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We prove two results for the sequential topology on countable products of sequential

topological spaces. First we show that a countable product of topological quotients yields a

quotient map between the product spaces. Then we show that the reflection from sequential

spaces to its subcategory of monotone ω-convergence spaces preserves countable products.

These results are motivated by applications to the modelling of computation on non-discrete

spaces.

1. Introduction

In the theory of Type Two Effectivity (Weihrauch 2000), computation on non-discrete

spaces is performed by type two Turing machines, which compute with infinite words

acting as names for elements of spaces. The connection between names and their associated

elements is specified by a many-to-one relation called a representation. Such representations

induce a topology on the named elements, namely the quotient topology of the relative

product topology on the set of names. For certain admissible representations, the naming

relations are themselves determined (up to a continuous equivalence) by the topology

of the represented space. Moreover, the property of admissibility serves as a well-

behavedness criterion for representations. In the case of the real numbers, for example, the

property of admissibility exactly captures the distinction between reasonable computable

representations (for example, signed digit or Cauchy sequences with specified modulus),

which are admissible, and unreasonable ones (for example, ordinary binary/decimal

notation), which are not. In general, one can argue that the spaces with admissible

quotient representation are exactly the topological spaces that support a good (type two)

computability theory, see Weihrauch (2000) and Schröder (2003).

In his Ph.D. thesis (Schröder 2003), the first author characterised those topological

spaces that have admissible quotient representations as being exactly the T0 quotient

spaces of countably-based spaces (qcb spaces). Qcb spaces are closed under many

useful constructions for modelling computation; for example, the category of continuous

functions between qcb spaces is cartesian closed and hence models typed lambda-calculus

(Schröder 2003; Menni and Simpson 2002). Furthermore, by restricting to qcb spaces

† Research supported by the EPSRC research grant ‘Topological Models of Computational Metalanguages’

and an EPSRC Advanced Research Fellowship (Simpson).
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that are monotone convergence spaces in the sense of Gierz et al. (2003), one obtains

a collection of spaces that have all the desirable closure properties of a category of

predomains in domain theory (Simpson 2003; Battenfeld et al. 2005). Such topological

predomains extend the usual scope of domain theory in not being restricted to dcpos with

their Scott topology. It is our thesis, supported by the aforementioned work, that qcb

spaces and topological predomains are the most general classes of topological spaces that

are suitable for the study of computability in topology and domain theory, respectively.

In this paper, we address two technical questions that have arisen in the context

of constructing free algebras for equational theories over qcb spaces and topological

predomains. The study of such free algebras is interesting for at least two reasons. For

us, a main motivation was the identification by Plotkin and Power of free algebras

as a general mechanism for modelling computational effects (that is, the non-functional

aspects of computation), see, for example, Plotkin and Power (2002). More generally,

the construction of free algebras is, of course, important in any approach to modelling

computable (universal) algebra, cf. Stoltenberg-Hansen and Tucker (1995).

One aspect of Plotkin and Power’s study of computational effects is that one needs

free algebras for equational theories in which the algebraic operations may have infinite

arity. Taking account of this, Battenfeld has studied the construction of free algebras

for equational theories allowing (parametrised) operations of countable arity (Battenfeld

2006). He has obtained explicit descriptions of such free algebras both in the general case

of qcb spaces and in the restricted case of topological predomains. The correctness of his

descriptions depends upon two technical results:

(i) Countable products in the category of qcb spaces preserve topological quotients

(ii) The reflection functor from the category of qcb spaces to the category of topological

predomains preserves countable products.

The purpose of the present note is to provide proofs of these results.

Since it is the natural level of generality at which the arguments work, we present

proofs of (i) and (ii) for arbitrary sequential spaces, rather than restricting to the special

case of qcb spaces. In Section 2 we briefly review the necessary technical background on

sequential spaces. In Section 3 we develop the technical notion of a function co-reflecting

convergent sequences, which is used as a tool in the proof of both main results. The

proof of the preservation of quotients by countable products is then given in Section 4.

Finally, in Section 5, we prove that the reflection from sequential spaces to monotone

ω-convergence spaces preserves countable products.

