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Summary. Four Petunia hybrida mitochondrial (mt)
DNA fragments have been isolated, sequenced, localized
on the physical map and analyzed for their ability to
initiate specific DNA synthesis. When all four mtDNA
fragments were tested as templates in an in vitro DNA
synthesizing lysate system, developed from purified P.
hybrida mitochondria, specific initiation of DNA synthe-
sis could only be observed starting within two framents,
oriA and oriB. When DNA synthesis incubations were
performed with DNA templates consisting of both the A
and B origins in the same plasmid in complementary
strands, DNA synthesis first initiates in the A-origin,
proceeds in the direction of the B-origin after which repli-
cation is also initiated in the B-origin. Based on these
observations, a replication model for the P. hybrida mito-
chondrial genome is presented.

Key words: Mitochondrial DNA — Petunia hybrida —
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Introduction

Nuclear DNA replication is a process that has been stud-
ied in various organisms. In organelles like chloroplasts
and mitochondria, however, the replication process has
not yet been analyzed in such detail. The best character-
ized mechanisms of mitochondrial (mt)DNA replication
have been described for yeast (de Zamaroczy et al. 1984)
and for animals (Clayton 1982).

The yeast Saccharomyces cerevisiae mitochondria
show circular homogeneous mitochondrial genomes
(70 kbp, Wallace 1982) containing at least eight replica-
tion origins. These have been identified and studied by
the analysis of deleted mitochondrial genomes in yeast
petite strains using biochemical techniques and by se-
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quence homology. These origins are localized in AT-rich
intergenic sequences in both DNA strands and are found
all over the genome. In each functional replication origin,
replication in yeast mitochondria is a bi-directional pro-
cess (Baldacci et al. 1984).

The animal mitochondrial genome consists of homo-
geneous, closed circular molecules (+16 kbp; Wallace
1982). Replication origins have been identified and ana-
lyzed by means of electron microscopic (EM) analysis
and thymidine-incorporation studies. Each mtDNA mol-
ecule contains two distinct origins of replication. One is
located in the heavy (H)-strand and the other one in the
light (L)-strand, each with its own conserved characteris-
tics. Replication starts in the H-strand origin in a unidi-
rectional, clockwise, way (Chang et al. 1985). When repli-
cation of the daughter H-strand is two-thirds completed,
L-strand DNA synthesis initiates, followed by unidirec-
tional elongation in a counter-clockwise direction (Wong
and Clayton 1985).

In higher plants the replication mechanism of the mi-
tochondrial genome has not yet been elucidated. The
main reason for this is the lack of identified mtDNA
replication origins because the methods, used for their
localization cannot be applied in higher plants. Analysis
of both yeast and mammalian mtDNA replication
origins has indicated that these origins contain AT-rich
regions, one or more potential stem-and-loop structures,
and GC clusters. Therefore, an alternative approach for
identifying plant mtDNA replication origins is the isola-
tion and analysis of DNA regions containing these struc-
tures; such DNA regions can be considered as a pre-selec-
tion of potential replication origins (de Haas et al. 1986).

Progress in the detailed understanding of the mecha-
nisms and control of both prokaryotic and eukaryotic
DNA replication has been achieved by in virro analysis of
replication. Replication in such in vitro systems closely
resembles DNA replication in vivo, as has been demon-
strated for the eukaryotic Simian virus (SV)40 (Li and
Kelly 1984), adenovirus (for a minireview see Stillman
1983), for E. coli (for a minireview see Zyskind and Smith
1986), and for mammalian mtDNA (Wong and Clayton
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1985). As a consequence, in addition to the study of repli-
cation mechanisms, such systems are also suitable for the
identification of potential replication origins. Therefore,
to identify and characterize replication origins, potential
replication origin regions can be analyzed for their ability
to initiate DNA replication in such in vitro DNA synthe-
sizing systems.

Here we report experiments designed to test potential
replication origins of P. hybrida mtDNA for at least three
parameters; (1) the direction of DNA synthesis (2) the
mutal effect of these origins on each other and (3) their
localization on a physical map of the P. hybrida mito-
chondrial master genome. A mtDNA replication mecha-
nism model of P. hybrida is proposed based on these
parameters and on sequence data.

Materials and methods

Strains and plasmids. Cloning of P. hybrida mitochondrial DNA
sequences was performed in vector YIp5, which is a recombinant
between pBR322 and the yeast ura3 gene, without a yeast origin of
replication (Struhl et al. 1979). Testing of mtDNA inserts in YIp5
for ars activity was performed by transformation to S. cerevisiae
strain DL1a: alew 2-3, leu 2-112, his 3-11, his 3-15, ura 3-251, ura
3-372 (van Loon et al. 1983). The Escherichia coli strain used for
transformation was JA 221 (recA, hsdR, leui36, trpES, AlacY.

Reagents. Deoxyribonucleotides (dNTPs), ribonucleotides (rNTPs),
Micrococcus lysodeicticus DNase, dithiothreitol (DTT), large frag-
ment of E. coli DNA polymerase I (Klenow fragment), E. coli DNA
polymerase I, T4 ligase, polyvinyl alcohol (PVA) 24000, Bai31 and
restriction endonucleases were purchased from Boehringer (Mann-
heim). Bovine serum albumine (BSA), salmon sperm DNA, phenyl-
methanesulfonyl fluoride (PMSF), p-toluenesulfonyl fluoride (TOSF)
and spermidine were purchased from Sigma Chemicals Co (St.
Louis). Cytosine-p-D-arabino furanoside (araCTP) was from P. L.
Biochemicals Co (USA). Radioactive nucleotides were purchased
from Amersham (Amersham).

