalently c(P)+ a+ b, where P has a minimal elements and b maximal 
elements. 

We now wish to determine the entire facial structure of t~(P), or equivalently 
of 0 ( P ) .  Since every face is an intersection of facets, it follows that a face F,~ of 
~ ( P )  corresponds to certain partitions ~r= {B 1 . . . . .  Bk} of P into nonempty 
pairwise disjoint blocks, viz., 

F,~ = ( g ~ ~ ( P ) :  g is constant on the blocks B i of Ir }. (4) 
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It remains  to determine for which rr F,~ is a face, and which are the distinct faces 
F. ,  Call i r a  face partition if F,, is a face of  P. It is clear that  if ~r is a face 
part i t ion,  then ~r is connected, i.e., every block B of ~r is connected as an 
(induced) subposet  of P. Call a part i t ion ~r = { B 1 . . . . .  B k } closed if for any i 4= j 
there is g ~ F~ such that g(Bi) ~ g(Bj). Every part i t ion ~r has a unique coarsen- 
ing ~ for which ~ is closed and F,=F~. Moreover,  if ~ r ~ [ B  1 . . . . .  Bk} is a 
closed face par t i t ion then dim F~ = k - 2 [since if (~ ~ B, and 1 ~ By then g ~ F~ 
satisfies g(Bi )=  0 and g(Bj)= 1]. Hence  it remains to describe the closed face 
parti t ions.  This description was apparent ly  first explicitly observed by Geissinger 
[6]. We will state Geissinger 's result below (Theorem 1.2) but  will omit  the rather  
s t ra ightforward proof.  

Def ine  a b inary  relation < ~ on ~r by setting B, < Bj if x _< y for some x ~ B i 
and y ~ By. Call  ~r compatible if the transitive closure of  < ~ is a partial  order  
(i.e., is ant isymmetr ic) .  If  ~r is compat ib le  then every block B of sv is convex; i.e., 
if x, z ~ B and x < y < z.. then y ~ B. The converse is false; e.g., let I '  be given 
by Fig. 1. The  part i t ion into blocks 0, ad, bc, 1 is connected and convex, but  not  
compatible .  

T h e o r e m  1.2. A partition of P is a closed face partition if and on~ if it is connected 
and compatible. (In particular, the partition ~r into a single block P yields the empty 
set F, = 0 ,  which we regard as a face.) 

Thus  the lattice of faces 0 ( P )  [or (~(P)] is isomorphic  to the lattice of 
connected compat ib le  parti t ions of  P,  ordered by reverse refinement.  For  in- 
stance, if P = { a,  b } is a two-element antichain, then d~(P) is a square and Fig. 2 
depicts its face lattice (with (~ and ] writ ten 0 and 1). 

Def ine  a filter (or dual order ideal, up-set, or increasing subset) of P to be a 
subset I of  P such that if x ~ I and y > x, then y ~ I. Let XI: P ~ R denote the 

~O-o-b-I 

Oo-b-I ~ ~ O-o-bl Ob-a-! 

Oob-i ~ Ob-ol 

Fig. 2 
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characteristic function of I; i.e., 

1, x ~ l  
x ~ ( x )  = O, x ~  I.  

The following corollary is immediate from Theorem 1.2 and can also be easily 
proved directly. 

Corollary 1.3. The vertices of tP( P) are the characteristic functions XI of filters I 
of P. In particular, the number of vertices of t~(P) is the number of filters of P. 

2. The Chain Polytope 

Let us define a second polytope associated with a poset P = { x 1 . . . . .  x,  }. 

Definition 2.1. The chain polytope ~(P)  of the poset P is the subset of R e 
defined by the conditions 

0 < g(x ) ,  for all x ~ P ,  (5) 

g ( Y l ) + ' ' ' + g ( Y k )  --<1, for every chain yl < " '"  < Yk °fP" (6) 

Again it is clear that ~ ( P )  is a convex polytope. Since f~(P) contains the 
n-dimensional simplex { g ~ R P :  g(x) >0 for all x ~ P and g(xl)+ . . .  + g(x,)  
< 1}, we have d i m ~ ( P )  = n. In view of (5) we can replace (6) by 

g(Yl) + ' ' "  + g(Yk) < 1, for every maximal chain Yl < " " " < Yk of P. 