2. Preliminaries

We use O(X) to denote the topology of a topological space X. A subset U of a topological

space X is sequentially open if, whenever a sequence (xn) converges to some x ∈ U

(notation (xn) → x ∈ U), all but finitely many xn are in U. The space X is said to

be sequential if every sequentially open subset is open (Franklin 1965). This paper is

concerned with the category Seq of sequential spaces and continuous functions.
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Given a sequence of sequential spaces Xi, we use X0 × X1,
∏

i�l Xi and
∏

i Xi to

denote the binary, finite and countable products, respectively, in this category. The

convergence relation on such products is pointwise, that is, (xn) → x in
∏

i Xi if and only

if πi(xn) → πi(x), for all i � 0, where we write πi(x) for the i-th component of x. In

general, the sequential topology determined by this convergence relation is finer than the

topological product. As notation on infinite sequences, we also write π�l(x) for the prefix

π0(x) . . . πl(x) ∈
∏

i�l Xi, and π>l(x) for the suffix πl+1(x)πl+2(x) . . . ∈
∏

i>l Xi. Moreover,

given y ∈
∏

i�l Xi and z ∈
∏

i>l Xi, we use y@z to denote the unique x ∈
∏

i Xi with

π�l(x) = y and π>l(x) = z. Given functions qi : Xi → Yi, we use
∏

i�l qi and
∏

i>l qi to

denote the corresponding product functions from
∏

i�l Xi to
∏

i�l Yi and from
∏

i>l Xi to∏
i>l Yi, respectively.

The category Seq is cartesian closed with exponential Y X given by the set of continuous

functions with convergence relation: (fn) → f if and only if, for every convergent sequence

(xn) → x in X, we have fn(xn) → f(x) in Y .

A topological space X is a qcb space if it can be presented as a topological quotient

q : A → X where A is a countably-based space. It is easy to see that every qcb space is

sequential. The category QCB of qcb spaces is cartesian closed with countable limits and

colimits, and the inclusion of QCB in Seq preserves this structure (Menni and Simpson

2002; Schröder 2003; Escardó et al. 2004).

We write �+ for the space with underlying set � ∪ {∞}, with basic opens: {n} and

{m | m � n} ∪ {∞}, for every n ∈ �. This space acts as a generic converging sequence

since (xn) → x∞ in X if and only if the function α �→ xα from �+ to X is continuous.

An ω-complete partial order (ωcpo) is a partial order (X,�) for which every ascending

sequence x0 � x1 � . . . has a least upper bound (lub). A subset U is open in the ω-Scott

topology on an ωcpo if, for every ascending sequence x0 � x1 � . . . with lub x∞ ∈ U, only

finitely many (xn) are outside U. It is readily seen that the ω-Scott topology is sequential.

We write �X for the specialisation order on a space X, defined by x �X x′ if x′ is

contained in every neighbourhood of x. For a general topological space, the specialisation

order is a preorder. Recall that a space is T0 if and only if its specialisation order is a

partial order.

We write � for Sierpinski space {⊥,
} with {
} open but {⊥} not open, thus ⊥ �� 

but 
 ��� ⊥. We observe that, for a sequential space X, the exponential �X is given by

the family of open subsets of X with the ω-Scott topology on the inclusion order. Since

this fact is not needed in this note, we do not give a proof. For a proof of an analogous

result for compactly generated spaces, see Escardó et al. (2004, Corollary 5.16).

3. Co-reflecting convergent sequences

Throughout this paper, X,Y , . . . range over sequential spaces. We begin with two basic

lemmas.

Lemma 3.1. Let V be an open set of X × Y , and K be a sequentially compact subset of

Y . Then U := {x ∈ X | {x} ×K ⊆ V } is an open set.
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Proof. Assume, in order to show a contradiction, that U is not sequentially open. Then

there is a convergent sequence (xn)n → x∞ in X with x∞ ∈ U and ∀n ∈ � . xn /∈ U. There

exists a sequence (yn)n in K with (xn, yn) /∈ V . Sequential compactness yields a subsequence

(yϕ(n))n converging to some y∞ ∈ K . As V is open, (xϕ(n), yϕ(n)) is eventually in V , which

is a contradiction.

The property stated in the above lemma holds, more generally, for all countably compact

subsets K , but this requires a more complex proof. The above is sufficient for the purposes

of the present paper.