DNA techniques. Large scale preparations of plasmid DNA were
obtained by the cleared lysate procedure, followed by CsCl ethidi-
um bromide isopycnic centrifugation (Maniatis et al. 1982). Small
preparations of plasmid DNA were prepared as described by Birn-
boim and Doly (1979). Cloning of DNA, analysis of DNA by
restriction endonuclease digestions, agarose gel electrophoresis,
Southern blot analysis and hybridization with [¢-32P]-labelled DNA
probes were performed as described (Maniatis et al. 1982). For
DNA sequence analysis cloned DNA fragments of P. hybrida mito-
chondrial DNA were subcloned in phage M13mp18 and/or 19
(Messing and Vierra 1982) and transferred to E. coli IM103 cells by
transformation (Maniatis et al. 1982). DNA was sequenced in both
directions with a 17 bp synthetic oligonucleotide primer by the
method of Sanger et al. (1980).

Isolation, characterization and sequencing of P. hybrida mtDNA
potential replication origin regions. In order to isolate P. hybrida
mtDNA replication origins, purified P. hybrida mtDNA (Kool et al.
1985) was digested with BamHI or BamHI/EcoRI, ligated in the
appropriate linearized yeast-E. coli shuttle vector YIp5 and ana-
lyzed for autonomous replication in yeast by transforming the
mtDNA bank to the ura3 yeast strain DL1a. Transformants were
selected for uracil-independent growth; because the YIp5 vector
itself cannot replicate in yeast, the observed high frequency trans-
formation should be the result of recombinant plasmids carrying
mtDNA fragments which promote autonomous replication in yeast
(so-called mtDNA ARS fragments). Four different mtDNA poten-
tial replication origins inserts were isolated: a 605 bp BamHI/EcoRI

insert (pPMY 1), a 666 bp BamHI/EcoRI insert (pPMYII), a
1994 bp EcoRI insert (pPMY III) and a 1 359 bp BamHI/EcoRI
insert (pPMY IV). Southern blot analysis showed that plasmid
pPMY I contains a fragment homologous to both mtDNA and
cpDNA. This was confirmed by the sequence data of this fragment
which showed that pPMY I contained a transfer RNA gene coding
for tryptophan (see Fig. 1 A). Plasmids pPMY II, I and IV contain
authentic mtDNA fragments which originate from the higher molec-
ular weight P. hybrida mtDNA. After Bal31 treatment and cloning
in M13 these potential origin regions have been sequenced. None of
the regions show complete open reading frames coding for more
than 60 amino acids. Noteworthy, pPMY III contains a sequence
which is analogous to the proposed promoter consensus of the P.
hybrida ATPase 9 gene, which has also been found in mtDNA genes
of other higher plant species (Young et al. 1986). It is shown that
they all contain at least one yeast ars core consensus sequence 5 A/T
TTTATPuTTTA/T (Stinchcomb et al. 1980; Broach et al. 1982) and
two additional (semi-conserved) sequences which are necessary for
autonomous maintenance in yeast; one within 25 bp 5’ upstream of
the ars core (5 TNTG/AAA), Marunouchi et al. 1987) and one with-
in 50-100 bp 3’ downstream of the ars core (5¢cTtTTAGCA/TA/
TA/T, Polzkill et al. 1986). It is noteworthy that in all these regions
(except in pPMY 1) at least one core consensus is localized in a
potential stem-and-loop structure (see Fig.1). The sequence of
pPMY II is not presented because it does not contain any other
elements (than the ars consensus sequence) or the conserved se-
quences usually found in DNA replication origins.

Preparation of in vitro DNA synthesizing systems. The P. hybrida
liquid cell suspenison culture AK5000 was grown as described
(Kool et al. (1985) with the exception that the homogenization buff-
er H consisted of 330 mM sorbitol, 30 mM Tris-HCI pH 8.0, 10 mM
NaCl, 10 mM MgCl, and 2 mM 2-mercaptoethanol. The final mi-
tochondrial pellet was resuspended in 1.5 ml of H-buffer and lysed
by adding two volumes of lysis buffer L [0.75 M NaCl, 50 mM
Tris-HCI pH 8.0, 2 mM DTT, 20% (v/v) glycerol, 50 pg/ml PMSF
and 50 pg/ml TOSF; the latter two components were dissolved at
10 mg/ml in iso-propanol]. After incubation for 30’ at 4°C (with
continuously shaking on a whirl mixer) the suspension was cen-
trifuged for 30’ at 20000 g. Under these specific conditions the

’