(6 ' )  

Conditions (5) and (6') are easily seen to be independent and thus define the 
facets of ~ ( P ) .  In particular, the number of facets of ~ ( P )  is equal to n + m(P), 
where re(P) is the number of maximal chains of P. 

A description of the faces of ~ ( P )  analogous to Theorem 1.2 seems messy 
and will not be pursued here. However, we do have a simple description of the 
vertices analogous to Corollary 1.3. Define an antichain of P to be a subset A of 
pairwise incomparable elements of P. 

Theorem 2.2. The vertices of ~¢(P) are the characteristic functions XA of anti- 
chains of P. In particular, the number of vertices of T ( P ) is equal to the number of 
antichains of P. 

Proof. Clearly each XA ~ ~¢(P)" Since 0 < g(x) < 1 for all g ~ ~ ( P )  and x ~ P, 
it follows that XA is a vertex of i f (P) .  

Conversely, suppose g ~ ~ ( P )  and g ~ XA for any antichain A of P. Let 
Q = ( x  ~ P: 0 < g(x)  <1}. Let Q1 be the set of minimal elements of Q and Q2 
the set of minimal dements of Q - Qr  One easily sees that since g ~ XA, Q1 and 
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Q2 are nonempty. Define 

= min{g(x) , l -g(x):  x~QiuQ2 }. 

Define gl, g2: P ~ R by 

(g(x),  x q~ Qi u Q2 
g , ( x )  = 

~g(x)-e ,  xEQ2, 

(g(x),  xq~PluO2 
gz(x) = ( g ( x ) - e ,  x~O1 

[g(x)+e, x~Q2. 

It is clear that gi, g2 E ~g(P). Since gl 4:g2 and g = ½(gi + g2), it follows that g 
is not a vertex of ~ ( P ) .  [] 

Theorem 2.2 is already known within a graph-theoretical context. Let G be a 
graph (with no loops and multiple edges) on a vertex set V =  (x  1 . . . . .  x,,}. Let 
~/'(G) _c R v denote the convex hull of the characteristic functions XA of indepen- 
dent (stable) sets A of vertices; i.e., no two vertices in A are adjacent in G. Then 
U ( G )  is called the vertex-packing potytope of G. In particular, given a poset P 
define its comparability graph Com(P)  to be the graph whose vertices are the 
elements of P, with x, y ~ P adjacent if x < y or y < x. Then an independent set 
of vertices of Com(P)  is just an antichain A of P, so by Theorem 2.2 we have 
U(Com(P) )  = c~(p). But since comparability graphs are perfect (e.g., [6, Thm. 
5.34]) it follows from [2, Thin. 3.1] (or see [7, Thm. 3.14]) that the facets of 
U(Com (P) )  are given by (5) and (6'). 

There is a well-known bijection between filters I and antichains A of P, viz., 

I = ( y :  y>x forsomex~A} ,  
A = set of minimal dements of I.  

Thus from Corollary 1.3 and Theorem 2.2 it follows that O(P)  and ¢g(P) have 
the same number of vertices. In general, however, O(P)  and cg(p) need not have 
the same number of /-dimensional faces for i > 0 (and hence need not be 
combinatorially equivalent). For instance, if P is given by Fig. 3, then O(P)  has 
eight facets and oK(p) has nine facets. There is, however, one class of posets for 
which O(P)  and cg(p) are in fact combinatorially equivalent. 

Fig. 3 
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Theorem 2.3. Suppose P has length at most one (i.e., P has no three-element 
chains). Then O( P ) and cg( p ) are affinely equivalent and hence combinatorially 
equivalent. 