Lemma 3.2. Let V be an open set of
∏

i Xi and x ∈ V . Then there is some l ∈ � such

that {π�l(x)} ×
∏

i>l Xi ⊆ V .

Proof. Assume that no such l exists. Then for every n ∈ � there exists some yn ∈∏
i Xi \ V with π�n(yn) = π�n(x). For every i ∈ �, the sequence (πi(yn))n converges in

Xi to πi(x) by being eventually constant. Thus (yn)n converges in
∏

i Xi to x, which is a

contradiction.

A continuous function f : X → Y is said to reflect convergent sequences if, whenever

(f(xn)) → f(x) we have (xn) → x. The following derived notion plays a crucial role in the

sequel.

Definition 3.3. We say that a function q : X → Y co-reflects convergent sequences if it is

continuous and �q : �Y → �X reflects convergent sequences.

The next proposition gives a useful characterisation of the property of co-reflecting

convergent sequences.

Proposition 3.4. A continuous function q : X → Y co-reflects convergent sequences if and

only if for every convergent sequence (yn)n → y∞ in Y and every open V containing y∞
there is a convergent sequence (xn)n → x∞ in X and a strictly increasing ψ : � → � such

that q(x∞) ∈ V and q(xn) �Y yψ(n) for all n ∈ �.

Proof. For the only-if direction, let (yn)n → y∞ be a convergent sequence in Y , and let

V be an open neighbourhood of y∞. For n ∈ �+ define hn : Y → � by

hn(y) :=

{

 if (n = ∞ and y ∈ V ) or (n �= ∞ and y ��Y yn)

⊥ otherwise.

Then (hn)n does not converge to h∞, because h∞(y∞) = 
 and hn(yn) = ⊥ for all

n ∈ �. Hence (�q(hn))n does not converge to �q(h∞). This implies that there are a

convergent sequence (xn)n → x∞ in X and a strictly increasing function ϕ : � → � with

�q(h∞)(x∞) = 
 and �q(hϕ(n))(xn) = ⊥, which means q(x∞) ∈ V and q(xn) �Y yϕ(n).

For the if direction, �q is clearly continuous. Let (hn)n be a sequence in �Y that does

not converge to h∞. Then there are a convergent sequence (yn)n → y∞ in Y and a strictly

increasing function ϕ : � → � with h∞(y∞) = 
 and hϕ(n)(yn) = ⊥. By assumption,

there exist a convergent sequence (xn)n → x∞ in X and a strictly increasing function

ψ : � → � with q(x∞) ∈ h−1
∞ {
} and q(xn) �Y yψ(n). Thus we have �q(h∞)(x∞) = 
 and

�q(hϕψ(n))(xn) = ⊥, which implies that (�q(hn))n does not converge to �q(h∞) in �X .
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Example 3.5. Every quotient map q : X → Y between sequential spaces co-reflects

convergent sequences.

This fact can be proved abstractly as follows. The quotient maps in Seq are exactly

the regular epimorphisms. Because the contravariant functor �(−) : Seq → Seqop is a left

adjoint, it maps regular epimorphisms to regular monos in Seq, and the latter are exactly

the injective continuous functions that reflect convergent sequences. The following direct

argument is included for the benefit of readers who prefer proofs from first principles.

Proof. Let (hn)n�∞ be a sequence in �Y such that (�q(hn))n converges to �q(h∞) in �X .

Let (yn)n → y∞ be a convergent sequence in Y with h∞(y∞) = 
, and choose x∞ ∈ X with

q(x∞) = y∞. Since the function g : X × �+ → � with g(x, n) := �q(hn)(x) is continuous,

there is some n0 ∈ � with g(x∞, n) = 
 for all n � n0. Define V := {y ∈ Y | ∀n0 � n

� ∞ . hn(y) = 
}. Since q−1[V ] = {x ∈ X | {x} × {∞, n | n � n0} ⊆ g−1{
}} is open in X by

Lemma 3.1, V is open in Y . Thus (yn)n is eventually in V , which implies that hn(yn) = 

for almost all n. We conclude that (hn)n converges to h∞ in �Y .

We show that the property of co-reflecting convergent sequences is preserved by forming

countable products of functions.