Fig. 1A-C. Nucleotide sequence of P. hybrida mtDNA regions
pPMY I (4), pPMY III (B) and pPMY IV (C). The nucleotide
sequence of P. hybrida mtDNA region pPMY Il is not presented as
it does not contain any relevant sequences or elements related
to replication origin characteristics. Thin underlined regions (in
panel 4) indicate a tRNA tryptophan gene (nucleotides 129-202).
The boxed regions (marked “A’) indicate sequences represent-
ing yeast autonomously replicating (ars) consensus sequence
54 TTTATPuTTTA/r. Boxed regions (marked “5’ or 3'”’) represent
sequences (surrounding the ars core) related to the conserved 5'-box
(5TNTS/sAA) and 3-box (5cTtTTAGCA/*/+*/r) found in D.
melanogaster and 8. cerevisige chromosomal and mitochondrial ars
fragments. Underlined nucleotides are 100% conserved in the origi-
nal organisms, small nucleotides are 33% conserved. Long arrows
represent stem-and-loop structures whereas small arrows (<) mark
the 5-3' orientation. Thick dashed underlined nucleotides indicate
GC clusters whereas solid underlined nucleotides represent possible
yeast/E. coli gyrase-like recognitions sites TPuTGPyTPyTPu. Zig-zag
underlined sequences indicate sequences related to yeast mtDNA
transcription initiation sites (S TATTACTTATATATTT). The solid
double underlined nucleotides (panel B) represent a promoter region
found in P. hybrida mitochondrial genes. The boxed numbers (in
panels B and C) refer to the number of nucleotides which were
deleted in the corresponding deleted pPMY-clones. The last nucle-
otides of the sequence of pPMY III (in panel B) and IV (in panel C)
are not presented as they do not contain any relevant elements.
EMBL accesion numbers: X15105 pMY1, X15106 pMY III and
X15107 pMY IV for pPMY I, pPMY III and pPMY IV respectively
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resulting supernatant contained the soluble DNA synthesizing ac-
tivity (lysate system). The fractions were then immediately frozen in
liquid nitrogen and stored at —80°C. Protein concentration was
determined by the method of Lowry et al. (1951).

Specific initiation of DNA synthesis on externally added (plas-
mid) DNA templates. For testing DNA synthesis on externally add-
ed DNA templates the co-isolated endogenous mtDNA in the lysate
system was removed by incubating 500 pg of lysate protein with
0.5 pg M. Iysodeicticus nuclease and 6 mM CaCl, for 10" at 37°C.
The DNase was then inactivated by the addition of 50 mM EGTA.
Immediately after this inactivation the DNase-treated lysate was
used for testing the DNA synthesizing activity of added synthetic
template DNAs or for replication studies on added chimaeric DNA
templates. This was performed as described previously for the
chloroplast lysate DNA synthesis system (de Haas et al. 1987) with
the exception that the incubations were performed at 27°C with
4-5 pg/ml plasmid DNA template (for the major part covalently
closed circular; 250 ng of a 7 kbp plasmid = +1.3 nmol = £ 750 pmol
nucleotides in 50 ul) and with the addition of 6% (v/v) PVA 24000
in some experiments, as indicated. Analysis of the in vitro synthe-
sized DNA was performed by agarose gel electrophoresis followed
by autoradiography, or by using the labeled DNA as probe for
Southern blots.

Results

Homology of the P. hybrida miDNA potential replication
origin regions with the yeast and mammalian mtDNA
replication origin regions

Four mtDNA potential replication origin regions (insert-
ed in plasmids pPMY L, pPMY II, pPMY III and pPMY
IV) have been isolated and sequenced (see Material and
methods and Fig. 1).

Sequence homology studies did not result in the
detection of primary sequence homology with the P. hy-
brida putative cpDNA replication origin region (de Haas
etal. 1986, 1987), neither with known or character-
ized replication origins. However, structural homology
could be found in pPMY III and IV with the yeast and
mammalian mitochondrial replication origins (Fig. 2).
These structural features are potential target sites for
enzymes involved in replication (see Kornberg 1980;
Sinha et al. 1986; de Zamaroczy et al. 1984a, b; Clay-
ton, 1982); for example, both potential mitochondrial
yeast gyrase (TPuTGPyTPyTPu) and yeast transcription
(STATTACTTATATATTT) recognition/initiation sites
are present in pPMY III and IV (see Fig. 1B and C).
Furthermore, the sequence of the bottom strand of
pPMY IV (Fig. 1 C) shows a majority of structural char-
acteristics which are also present in the yeast mitochon-
drial replication origins as presented in Fig. 2 A.

Moreover, a T-rich secondary structure similar to that
of pPMY IV (nucleotides 431-468 in Fig. 1C) is also
present in the close vicinity of the replication origin re-
gions of two broad bean mtDNA plasmids (Wahleithner
and Wolstenholme 1988) and in the mammalian mtDNA
replication origin of the light strand (Wong and Clayton
1985). In these mitochondria the T-rich stem-and-loop
acts as a primase recognition site involved in RNA-
primed initiation of DNA replication (see blow-out in
Fig. 2 A).
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Fig. 2. A schematic overview of the structural features present in
the yeast S. cerevisiaze mtDNA replication origin (bottom line) and
analogous structures present in P. hybrida pPMY IV (top line).
Numbers refer to the nucleotide numbering for pPPMY IV according
to the bottom strand in Fig. 1C and for S. cerevisiae according to de
Zamaroczy et al. (1984). “4”, “B”and “C”’ represent GC-rich clus-
ters of nucleotides, “la” refers to an ars core-consensus sequence.
“lg” represents a sequence homologous to the yeast/E. coli gyrase-
like recognition-site, “#* and “7-3"" indicate positions of a yeast-
transcription-initiation-site (see also text for explanation). The
boxed numbers in pPMY IV in panel A refer to numbers of nucle-
otides which were deleted in the corresponding deletion clones (see
Fig. 1). The blow out of the stem-and-loop structure in pPMY IV
is analogous to the T-rich secondary structure present in the mam-
malian mtDNA replication origin of the light strand. B schematic
presentation of the structural features present in the human mtDNA
heavy (H)-strand replication origin (top line) and analogous struc-
tures in pPMY III (bottom line). Numbers refer to nucleotide num-
bering for pPPMY I1I according to the bottom strand in Fig. 1 B and
for human miDNA according to Chang and Clayton (1987).
“LSP” indicates the position of the light strand promoter, “P” the
position of the P. hybrida promoter. “CSB” I, IT and III represent
a putative yeast/E. coli gyrase-like sequence (““Ig”, which is part of
a stem-and-loop), a GC cluster (“GC”’) and, in mammals, a con-
served A-stretch, respectively