Proof Define a nonsingular affine transformation f: R e ___, R e by 

( ~ f ) ( x )  = ( f ( x ) ,  
l - f  (x) ,  

if x is a minimal element of P 

otherwise 

It is routine to check that the image of 0 (P )  under ~ is ~ (P) ,  and the proof 
follows. [] 

In Section 4 we generalize the fact that for any P, O(P) and ~ ( P )  have the 
same number of vertices. 

3. A Connection Between O(P) and ~ ( P )  

In this section we construct a map q~: O(P) --, g ( P )  with several nice properties. 
This will allow us to transfer certain properties of 0 (P )  over to i f (P) .  

Definition 3.1. Let P be a finite poset, and define the transfer map ¢p: ¢ ( P )  --* 
~ ( P )  as follows: If f ~ 0 (P )  and x ~ P then 

(epf ) ( x )  = rnin{ f ( x ) -  f ( y ) :  x covers y in P} .  (7) 

Theorem 3.2. (a) The transfer map qJ is a continuous, piecewise-linear bijection 
from O(P)  onto cg(p). 

(b) Let m be a positive integer and f ~ O( P). Then m f ( x )  ~ 7_ for all x ~ P if 
and only if m(  q~f )( x ) ~ Z for all x ~ P. 

Proof. (a) Continuity is immediate from the definition (7). Moreover, for each 
linear extension Yl . . . . .  yn of P, q~ is linear on the simplex defined by 0 < f ( Y l )  <- 
• . .  < f ( y , ) < 1 .  Since these simplices dearly cover 0(P) ,  it follows that q~ is 
piecewise-linear. Now define q~: T(P)  ---, 0 (P )  by 

( ~ g ) ( x )  = m a x { g ( y l ) + - - .  + g ( y k ) :  Yt < ' ' "  < Y* =X}" (8) 

One checks that (q~f f ) f=f  and ( ~ q , ) g = g  for all f ~ 0 ( P )  and g ~ ( P ) .  
Hence ~ is a bijection (with inverse ~k). 

(b) This result is immediate from (7) and (8). [] 

4. The Ehrhart Polynomial 

Let ~ be a d-dimensional convex polytope in R n with integer vertices. If m is a 
positive integer then define 

i ( ~ ,  m) = ca rd (m~  n Z " ) .  



Two Poset Polytopes 15 

In other words, i ( ~ ,  m) is equal to the number of points a ~  ~ such that 
mct~ Z' .  It is known that i ( ~ ,  m) is a polynomial function of m of degree d, 
called the Ehrhart polynomial of ~ .  When d = n the leading coefficient of 
i ( ~ ,  m) is the volume V(~ )  of ~ .  For these and other facts concerning i ( ~ ,  m), 
see, e.g., [15]. 

Now let P be a finite n-element poset and m a positive integer and define 
f l (P,  m) to be the number of order-preserving maps ,/: P ~ (1 . . . . .  m);  i.e., if 
x _< y in P then 71(x) < */(y). Then f~(P, m) is a polynomial function of m of 
degree n, called the order polynomial of P. The leading coefficient of ~2(P, m) is 
e ( P ) / n ! ,  where e (P)  is the number of linear extensions of P. For these and 
other facts concerning ~2(P, m), see, e.g., [12] and [13, Sections 13 and 19]. 

Theorem 4.1. The Ehrhart polynomials of (9( P ) and ~ ( P ) are given by 

i ( ( 9 ( P ) , m )  = i ( ~ ( P ) , m )  = ~ ( P , m + l ) .  

Proof By definition, i(O(P), m) is equal to the number of order-preserving 
maps f :  P ---, R satisfying 0 < f ( x )  < 1 and mf(x )  ~ Z for all x ~ P. This is 
equivalent to the condition that mf: P ~ (0,1 . . . . .  m} is order-preserving, so 
i(O(P), m) = ~2(P, m +1). But Theorem 3.2(b) implies that i(O(P), m) = 
i (~ (P) ,  m), and the proof follows. [] 

Since the leading coefficient of i ( ~ , m )  is V ( ~ )  (when d i m # = n  and 
c R n) and that of ~2(P, m +1)  is e ( P ) / n ! ,  there follows 

Corollary 4.2. The volumes of O( P ) and cg ( p ) are given by 

V(O(P)) = V(~(P)) = e(P)/n!. 