Proposition 3.6. If the mappings qi : Xi → Yi co-reflect convergent sequences for i ∈ �,

then so does the product mapping (
∏

i qi) : (
∏

i Xi) → (
∏

i Yi).

Proof. With the help of Proposition 3.4 and Lemma 3.1, it is easy to prove that, for any

sequential space Z , the product q0 × idZ co-reflects convergent sequences. From this result

one can easily deduce that the finite product
∏

i�n qi co-reflects convergent sequences for

every n ∈ �.

Let (yn)n → y∞ be a convergent sequence in
∏

i Yi and W be an open neighbourhood

of y∞. There is some l ∈ � with {π�l(y∞)} ×
∏

i>l Yi ⊆ W .

For i = l, l + 1, . . . we define by recursion strictly increasing functions ψi : � → �
as follows. We set ψl := id� and apply for i > l Proposition 3.4 to (πi(yψl◦...◦ψi−1(n)))n
in order to obtain a subsequence (πi(yψl◦...◦ψi(n)))n of (πi(yn))n and a convergent sequence

(ai,n)n → ai,∞ in Xi with qi(ai,n) �Yi πi(yψl◦...◦ψi(n)). Then we define the strictly increasing

function ψ by ψ(n) := ψl ◦ . . . ◦ψl+n(n). Using (ai,n)i,n, we construct a convergent sequence

(zn)n → z∞ in
∏

i>l Xi with (
∏

i>l qi)(zn) �∏
i>l Yi

π>l(yψ(n)).

As V := {y ∈
∏

i�l Yi | y@(
∏

i>l qi)(z∞) ∈ W } is a neighbourhood of π�l(y∞) by

Lemma 3.1 and
∏

i�l qi co-reflects convergent sequences, there is a strictly increas-

ing function ϕ : � → � and a convergent sequence (xn)n → x∞ in
∏

i�l Xi with

(
∏

i�l qi)(xn) �∏
i�l Yi

π�l(yψϕ(n)) and (
∏

i�l qi)(x∞) ∈ V . It is obvious that(∏
i

qi

)(
xn@zϕ(n)

)
�∏

i Yi
yψϕ(n)

and (
∏

i qi)(x∞@z∞) ∈ W . Hence
∏

i qi co-reflects convergent sequences by Proposition 3.4.
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Lemma 3.7. Suppose qi : Xi → Yi co-reflects convergent sequences for i ∈ �. Let W be a

subset of
∏

i Yi satisfying:

(a) The preimage (
∏

i qi)
−1[W ] is open.

(b) For every y ∈ W there is some l ∈ � with {π�l(y)} ×
∏

i>l Yi ⊆ W .

(c) The set {y ∈
∏

i�l Yi | y@(
∏

i>l qi)(x) ∈ W } is open in
∏

i�l Yi for every l ∈ � and

every x ∈
∏

i>l Xi.

(d) (
∏

i qi)(x) ∈ W and (
∏

i qi)(x) �∏
Yi y imply y ∈ W for all x ∈

∏
i Xi and y ∈

∏
i Yi.

Then W is open in
∏

i Yi.

Proof. Assume thatW is not open. Then there is a convergent sequence (yn)n → y∞ with

y∞ ∈ W and ∀n ∈ � . yn /∈ W . By (b), there is some l ∈ � such that {π�l(y∞)} ×
∏

i>l Yi ⊆
W . By Propositions 3.4 and 3.6 there exist a convergent sequence (zn)n → z∞ in

∏
i>l Xi

and some strictly increasing ϕ : � → � with (
∏

i>l qi)(zn) �∏
i>l Yi

π>l(yϕ(n)). By (c), the

set V = {y ∈
∏

i�l Yi | y@(
∏

i>l qi)(z∞) ∈ W } is an open neighbourhood of π�l(y∞). Again

by Proposition 3.6, there is a convergent sequence (xn)n → x∞ in
∏

i�l Xi and a strictly

increasing ψ : � → � such that (
∏

i�l qi)(xn) �∏
i�l Yi

π�l(yϕψ(n)) and (
∏

i�l qi)(x∞) ∈ V .