Sequence homology studies with the mammalian
mtDNA heavy (H)-strand replication origin revealed
structural homology with the bottom strand (Fig. 1 B) of
pPMY III. Also in pPMY III the gyrase-like sequence
(Ig/CSBI in Fig. 2 B) is part of a stem-and-loop, and the
relative spacing of these replication origin structures in
pPMY III is approximately the same as in the mam-
malian H-strand origin. These observed structural ho-
mologies of the mtDNA inserts of pPMY IIT and IV with
the yeast and mammalian mtDNA replication origins
make these P. hybrida regions candidates for being gen-
uine mtDNA origins of replication.



Table 1. Requirements for DNA synthesis in the P. hybrida in vitro
DNA synthesizing mitochondrial lysate system

Reaction conditions Activity (%)

Complete system 100
minus MgCl, 1
minus GTP, but with ATP 99
minus GTP 73
minus dATP, dCTP, dGTP 23
minus CTP, GTP, UTP 91
minus mitochondrial lysate 1
with ethidium bromide (25 pM) 7

DNA synthesis was performed and measured as described under
Materials and methods in the presence or absence of the indicated
reaction components or inhibitor. The complete system refers to the
reaction mixture with endogenous mtDNA as template primer. The
values are the mean of at least three experiments; 100% corresponds
to 2.34 pmol of [¢-*?P]dTTP or [¢-**P]dATP incorporated in 60 min

Organelle-free in vitro DNA synthesis system

In the absence of an effective in vivo mitochondrial trans-
formation method, in vitro DNA replication systems
have proven suitable alternatives to test the functions of
potential replication origin DNA templates and to study
replication mechanisms (Stillman 1983; Wong and Clay-
ton 1985; Zyskind and Smith 1986). Some characteristics
of the developed P. hybrida mitochondrial DNA synthe-
sizing system are shown in Table 1. The incorporation of
[¢-32P]dTTPs into TCA-insoluble material is ATP-de-
pendent. The system is very sensitive to ethidium bromide
inhibition which indicates that the DNA polymerase
present in this system is similar to the p-DNA polymerase
of mammalian mitochondria. This system, also contain-
ing RNA-polymerase-, gyrase- and primase-activity, can
use both co-isolated endogenous mtDNA and externally
added (plasmid)DNAs as a template.

Initiation of DNA synthesis in the P. hybrida potential
miDNA replication origins inserted in plasmids pPMY IIT
and IV

To determine the possible site of initiation of replication
on the potential replication origin-containing plasmids
pPMY III and IV it was necessary to enrich the incuba-
tion mixtures for partially replicated DNA molecules.
This was accomplished by the addition of the chain termi-
nator cytosine-f§-D-arabinofuranoside-5'-triphosphate
(araCTP) to the reaction mixtures. In the absence of
araCTP, synthesis, once initiated, will proceed rapidly to
completion and the origin of synthesis can not be deter-
mined. In these experiments we used 6 mM araCTP,
which inhibits overall DNA synthesis in the lysate to
37%.

When double-stranded pPMY I, 1L, IIT or IV is added
as a DNA template to the organelle-free in vitro DNA
synthesizing lysate system, (followed by incubation, re-
isolation, vector/insert-digestion, electrophoresis and au-
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toradiography) only the 1994 bp pPMY IIl- and the
1359 bp pPMY IV-inserts were more strongly labelled
than the vector. These results suggest that initiation of
DNA synthesis takes place in the inserts of both pPMY
III and pPMY IV (data not shown). This supports the
observed structural homologies with the yeast and mam-
malian mtDNA replication origins.

The position where the initiation of DNA synthesis
started within these mtDNA inserts of pPMY III and IV
was further investigated using a set of Ba/31-deleted sin-
gle-stranded pPMY IV and III constructs (see Figs. 1 C/
3C and Figs. 1B, 4B respectively).

The position where the initiation of DNA synthesis
started within these mtDNA inserts of pPMY Il and IV
was further investigated using a set of Bal31-deleted sin-
gle-stranded pPMY IV and III constructs (see Figs. 1C,
3C and Figs. 1 B, 4B respectively).

After incubating single-stranded (ss) pPMY 1V con-
structs (cloned in M13 in both orientations) as template
DNA in the lysate system, these newly labeled template
DNAs were isolated and used as probes on a blot con-
taining an EcoR1/BamHI/HincIl/Pyull multiple digest
(Fig. 3A1) or a EcoRl/BamHI/Hincll/Pvul multiple di-
gest of plasmid pPMY IV (Fig. 3 B1). These hybridiza-
tions resulted in an intensive labeling of the left 420 and
208 bp (Fig. 3 A2) or the left 821 and 208 bp fragments
(Fig. 3 B2). The same results were also obtained when
three Bal31-deleted ss pPMY 1V constructs (325, 624 or
774 bp deleted) were used (Fig. 3 A3, 4, Sand B3, 4, 5
respectively). These experiments suggest that the ob-
served DNA synthesis in pPMY IV is initiated within
the left non-deleted 585 bp of pPMY IV-774 (marked by
the dotted area in Fig. 3C). This region comprises only
part of the yeast replication origin homology, but does
contain the stable (T-rich) stem-and-loop also present
in the mammalian mtDNA L-strand replication origin
(Fig. 2A).