It would be interesting to find other vertex-packing polytopes whose volumes 
have a simple combinatorial interpretation. Let us also mention that a method 
similar to the proof of Corollary 4.2 for showing that two convex polytopes have 
the same volume appears in [14]. 

Example 4.3. Let F, denote the n-element fence, i.e., the poset with elements 
x 1 . . . . .  x ,  and cover relations 

x, < X i + l , i f i i s o d d ,  

x, > xi+l, i f i i s e v e n .  

A bijection o: F, ~ (1 . . . . .  n } is order-preserving if and only if the permutation 
o(x l ) , o (x2 )  . . . . .  o ( x , )  of (1 . . . . .  n} is alternating, i.e., o(xl)  < o(x2) > o(x3) < 
• . • . Hence e(F,)  is the number E,  of alternating permutations of (1 . . . . .  n }. E ,  
is an Euler number and is well-known (e.g., [3, pp. 258-259]) to satisfy 

Enx  n 
Y'. ~ = secx + t a n x .  

n>_0 
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The chain polytope ff(Fn) may be identified with the set of all vectors (Yl . . . . .  Y,) 
R" satisfying 

Yi > 0, 1 < i < n,  and 

y~ + y~+x < 1, l < i < n - 1 .  (9) 

It follows from Corollary 4.2 that the volume V n of the set (9) satisfies 

V,x" = secx + tan x. (10) 
n _ 0  

Equation (10) was first given in [10] (see also [4]). 
With almost no effort we obtain the following interesting corollary of 

Theorem 4.1. 

Corollary 4.4. The order polynomial f~( P, m) of a finite poset P depends only on 
the comparability graph Com(P)  of P. 

Proof. By Theorem 4.1 we have f ~ ( P , m + l ) = i ( ~ ( P ) , m ) ,  and by definition 
~ ( P )  depends only on Com(P).  [] 

In particular, the leading coefficient of f~(P, m) depends only on Com(P),  
and we obtain 

Corollary 4.5. The number e(P) of finear extension of P depends only on 
Com(P) .  

Corollary 4.5 was first stated in [7, p. 139]. Its proof was based on a condition 
as to when Com(P)  = Com(Q). This condition appears to be implicit in the work 
of Gallai and others, but was apparently first explicitly stated in [5], and is given 
as follows: Suppose P contains a poset P '  such that for all x ~ P - P ' ,  either (a) 
x < y for all y ~ P' ,  (b) x > y for all y ~ P' ,  or (c) x and y are incomparable for 
all y ~ P' .  Define P: to be the poset obtained from P by dualizing P' ;  i.e., x < y 
in P1 if and only if either (a) not both x ~ P '  and y ~ P ' ,  and x < y in P, or (b) 
x and y ~ P '  and x > y in P. Call P1 a simple transform of P. Then Com(P)  = 
Com(Q) if and only if there is a sequence P = P0, P1 . . . . .  Pk = Q of posets such 
that each P~+I is a simple transform of Pg. It is then easy to check that simple 
transforms have the same number of linear extensions, so Corollary 4.5 follows. 
In fact, it is just as easy to check that simple transforms have the same order 
polynomials, so Corollary 4.4 also follows. For another proof of Corollary 4.5 and 
additional references, see [8]. 