Clearly, (xn@zψ(n))n converges to x∞@z∞ in
∏

i Xi. Since (
∏

i qi)
−1[W ] is open, there is

some n0 ∈ � with (
∏

i qi)(xn0
@zψ(n0)) ∈ W . This implies yϕψ(n0) ∈ W by (d), which is a

contradiction.

4. Preservation of quotients

Let qi : Xi → Yi be quotient maps between sequential spaces Xi and Yi. We define

q∞ :
∏

i∈�Xi →
∏

i∈� Yi by q∞(x0, x1, . . . ) :=
(
q0(x0), q1(x1), . . .

)
and use Y∞ to denote the

sequential space having
∏

i∈� Yi as its underlying set and as its topology O(Y∞) the final

topology induced by q∞. The aim of this section is to prove that Y∞ =
∏

i∈� Yi, and thus

that q∞ exhibits
∏

i∈� Yi as a quotient of
∏

i∈�Xi. In other words, we show that countable

products in Seq preserve quotient maps.

First, we recall the standard fact that finite products in Seq preserve quotients.

Lemma 4.1. If q : X → Y is a quotient map and Z is a sequential space, then (q × idZ ) :

X × Z → Y × Z is a quotient map.

For an abstract proof of the lemma, since Seq is cartesian closed, the functor (−) ×
Z : Seq → Seq preserves regular epis and hence topological quotients. Again we give a

self-contained proof for readers who prefer such arguments.

Proof. Clearly, r := q×idZ is continuous. Now letW ⊆ Y×Z be a set such that r−1[W ]

is open in X×Z . Let (yn, zn)n be a sequence that converges in Y ×Z to some (y∞, z∞) ∈ W .

Choose some x∞ ∈ q−1{y∞}. There is some n1 ∈ � with ∀n � n1 . (x∞, zn) ∈ r−1[W ]. Define

K := {z∞, zn | n � n1} and V := {y ∈ Y | {y} ×K ⊆ W }. Since K is sequentially compact,

q−1[V ] = {x ∈ X | {x} ×K ⊆ r−1[W ]} of V is open. Hence V is an open neighbourhood

of y∞. Thus (yn)n is eventually in V , hence (yn, zn)n is eventually in W . We conclude that

W is open in Y × Z .
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Since quotient maps are closed under composition, it follows easily from Lemma 4.1 that

the product q × q′ in Seq of two quotient maps is again a quotient map. Thus finite

products in Seq do indeed preserve quotients.

Theorem 4.2. Let qi : Xi → Yi be quotient maps for all i ∈ �. Then the countable product

(
∏

i∈� qi) :
∏

i∈�Xi →
∏

i∈� Yi is a quotient map.

Proof. Let Y∞ be as defined at the start of the section. We show O(Y∞) = O(
∏

i Yi). The

‘⊇’ inclusion follows easily from the fact that the projection functions πk : Y∞ → Yk are

continuous. It remains to show that O(Y∞) ⊆ O(
∏

i Yi).

By Example 3.5, it suffices to show that every set W ∈ O(Y∞) has the properties of

Lemma 3.7.

(a) By the definition of Y∞, it follows that (
∏

i qi)
−1[W ] is open.

(b) Let y ∈ W . Assume, to show a contradiction, that for every n ∈ � there is some

zn ∈
∏

i Yi\W with π�n(zn) = π�n(y). Choose x∞ with (
∏

i qi)(x∞) = y. For every n ∈ �
there is some xn ∈

∏
i Xi with (

∏
i qi)(xn) = zn and π�n(xn) = π�n(x∞). Obviously, (xn)n

converges to x∞ in
∏

i Xi. By the continuity of
∏

i qi, we have (zn)n converges to y in

the quotient space Y∞, which is a contradiction.

(c) Let l ∈ � and x ∈
∏

i>l Xi. Then V := {y ∈
∏

i�j Yi | y@(
∏

i>l qi)(x) ∈ W } is open in

the quotient topology induced by
∏

i�l qi, because its preimage (
∏

i�l qi)
−1[V ] = {z ∈∏

i�l Xi | z@x ∈ (
∏

i qi)
−1[W ]} is open in

∏
i�l Xi. Since quotient maps are preserved

by finite products in Seq, V is open in the product
∏

i�l Yi as well.