When the same experiments were performed with ss-
pPMY III (Fig. 4 A2) or ss-pPMY III-453 (Fig. 4 A5;
453 bp deleted) all three pPMY III EcoR1/Hincll/Xhol
insert fragments are labeled. However, when pPMY III-
834- or pPMY III-1143-deleted constructs are used as
single-stranded DNA template (Fig. 4 A3 and 4) no hy-
bridization with these insert fragments can be observed.
The most probable explanation for this phenomenon is
that the observed DNA synthesis in pPMY 1II starts
within a 371 bp region between pPMY II1-453 and -834
(marked by the dotted area in Fig. 4B). This region in-
cludes the structural homology region with the mam-
malian mtDNA H-strand replication origin (Fig. 2B).
None of the tested mtDNA recombinant plasmids, which
were not scored positively in the yeast transformation
screening assay, showed specific initiation of DNA syn-
thesis, as did the pPMY III and IV constructs. These
hybridizations are comparable to each other because the
applied conditions were standardized; when nick-trans-
lated pPMY plasmids were applied as probes in re-hy-
bridization experiments using the same (stripped) pPMY-
blots and the same hybridization conditions, stoichio-
metric labeling of all bands was observed (data not
shown).
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Direction of DNA synthesis in the mtDNA replication
origins inserted in pPMY III and IV and the mutual effect
of both origins

In yeast mitochondria, DNA synthesis at each replication
origin elongates bi-directionally, whereas in mammalian
mitochondria replication elongates at both origins uni-
directionally (see Fig. 2). Morcover, in animal mitochon-
dria the H-strand replication origin and the L-strand
replication origin are localized in two different strands of
the same genomic circle. In the animal mtDNA genome
the L-strand replication is not initiated until the H-strand
replication has elongated into the direction of the L-orig-
in (Clayton 1982). The question arises whether such phe-
nomena also occur in the mitochondrial DNA of higher
plants. This can be investigated in the in vitro DNA syn-
thesizing lysate system by studying DNA synthesis on
plasmid templates in which both the P. hybrida pPMY 111
and IV origin are present. In Fig. 5 the physical map of
two recombinant plasmids carrying both the III and IV
origins are presented. The constructs consist of both the
pPMY III- and IV-inserts cloned in the YIp5 vector in
two different orientations: according to the sequence in
the 5'-3' “opposite” orientation (pPMY III-IV-6600,
Fig. 5A) and in the “same” orientation (pPMY III-IV-
5241; Fig. 5B).

After in vitro DNA synthesis incubations, the reac-
tions were stopped at the indicated times (Fig. 6: 5—

Fig. 3. A, B labeling of different single-stranded pPMY IV tem-
plates in the in vitro DNA synthesizing lysate system. Lanes A1 and
BI contain EcoRI/BamHI/Hincll/Pvull (A1)- and EcoR1l/BamHI/
Hincll/Pvul (B1)-digested pPMY TV respectively, which were blot-
ted to gene screen “plus”. The Southern blots were hybridized with
single-stranded pPMY IV (lanes A2/B2) or with Bal31-deleted
pPMY IV-325, 624 or 774 (lanes A3/B3, A4/B4 and A5/B5 respec-
tively), which have been [¢:>2P]-labeled by incubation in the in vitro
DNA synthesizing lysate system. Lanes ! represent the ethidium
bromide-stained DNA digests, /anes 25 represent the autoradio-
grams of the blots. The sizes are given in basepairs. “V” represent
fragments of the vector YIp5. C physical map of pPMY IV and of
three pPMY IV deletion clones. The dotted area indicates the
pPMY IV region in which the [«3?P]-labeled nucleotides were incor-
porated preferentially

45 min). The [a3?P]-labeled newly synthesized DNAs
were digested with EcoRI-Xbal-BstEIl-BamHI-Sacl,
electrophoresed and exposed to X-ray films. The data of
the pPMY III-IV-6600-construct incubations indicate
that DNA synthesis in the pPMY III-1V-6600 plasmids
initiates in the 261 bp pPMY IIl-derived origin fragment
(which overlaps the H-strand-like origin in the 371 bp
fragment; most specific labeling after 5 min; Fig. 6 A2),
followed by elongation in the counterclockwise direction
into the 682 and 734 bp pPMY III fragments (Fig. 6 B-
C2). After elongation into the 2 294 bp fragment a sec-
ond DNA synthesis initiation site becomes active result-
ing in a more than stoichiometric labeling of the 903 bp
pPMY IV-derived origin fragment (which includes the
585 bp L-strand-like origin region; Fig. 6 D2). This sec-
ond DNA initiation site elongates clockwise in the direc-
tion of the 2 294 bp, 734 bp and 682 bp fragments (dou-
bling of the band intensities; Fig. 6 E2), whereas the
counter-clockwise pPMY IIl-strand DNA synthesis
elongates into the 456 bp and 2 869 bp fragments.