Note that the proof we gave of Corollary 4.4 really has nothing to do with 
convex polytopes. To see this, define for m > 1 the chain polynomial F(P,  m) to 
be the number of maps g: P -o {0,1,2 . . . .  } such that g ( y l ) +  . - .  + g(Yk) < m -- 1 
for all chains y:  < . . .  < Yk of P. Then (7) defines a bijection between order-pre- 
serving maps f :  P ~ {0 . . . . .  m - 1 }  and maps q~f: P - o  {0,1 . . . .  } enumerated by 
F (P ,  m). Hence f~(P, m) = r ( P ,  m). But F(P ,  m) depends only on Com(P),  so 
the same is true for f~(P, m). 
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Of course Corollary 4.4 may be extended to the statement that any invariant 
of P which can be computed in terms of cg(p) depends only on Com(P). In 
Corollary 6.3 we will see another example of such an invariant. 

Corollary 4.4 and its proof suggest that the combinatorial type of 0 (P )  itself 
may depend only on Com(P). However, if P is given by Fig. 3 then there is easily 
seen to be a poset Q satisfying C o m ( P ) =  Corn(Q) such that O(Q) has nine 
facets, while ¢9(P) has eight facets. 

5. Tr i angu l a t i ons  

The polytope ¢ ( P )  has a canonical triangulation which can be transferred to 
i f (P) .  We describe this procedure in this section and give an application in the 
next. 

An order ideal of P is a subset I of P such that if x ~ I and y _< x, then 
y ~ I. Let J ( P )  denote the poset (actually a distributive lattice) of order ideals of 
P, ordered by inclusion. Let 

K : I ~ c I 2 c . "  c lk  

be a chain in J ( P )  (where/,-1 c I i means t h a t / i - t  is strictly contained in //). 
Define a set F K ~ R e by 

FK = ( f ~ R e: (a) f is constant on the subsets 
I1, 12 - I1 . . . . .  Ik - -  I k - - 1 '  P -- Ik of P, and 

(b) 0 = f ( I 1 )  <-f(12-11)-< ""  <-f(P-Ik) =1) .  

Then F~: is a (k - 1)-dimensional simplex contained in 0(P) ,  and the set { FK: K 
is a chain of J (P)}  is a triangulation A ( P )  of O(P). [The empty chain K 
corresponds to the empty face of A(P).] In particular, the facets (maximal faces) 
of A(P)  are given by 

0 < f ( y , )  < . . .  < f ( y , )  ~ 1, (11) 

where y~ . . . .  , y,  is a linear extension of P. The number of facets is e (P)  and each 
has volume 1 /  n !, giving another proof that V( O ( P ) ) = e ( P ) / n !. 

For any poset Q define the order complex A(Q) [1, Section 3] to be the 
abstract simplicial complex on Q whose faces are the chains of Q. Hence, as an 
abstract simplicial complex, A ( P )  is isomorphic to A(J(p)) .  In particular, the 
geometric realization [A(J(p))[ of A(J(p))  is an n-cell, a result which also 
follows from very general considerations [11, Corollary 3.4.3] but here is ex- 
plained more concretely. 

It follows from the definition (7) of the transfer map ~ that q~ is linear on 
each face F x of A(P).  Hence q~(FK) is a simplex, and (since q~ is continuous) the 
set {q~(FK): F x ~ A(P)} is a triangulation q~F(e) of oK(p). By applying q~ to the 
facet (11) of A(P) ,  an explicit description of the facets of q,A(P) can be deduced. 
Namely, given a linear extension o: P--* {1 . . . . .  n} with o ( y i ) = i  and given 
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1 < k < n, define a chain 

Kv, = Kk: zj < z j_ 1 < . . .  < z o = Yk (12) 

inductively by the conditions that (a) z o = Yk; (b) among all z covered by z,, a ( z )  
is maximized when z = z~+l; and (c) zj is a minimal element of P. Let F~ be the 
facet (11) of A(P) ;  i.e., Fo= F K, where K is the maximal chain q~c (Yl} c 
{Yl ,  Y2} c . . .  c P of J(P) .  Then the equations defining the facet q~(Fo) of 
4~A(P) are given by 

0 <_ f ( Y l ) ,  

Y'~ f ( x )  <_ ~., f ( x ) ,  l < i < n - 1 ,  
x E K I X E~ Kt+ I 

E f (x )  <_ 1. 
x ~ K , ,  

For instance, let P and o be given by Fig. 4, where the element y, of P is 
labeled i. Then, writing f~ for f (Yi) ,  the equations for q,(Fo) are given by 

0 < f t  < f z  < f 2 + f 3  < f z + f 3 + f , < f z + f 5  

_<A+A+A_<I, 

which may also be written as 

o-<A-<A, o-<A, o-<A, o-<A, 
A+A-<A, A+A+A-<I.  