(d) Let x ∈ (
∏

i qi)
−1[W ] and y ∈

∏
i Yi with (

∏
i qi)(x) �∏

Yi y. By (b) there is some

l ∈ � such that π�l((
∏

i qi)(x)) ×
∏

i>l Yi ⊆ W . As there is some a ∈
∏

i>l Xi with

(
∏

i>l qi)(a) = πi>l(y), by (c) the set V = {z ∈
∏

i�l Yi | z@πi>l(y) ∈ W } is open

in
∏

i�l Yi. Since (
∏

i�l qi)(π�l(x)) ∈ V and (
∏

i�l qi)(π�l(x)) �∏
i�l Yi

π�l(y), we have

π�l(y) ∈ V and thus y ∈ W .

5. Monotone ω-convergence spaces

A topological space X is a monotone convergence space if its specialisation order is

a directed-complete partial order and every open subset of X is Scott-open under the

specialisation order. (This notion was introduced by Wyler under the name d-space (Wyler

1981).) Analogously, we say that X is a monotone ω-convergence space if the specialisation

order is an ωcpo and every open set of X is ω-Scott open. Note that monotone

(ω-)convergence spaces are automatically T0. A qcb space is a monotone convergence

space if and only if it is a monotone ω-convergence space, see Battenfeld et al. (2005,

Proposition 4.7).

In this section we show that countable products in Seq are preserved by the reflection

functor into the subcategory of monotone ω-convergence sequential spaces. It will

follow that the reflection functor from qcb spaces to the subcategory of monotone

(ω-)convergence qcb spaces also preserves countable products.

We use ωMC to denote the category of monotone ω-convergence spaces and of

continuous functions and ωMCSeq for its full subcategory of sequential monotone ω-

convergence spaces.
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A closed set A is said to be irreducible if A ∩ U �= � and A ∩ V �= � implies

A ∩ U ∩ V �= � for all U,V ∈ O(X). Recall that the sobrification S(X) of a topological

space X has the set of irreducible closed sets of X as its underlying set (equivalently,

one can use the set of completely prime filters). The topology of S(X) is defined by

the family of sets of the form {A ∈ S(X) |A ∩ U �= �}, where U ∈ O(X). Clearly, the

specialisation order �S(X) is given by set-inclusion. This implies that (S(X),�S(X)) forms

a directed complete partial order, where the least upper bound, lubX(β), of a directed

family β ⊆ S(X) is given by the closure of the union over β, which is, indeed, an

irreducible closed set.

We define a functor Mω from the category Top of topological spaces to ωMC as

follows. For X ∈ Top, let Mω(X) be the topological subspace of S(X) whose underlying

set is the smallest subset D of S(X) that contains, for all x ∈ X, the irreducible closed set

ηX(x) := Cls(x) and is closed under the formation of lubs of increasing sequences in D.

For an open set U ∈ O(X) we use U+ to denote the open set {A ∈ Mω(X) |A∩U �= �} in

Mω(X). Given a morphism f : X → Y in Top, we define the function Mω(f) : Mω(X) →
Mω(Y ) by Mω(f)(A) := Cls(f[A]).

We show that Mω exhibits ωMC as a full reflective subcategory of Top. This is analogous

to the reflection of the category of monotone convergence spaces in Top established in

Wyler (1981), see also Battenfeld et al. (2005).

Proposition 5.1. The functor Mω constitutes a reflection functor from Top to ωMC.

Proof. Let X ∈ Top. From the fact that the specialisation order �Mω(X) of Mω(X) is

given by set-inclusion, it follows that
(
Mω(X),�Mω(X)

)
forms an ωcpo. Every open set

W of Mω(X) is ω-Scott-open by being of the form W = U+ for some U ∈ O(X). Hence

Mω(X) is indeed a monotone ω-convergence space.