The same time-course experiments performed with
pPMY III-1V-5241 (both origin elongation directions in
the same orientation; Fig. 5B) resulted in a similar [o-
32P|dTTP incorporation pattern until 20 min. However,
after 30 min no second DNA synthesis initiation in the
903 bp fragment can be observed (Fig. 6 12; the 903 bp
fragment labels stoichiometric compared to the 682 bp
and 734 bp fragments). This might be explained by the
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Fig. 4. A labeling of different single-stranded pPMY III templates
in the in vitro DNA synthesizing lysate system. Lane V represents
the ethidium bromide-stained EcoRI/HincIl/Xhol digest of vector
YIp5. Lane Al contains EcoRI/Hincll/Xhol-digested pPMY III,
which was blotted to gene screen “plus”. The Southern blots were
hybridized with single-stranded pPMY I1I (lane A2) or with Bal31-
deleted pPMY 111-1143, 834 or 453 (lanes A3, A4 and A5 respective-
ly), which have been [x32P]-labeled by incubation in the in vitro
DNA synthesizing lysate system. Lane ! represents the ethidium
bromide-stained DNA digest, lanes 2—5 represent the autoradio-
grams of the blots. The sizes are given in kilobasepairs. ¥V represents
fragments of the vector YIp5. B physical map of pPMY III and of
three pPMY III deletion clones. The dotted area indicates the
pPMY III region in which the [«*?P]-labeled nucleotides were incor-
porated preferentially

EcoR}6600)

903
Sacl(5697)

456
BamHI(5241)

pPMY 11I-IV-6600
(8894 bp)

Fig. 5A, B. Physical maps of pPMY III-IV double constructs with
the IIT and IV replication initiation regions in the same strands
(B; pPMY III and pPMY IV DNA synthesis elongations in the
same orientation) or in complementary strands (A; opposite elonga-
tion directions) TET, AMP and URAS3 refer to the coding regions
of the ampicilin-and tetracyclin resistance genes and the yeast
uracil 3 gene respectively. Numbers in bold refer to the restriction
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fact that this second initiation site in the 903 bp pPMY
IV-derived fragments is located on the same strand in this
plasmid which is already being used as template for the
IT1-1 994 strand daughter DNA synthesis. All lanes show
(just as in the gels presented in Figs. 3 and 4) labeled
DNA at the origins of the lanes (data not shown) which
could not enter the gel; most probably this represents
partial (branched) restriction fragments which fail to en-
ter the gel (Fuller et al. 1981).

Electron microscopic analysis of the pPMY 111
and 1V plasmids incubated in the in vitro mitochondrial
lysate system

The initiation process in the mammalian H-strand origin
displaces the ‘mother’-H-strand resulting in a D-loop
which can be observed by EM analysis. Such D-loop
structures cannot be observed in the L-strand origin be-
cause of the lack of strand displacement (Wong and Clay-
ton 1985). To determine whether the P. Aybrida H-strand-
like origin (inserted in pPMY III) shows D-loop initia-
tion of DNA synthesis, like the mammalian H-strand
replication origin counterpart, pPMY III and IV double-
stranded plasmids were incubated in the lysate system for
10 min under the same conditions as reported for the
experiments with the pPMY III-IV constructs in Fig. 6
(including araCTP and non-labeled dTTP instead of [a-
SIPIATTP). After isolation, the pPMY IIT and IV plas-
mids were digested with Pyull. This enzyme has only one
recognition site present in these plasmids; consequently,
in pPMY III Pvull creates linear molecules showing the
possible replication loop in the middle. Finally these
DNA molecules were analyzed by electon microscopy to
determine the presence of D-loops in these plasmids. The
pPMY 1V plasmids did not show any loops; however,
pPMY III constructs did show the presence of one D-
loop in the middle of the molecules (Fig. 7B).

EcoRI(1) B

BamHi(734)

2294
BStEIl{1416)

Xbal(1677)
EcoRI(1994)

EcoRI(6600)
456
Sacl(6144)

BamHI(2372)

BamHI(5241)/

pPMY 1lI-1V-5241
(8894 bp)

fragments after digestion with the restriction enzymes presented
outside the circle which were used in time-course experiments
(Fig. 6). The shadowed regions indicate the minimal in vitro deter-
mined functional replication origin region (Figs. 3 and 4); the large
open arrows indicate the DNA synthesis elongation directions as
determined in vitro (Fig. 6)
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Localization of P. hybrida mtDNA sequences
containing potential replication origins

Recently a physical map of the P. hybrida mtDNA has
been constructed (Folkerts and Hanson 1989). The mas-
ter circle is 442 kbp in length and contains three large
repeats (Fig. 8) which act as recombination sites resulting
in four different master circles, each with a different ar-
rangement of the unique regions, and in three subgenom-
ic circles.

Southern blot hybridizations were performed with the
inserts of pPMY I, II, III and IV as probes for blots

containing digested cosmid clones covering the complete
P. hybrida mitochondrial genome. The results of these
localization studies are schematically presented in Fig. 8.
The inserts of pPMY I and II are localized on the *“bot-
tom” and “middle” subgenomic circles, whereas the orig-
in of replication-containing pPMY III and IV inserts are
localized in the “upper” subcircle of the master genome.
The pPMY IV replication origin [B1] is localized in the
1.6 kbp BamHI fragment 3’ downstream from the atpA-1
gene approximately 60 kbp away from the pPMY III
origin, which is mapped on the 3.7 kbp BamHI fragment
(pPMY II[A]).