6. M i x e d  Vo lumes  

In [16] the Alexandrov-Fenchel inequalities from the theory of mixed volumes 
were used to prove the logarithmic concavity of certain integer sequences associ- 
ated with O(P).  After reviewing this result we "'transfer" it to of(p) and obtain 
new log-concave sequences involving linear extensions of P. 

We state the Alexandrov-Fenchel inequalities in a form most convenient for 
our purposes. For references to their proofs, see [16]. Let (Ha: 0 < h _<1} be a 
collection of parallel (affine) hyperplanes in R"  such that the distance between 
H x and H~, is 1~-/~1. Let ~ 0 C H o  and ~ l c H 1  be convex bodies (i.e., 
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nonempty compact convex sets), and let ~ = c x ( ~  0 W ~1), the convex hull of ~0  
and :~1- Set ~ x  = :~ n H x and let V " - I ( ~ x )  denote the (n-1)-dimensional  
volume of ~x- Then there exist real numbers V~(~ 0' ~ l )  > 0, 0 < i < n - 1, such 
that 

V . _ ~ ( ~ x )  = n 1 V(bao, ~1)~,(1 - )k) " - 1 - / ,  0 _< X _< 1. (13) 
i=0 

The number V, = V,(~o, ~ t )  is called the ith m i x e d  volume of ~o and ~ l  [in 
particular, Vo(~o, ~al) = v " - l ( ~ o ) ,  V.-l(~O, ~1)  = v"- l (~al ) ] ,  and the 
Alexandrov-Fenchel inequalities assert that 

1~, 2 > Vi_IV/+ 1, 1 < i < n -  2. (14) 

Now consider the case ~ = O(P), the order polytope of the n-element poset 
P. Fix x ~ P., and for 0 < ~ < 1 set 

0 x = ( f ~ O ( P ) : f ( x ) = ~ ) .  

Then the Oxs satisfy the conditions for (13). Moreover, if o is a linear extension 
of P and F o the corresponding facet (11) of A ( P )  with x = y,, then O x ~ Fo is 
given by all f ~ R v satisfying 

0 < f ( y , )  <_ . . .  <_ f ( Y i )  = ~ < f ( Y i + l )  <-<- "'" <-- f ( Y , )  < 1. 

It follows that 

~ i - , ( 1 _  X) " - i  
vn-l(¢ n F°) = ( i - 1 ) ! ( n - i ) ! "  

and hence 

1 . ,  ( : )  gn- l (~ )h )  = ( n - - 1 ) !  E Na+l H . 1 ~ i ( 1 - ) k )  n- l - i ,  (15) 
i=O 

where Nj is the number of linear extensions o of P satisfying o ( x )  = j .  Therefore 

N,+ 1 = (n -1)lV,(tV0, ~1), (16) 

and we conclude from (13) that Ni 2 > Ni_INt+I, 2 < i < n - 1. More details are 
given in [16, Section 3] in a somewhat more general setting. 

We now wish to "transfer" (15) and (16) to the chain polytope @ = @(P). 
We cannot simply define cg x = ~tV x, since ~O x need not lie in a hyperplane. 
Rather, we define @x in analogy to our definition of • x and compute V(gx) by 
examining each tpq~xN Fo, where ff is given by (8). Thus fix x ~ P, and for 
0<)~  <1 set 

% = f ( x ) = x ) .  
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Lemma 6.1. ~ ( P )  = c x ( ~  o U ~¢1). 