Let Y be a topological space and f : X → Y be continuous. It is easy to verify

that Mω(f)(A) ∈ S(Y ) for every A ∈ Mω(X) and Mω(f) ◦ ηX = ηY ◦ f. Thus D :=

{A ∈ Mω(X) | Mω(f)(A) ∈ Mω(Y )} contains {Cls(x) | x ∈ X}. Moreover, if (Ai)i is an

increasing sequence of elements in D, then (Cls(f[Ai]))i is an increasing sequence in Mω(Y ),

hence lub(Cls(f[Ai]))i ∈ Mω(Y ). Since Mω(f)(lub(Ai)i) = lub(Cls(f[Ai]))i, it follows that

lub(Ai)i ∈ D. Therefore, D is closed under countable lubs, so Mω(X) ⊆ D. This shows

that Mω(f) indeed maps Mω(X) into Mω(Y ). Furthermore, Mω(f) is continuous, because

(Mω(f))−1[V+] = (f−1[V ])+ holds for all V ∈ O(Y ). Clearly, Mω preserves composition.

Thus Mω is a functor.

Let Z be a monotone ω-convergence space. Using the fact that every open of Z

is ω-Scott-open in the ωcpo (Z,�Z ), one can show that Mω(Z) = {ηZ (z) | z ∈ Z}.
Hence εZ : Mω(Z) → Z can be defined by εZ

(
ηZ (z)

)
:= z. Clearly, εZ is continuous

and ηZ ◦ εZ = idMω(Z), hence Mω(Z) and Z are isomorphic. Thus for any morphism

h : X → Z , the function h′ := εZ ◦ Mω(h) satisfies h = h′ ◦ ηX . It is unique, because for

any continuous function g : Mω(X) → Z with g ◦ ηX = h and any open V ∈ τZ , we have

g−1[V ] = (f−1[V ])+. This implies g = h′, because Z is a T0-space.

Therefore, Mω is a left adjoint to the embedding MC ↪→ Top, with η being the unit

and ε being the counit of the adjunction.
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Proposition 5.2. The reflection functor Mω preserves sequential spaces and qcb-spaces.

Proof. Let X be sequential. In order to show that Mω(X) is sequential, we first define

for every countable ordinal α the family X(α) by transfinite induction as follows:

X(0) := {ηX(x) | x ∈ X} (1)

X(α) :=

{
lub(An)n | ∀n ∈ � . An ⊆ An+1 ∧ An ∈

⋃
β<α

X(β)

}
(α > 0).

Clearly,
⋃
α<ω1

X(α) is the underlying set of Mω(X).

Let V be a sequentially open subset of Mω(X). Since ηX is continuous, the set U :=

(ηX)−1[V ] is sequentially open, and thus open in the sequential space X. By transfinite

induction, we now show V ∩X(α) = U+ ∩X(α) for α < ω1:

1 For α = 0, V ∩X(α) = U+ ∩X(α) follows from the definition of U.

2 Let α > 0 and A ∈ X(α). Then there is an increasing sequence (An)n in
⋃
β<α X

(β) with

A = Cls(
⋃
n∈� An). If A ∈ U+, then there is some m ∈ � with Am ∈ U+, and thus

Am ∈ V by the induction hypothesis. Since the constant sequence (A)j converges to Am
in Mω(X), it follows that A ∈ V . On the other hand, if A ∈ V , there is some n0 ∈ �
with An0

∈ V , because (An)n converges to A in Mω(X). By the induction hypothesis,

we have An0
∈ U+, which implies that A ∈ U+.

We conclude U+ = V , and hence that Mω(X) is sequential.

Since QCB is cartesian closed, QCB contains the function space ��X . The function

e : Mω(X) → ��X defined by e(A)(h) = 
 :⇐⇒ A ∈ (h−1[
])+ has the property that a

sequence (An)n converges to A∞ in Mω(X) if and only if (e(An))n converges to e(A∞) in ��X .

Together with the fact that Mω(X) is sequential, this implies that Mω(X) is homeomorphic

to the space {e(A) |A ∈ Mω(X)} equipped with the subspace topology induced by ��X .

Any sequential subspace of a qcb space is a qcb space as well: this follows from the

characterisation of qcb spaces as those spaces that have a countable pseudobase (cf.

Schröder (2003) and Escardó et al. (2004)) and from the fact that subspaces inherit the

existence of a countable pseudobase (cf. Schröder (2002)). Hence, Mω(X) is a qcb space.

The goal of this section is to show that the functor Mω from Seq to ωMCSeq preserves

countable products. We show first that there is a bijection between the underlying sets of∏
i Mω(Xi) and Mω(

∏
i Xi).