The 1359 bp BamHI/EcoRI pPMY IV insert probe
also resulted in seven other (weak) hybridization signals.
After using a minimal-origin probe of pPMY IV five
additional weak hybridization signals could still be de-
tected (pPMY IV B2-B6 in Fig. 8).

Discussion

P. hybrida mtDNA sequences, containing general origin
of replication characteristics, have been selected, isolated
and characterized (pPMY 1, II, 11T and 1V) in order to
study the plant mtDNA replication mechanism(s). Struc-
tural homology with the yeast and mammalian mito-

Fig. 7A, B. Electron microscopic analysis of pPMY III plasmids
which have been incubated in the P. hybrida in vitro mtDNA syn-
thesizing system under the same conditions as described in Fig. 6.
After isolation the molecules were linearized, resulting in molecules
where the replication origin region is located in the middle. A con-
trol (incubation without DNA synthesizing system) is presented in
panel A. The horizontal bar represents 1kbp. Magnifications:
20000 x (A) and 50 000 x (B). The arrow indicates a replication loop
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chondrial replication origins could only be found in
pPMY III and IV (Fig. 2). Based on these structural repli-
cation characteristics the pPMY III and IV regions are
the best candidates for representing genuine P. hybrida
mtDNA replication origins. In order to verify these struc-
tural replication characteristics the pPMY I, II, IIT and
IV constructs were analyzed for their ability to initiate
DNA synthesis in an in vitro DNA synthesizing lysate
system isolated from purified P. hybrida mitochondria.
Such plant organellar systems are capable of catalyzing
specific initiation of replication reactions on externally
added plasmid DNA templates possessing a potential or-
ganelle replication origin (Wu et al. 1986; de Haas et al.
1987; Carrillo and Bogorad 1988), whereas purified
DNA polymerases are incapable of catalyzing replication
(Gold et al. 1987).

When supercoiled pPMY I, 11, III or IV constructs
served as DNA templates in this system incorporation of
[-32P]dTTP occurs preferentially only in the pPMY III
and IV insert fragments, whereas the pPMY I and II
restriction fragments or the vector DNA were relatively
less labeled (data not shown). The observed preferential
labeling patterns are most probably not due to repair or
nick translation at labile template sites because such
labile sites are generally located in regions containing
secondary structures (Kornberg 1980, 1982). As in
pPMY I, the preferred DNA synthesis regions (segments
within pPMY III and IV) contain many other secondary
structures apart from the preferred regions theirselves.
Therefore, these results suggest that, in addition to a
certain level of repair DNA synthesis, a significant
amount of de novo DNA synthesis was initiated in these
specific mtDNA regions of plasmids pPMY III and IV.

. 9(BZ) pPMY-IV (B1) pPMY-ill (A)
P83 | oti—1 cob otp9—3/atpA—1
L
B T T 117
65 1.6]05 69 20 52 3527/14.\ 7.8 73 63 134516 63 50 5008 97 0737 4.2
1.7 0.71.2 1.6
Fig. 8. Localization of P. hybrida mtDNA
(B5) (B3) pPMY-I! fragments inserted in pPMY I and 11 (ars
atp9-2 \rpn13 n}:d1 conli-2 | 228 | atpé fragments), pPMYIII (P. hybrida H-strand-
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Programming this system with single-stranded pPMY
III or IV-DNAs we were able to narrow down the puta-
tive replication origins of pPMY III and IV (Figs. 3 and
4). DNA synthesis initiates in pPMY IV within the first
585 bp, which comprises the T-rich stem-and-loop which
is also present in the mammalian mtDNA light-strand
replication origin (Fig. 2A) but which only partly over-
laps the structural characteristics described for the yeast
mtDNA replication origins (for example, the essential
GC-stem-and-loop “A-B” is missing; see Fig. 1C and
2A). In pPMY III the region involved in the initiation of
DNA synthesis was limited to a 371 bp region between
nucleotides 1 160 and 1 540 (sece Fig. 1 B) comprising the
structural origins of replication characteristics which are
also present in the mammalian mtDNA heavy-strand
replication origin (Fig. 2 B). Both the presence of these
structural mammalian mtDNA replication origin charac-
teristics and the in vitro DNA synthesis data brought us
to the most likely hypothesis that the 371 bp region pres-
ent in pPMY I functions as a mammalian heavy
(H )strand-like replication origin and that the 585 bp re-
gion in pPMY IV might represent a mammalian light
(L )strand-like replication origin. An alternative is that
both pPMY IIT and TV act as a yeast-like replication
origin.

To prove the correctness of this hypothesis, EM exper-
iments, DNA synthesis time-course experiments, with
both potential origins present in the same construct, and
replication origin mapping experiments, have been per-
formed. In the in vitro system EM analysis of, the incu-
bated pPMY III template confirmed the mammalian
mtDNA-like replication model: D-loop structures were
observed but, as expected according to the supposed an-
imal analogy, only in the pPMY III constructs in the
region overlapping the 371 bp minimal origin region
(Fig. 7).