Proof. By Theorem 2.2 every vertex of ~ ( P )  lies in ~0 u ~i, and the proof 
follows. [] 

It follows that there are numbers Mo, M I . . . . .  3//._ 1 (depending on the choice 
of x ~ P )  uniquely defined by 

n - 1  
(n- -1) !vn- l (~eX)  = ~ M i ( n s t l ) h i ( 1 - h ) ~ - i - ' ,  0 < ~ < _  _ 1, (17) 

i = 0  

and that then Mi 2 >__ Mi_xM~+ 1, 1 < i < n - 2 .  It remains to interpret M~ combina- 
torially. 

Theorem 6.2. M i is equal to the number of linear extensions o: P ---> {1,... ,  n ) 
such that i f  o ( x )  = s, then i is the largest integer (necessarily less than s) for which 
o -  l( s - 1), o-  l( s - 2 )  . . . . .  o-  l( s - i) are all incomparable with x. (In particular, 
i = 0 i f s  =1 or if o - l ( s  - 1 )  < o - l ( s )  in P. I f x  is a minimal element of P then 
i = s  - 1 . )  

Proof. Since the simplices ~Fo are the facets of the triangulation ~A(P)  of 
~ ( P ) ,  we have 

V " - l ( f f x )  = Z V"-X(ffx n epFo), (18) 
o 

summed over all linear extensions o of P. Define a map p: RP---,R p-',x) by 
restricting f ~ R e to P - ( x }. Since p is a projection orthogonal to ~x, we have 
V"-  l(cg x n ePFo) = V( P(ffx n ~Fo)), where Vdenotes ordinary (n - 1)-dimensional 
volume (Lebesgue measure) in R e-(x)  --- R "-i .  Let ~: i f ( P )  --, 0 ( P )  be the 
bijection defined by (8). Consider the composition p+:  ~x ---> R e-(x) .  From (8) it 
follows that for any y ~ P - { x } and any g ~ fix n epFo, we have 

( p ~ G ) ( y )  = ~_, g ( z ) ,  
z E K~v 

where K v is the chain (12) defined in Section 5 (and where g ( x ) =  ~ by the 
definition of ~x). Hence the map pff, when restricted to ~x n epFo, is an affine 
transformation whose linear part can be put in triangular form with ls  on the 
diagonal. In particular, ptk is volume-preserving, so 

v " - i ( p ~ ( ~ x N t k F o ) )  = V n - i ( p ( ~ x n F o )  ) = V n - i ( ~ x n + F o ) .  (19) 

The first equality holds because ~ke~ = identity. 
Let y be that dement  of P covered by x which maximizes o(y) .  Then the 

condition g ( x )  = A for g ~ ~¢x n ~F, is by (7) equivalent to f ( x ) -  f ( y )  = ~ in 
ff(~Cxn~Fo). [If x is minimal then the condition becomes f ( x ) =  k.] Define 
Yi = o - 1 ( 0  and suppose y = y,, x = x,. Set f~ = f (Yi) .  Then the set Pf f (~x n fiFo) 
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is defined by the conditions 

O < f l <  . "  <_L_I<_L+x<_L+I<_ . . .  _< f , _ < l .  (20) 

For fixed fr = t (where 0 _< t < 1 -  X) the projection of (20) orthogonal to the 
plane £ = t has (n -2)-dimensional volume 

t~-i X,-~-I ( l _ X _ t )  . -~  
( r - l ) !  ( s - r - l ) !  

Hence 

v , , - l ( p ~  ( ~  n , ro ) )  = 

Let t = u(1 - X) to obtain 

(n -s)! 

( r - 1 ) ! ( s -  r - 1 ) ! ( n -  s)! 

× £1-xt~_l(  1 _ ~ _ t ) " - 'd t .  

f o l - X t ' - l ( l - -  ~ -  t )"-Sdt = ( 1 - ) ~ ) " + r - ~ f o l u ~ - l ( 1 -  u)n-Sdu. 

This latter integral is just the beta function 

B ( r , n - s + l )  ( r - 1 ) ! ( n - s ) !  
= ( n + r - s ) !  

Hence 

V"--l(p+ ( %  n , ro) )  = 
Xs-r--l(l__X)"+r--' 

( s - r - 1 ) ! ( n + r - s ) ! "  

Set s - r - 1  = h(o) = h(o, x). Comparing (18), (19), and (21) yields 

(n - 1)!V"-1(%ax) = ~ (nh ( o ) )  )~h(o)(1 _ -  1 X )n-l--h(o). 

(21) 

But clearly h(o)  is just the largest integer i for which o - l ( s - 1 ) , o - l ( s  - 
2) . . . . .  o - l ( s -  i) are all incomparable with x, and the proof follows by compar- 
ing (17) and (22). [] 

Example 6.3. Let P be given by Fig. 5, with x, labeled i. Choose x = x 4. We list 
the linear extensions of P, with the elements o - l ( s - 1 )  . . . . .  o - l ( s -  i) incom- 

(22) 
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parable with 

1 2 3 4 5  
2 1 3 4 5  
1 2 4 3 5  
2 1 4 3 5  
2 4 1 3 5  
1 2 4 5 3  
2 1 4 5 3  
2 4 1 5 3  
2 4 5 1 3  

x underlined: 

Hence M0 =4 ,  M1=3,  M 2 = l ,  M 3 = M 4 = 0 .  
Since ~ ( P )  depends only on Corn(P) we obtain, just as for Corollary 4.4, the 

following corollary. 

Corollary 6.4. For any n-element poset  P and  any x ~ P,  the numbers 
Mo,  M 1 . . . .  , M~_ 1defined in Theorem 6.2 depend only on Corn(P) with the vertex x 
specified. 

It is not even a priori obvious that the Mrs are unaffected by replacing P 
with its dual P* (and leaving the choice of x unaltered), but a simple combina- 
torial proof which we omit can be given. More generally, Corollary 6.4 can also 
be proved using the result of Gallai et al. discussed after Corollary 4.5. 

Just as Theorem 6.2 is the " ~ ( P )  analogue" of (16), so Theorem 6.2 and its 
consequence M i 2 > M i _ l M i + l  can be straightforwardly generalized to give a 
~ ( P )  analogue of the generalization of (16) given in [16, Thin. 3.2]. Moreover, a 
variation of (15) given in [9, (2.14)] can also be given a c~(p) analogue. We will 
not  enter into details here. 

A general property of the mixed volumes V/of (13) asserts that if V, = 0 then 
either V o = V 1 . . . . .  V; = 0 or V i = V~+ x . . . . .  IT,_ 1 = O. This property, to- 
gether with (14) and the fact that V, > 0, implies that the sequence V 0, V1,..., V,_ 1 
is unimodal; i.e., for some j we have V o < V 1 < . . .  < Vj > Vj+ 1 > . . .  > V , _ p  In 
the case of the numbers M i of Theorem 6.2, an even stronger result can be proved 
by direct combinatorial reasoning. 

Theorem 6.5. The numbers M i = Mi(  x ) o f  Theorem 6.2 are weakly decreasing; 

i .e . ,  M o >  M I >  . . .  > Mn_ 1. 



Two Poset Polytopes 23 

Proof Let f~i be the set of linear extensions o of  P satisfying h ( a )  = i, where 
h(o) is as in (22). I f  i > 0 and o ~ fli,then define o ' :  P --, {1 . . . . .  n } by  

o'(y)  = 

o(y), 
o(x)-a, 
"(x), 

i f  y : ~  x a n d  o(y) * o ( x ) - I  
i f  y = x 

i f  o(y) = o (x ) -1 .  

The map o ~ o '  is an injection from ~i into f~i-1. Since If~,l = M i, the proof  
follows. [] 
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