In order to investigate whether the pPMY III and IV
origins did influence each other analogous to the mtDNA
H- and L-strand origins, time-course experiments were

Parental
A-strand

cce [ porental il I

performed in the in vitro DNA synthesizing system. Dou-
ble-stranded constructs consisting of both the pPMY III
and IV origin regions in the opposite orientation (that
means in the two complementary DNA strands; see
Fig. 5A, this is the natural situation in the mtDNA H-
and L-strand origins), or in the same orientation (in the
same strand; see Fig. 5B), were applied as templates in
this system. After using the “same orientation” template
it turned out that initiation of DNA synthesis occurred
specifically only in the pPMY III fragment (in the 371 bp
H-strand-like origin region) followed by unidirectional
elongation (Fig. 6 lanes F-J). However, in the comple-
mentary construct (“opposite orientation”), DNA syn-
thesis first specifically inititates in the pPMY III origin
region and elongates counterclockwise into the direction
of the pPMY IV origin; then the IV origin (located in the
585 bp L-strand-like origin region) also shows DNA syn-
thesis initiation and clockwise elongation into the direc-
tion of the III origin (see Fig. 6 lanes A-E). Both, the
uni-directional elongation directions and the following
order of the III and IV initiation events fit with the ani-
mal mtDNA H- and L-strand replication mechanism
{Clayton 1982).

Using cosmid clones covering the complete P. hybrida
mitochondrial genome (Folkerts and Hanson, 1989) in
hybridization experiments with pPMY III and IV as
probes it appeared that both pPMY III and IV are local-
ized in the same subgenomic circle of the master circle,
separated by 60 kbp from each other. Moreover, exten-
sive restriction enzyme mapping showed that the inserts
of pPMY III and IV are located in opposite directions on
the P. hybrida mitochondrial genome. The same localiza-
tions are also determined on the physical map of cyto-
plasmic male-sterile (CMS) P. hybrida plants suggesting
conservation for functional use (Folkerts and Hanson,
1989 and personal communication). From now on we
shall refer to the replication origins inserted in pPMY III
and IV as the A-origin (oriA) and B-origin (oriB) respec-
tively (see Figs. 8 and 9). In the P. hybrida mitochondrial

Fig. 9. Hypothetical replication model for
P. hybrida mitochondrial DNA. “04” and “0B”
represent the A- and B-strand origin of replica-
tion (present respectively in pPMY III and IV).
“ccc” represents the covalently closed circular
mtDNA configuration. Replication starts with
transcription initiation in ori A (I) followed by
processing and elongation (I7). When the newly
synthesized A-daughter strand reaches respec-
v tively oris Bf, B2 and B3 in the opposite
strand, primase-mediated RNA synthesis starts
(III/IV) and elongates in the direction of ori A
(IV). After strand separation (V) the B-strand
DNA synthesis will be completed and two new
daughter strands are created (¥7) which will be
converted to the “ccc”-form [In this model only
two additional “B”-origins (B2 and B3) are
shown in order to keep the model simple; how-
ever, hybridization experiments — see Fig. 8 —
indicate that, in addition to the Bl-origin, there
are five additional B-origins present in the
P. hybrida mitochondrial genome]



genome oriA is unique whereas oriB hybridizes strongly
within a region of the same subgenomic circle with which
oriA hybridizes (Fig. 8 B1) and hybridizes weakly within
several other locations (B2—B6 in Fig. 8); oriB might be
present in multicopies on the mitochondrial genome.
This is to be expected when considering that the P. Ay-
brida genome (442 kbp) is much larger than the animal
mtDNA genome (16 kbp) and that oriB (L-strand-like
origin) in the B-strand (Fig. 9) initiates (and terminates)
always later than the oriA (H-strand-like origin) in the
A-strand. In order to compensate for the time difference
needed for a complete A- and B-strand replication round,
B-strand DNA synthesis should initiate several times in
the respective B-origins.

Envisaging a mammalian-like model, P. hybrida
mtDNA replication will start with transcription initia-
tion at the promoter in the 371 bp-oriA region (in the
bottom II1-1 994 strand in Fig. 1B, designated as the
A-strand in Fig. 9), followed by processing of the synthe-
sized RNA molecule into a RNA primer in the GC cluster
(around nucleotides 1 430; Fig. 1 B). When DNA synthe-
sis on the A-strand template elongates uni-directionally
into the T-rich stem-and-loop structure in the 585 bp-
oriB1 region (located in the bottom IV-1 359 strand in
Fig. 1C, designated as the B-strand in Fig. 9) this region
will be converted to the single-stranded conformation.
This is a trigger for primase-mediated RNA or DNA
priming in this stem-and-loop, followed by initiation of
DNA synthesis on the B-strand template and by uni-
directional elongation of this daughter B-strand to-
wards oriA. When the newly synthesized A-daughter
strands reaches the additional B-strand origins (B2-B6),
(re-)initiation in these sites most likely will take place
followed by unidirectional elongation towards oriB1.

The localization data of the “A”- and “B1”-origins
imply that in higher plant mitochondria only the master
genome (containing. both origins) replicates. In each
replication round excision should be necessary for the
production and maintenance of the subgenomic circles
(which contain no initiating oriA). The presence in higher
plant mitochondria of an active recombination system
(Pring and Lonsdale 1985), including most likely topoiso-
merase I and gyrase activity (Echeverria et al. 1986), fa-
vours such a dynamic replication mechanism.

Using this crude system as reference, reconstitution of
a mtDNA replication system consisting of purified repli-
cation enzymes and accessory enzyme fractions (like pu-
rified systems of E. coli and SV40; Baker et al. 1986;
Wobbe et al. 1987) will provide a strong tool for studying
the proposed replication steps in detail in order to delin-
eate the molecular mechanism of the mtDNA replication
process and to verify the hypothetical dynamic genome
organization.
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