Lemma 5.3. The function ι :
∏

i Mω(Xi) → Mω(
∏

i Xi) defined by ι((Ai)i) :=
∏

i Ai is

bijective. Its inverse ι−1 is continuous.

Proof. In order to prove that ι maps
∏

i Mω(Xi) into Mω(
∏

i Xi), we show

Cls

( ⋃
n∈�

∏
i∈�

Ai,n

)
=

∏
i∈�

Cls

( ⋃
n∈�

Ai,n

)
(2)

for every i ∈ � and every increasing sequence (Ai,n)n of closed sets in Xi:

‘⊆’ This follows since
⋃
n

∏
i Ai,n ⊆

∏
i(
⋃
n Ai,n) and

∏
i Cls(

⋃
n Ai,n) is closed in

∏
i Xi.
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‘⊇’ Let x ∈
∏

i(
⋃
n Ai,n) and V be an open neighbourhood of x in

∏
i Xi. By Lemma 3.2,

there is some l ∈ � such that {π�l(x)}×
∏

i>l Xi ⊆ V . Choose some y ∈
∏

i>l Ai,0. Since

{a ∈ Xl | π<l(x)@a@y ∈ V } is a neighbourhood of πl(x), there is some al ∈
⋃
n Al,n

with π<l(x)@al@y ∈ V . By repeated application of this argument, we can find

elements al−1 ∈
⋃
n Al−1,n, . . . , a0 ∈

⋃
n A0,n with z := (a0@ . . .@al@y) ∈ V . Since there

is some n0 ∈ � with z ∈
∏

i Ai,n0
, we conclude x ∈ Cls(

⋃
n

∏
i Ai,n).

For every ordinal α < ω1 and every k ∈ � we define X(α)
k ⊆ S(Xk) as in Equation (1)

and show ι[
∏

i X
(α)
i ] ⊆ Mω(

∏
i Xi) by transfinite induction:

— Case α = 0: For every x ∈
∏

i Xi, we have
∏

i ηXi (πi(x)) = η(
∏

i Xi)
(x) ∈ Mω(

∏
i Xi).

— Case α > 0: Let (Ai)i ∈
∏

i X
(α)
i . For every i, n ∈ � there is an ordinal βi,n < α and a

set Ai,n ∈ X
(βi,n)
i such that (Ai,n)n is increasing and lub(Ai,n)n = Ai. Choose a ∈

∏
i∈� Ai,0

and define

Bi,n :=

{
Ai,n if i � n

Cls({πi(a)}) otherwise.

Then (Bi,n)i ∈
∏

i X
(max{βj,n | j�n})
i for every n ∈ �. The induction hypothesis implies∏

i Bi,n ∈ Mω(
∏

i Xi). By Equation (2), we obtain
∏

i Ai =
∏

i lub(Bi,n)n = lub(
∏

i Bi,n)n ∈
Mω(

∏
i Xi), which concludes the induction.

Thus ι maps
∏

i Mω(Xi) into Mω(
∏

i Xi). It is clear that ι is injective. Moreover,

ι[
∏

i Mω(Xi)] contains η∏
i Xi

(x) for all x ∈
∏

i Xi and is closed under lub’s by Equa-

tion 2. Therefore, Mω(
∏

i Xi) ⊆ ι[
∏

i Mω(Xi)]. We conclude that ι is a bijection between∏
i Mω(Xi) and Mω(

∏
i Xi).

Since ι−1(Q) = (Mω(π0)(Q),Mω(π1)(Q), . . . ), we have ι−1 is continuous.

Lemma 5.4. The unit ηX : X → Mω(X) co-reflects convergent sequences.

Proof. Since φ : �X → �Mω(X) defined by φ(h)(A) = 
 :⇐⇒ A ∈ (h−1{
})+ is a

continuous inverse of �ηX , we have that ηX co-reflects convergent sequences.

Proposition 5.5. The functor Mω : Seq → ωMCSeq preserves finite products.

Proof. Let X,Y be sequential spaces. By Lemma 5.3, the function ι : Mω(X)×Mω(Y ) →
Mω(X × Y ) with ι(A,B) := A × B is bijective and its inverse is continuous. In order to

show that ι is continuous, let (An, Bn)n converge to (A∞, B∞) in Mω(X) × Mω(Y ). Let

W ∈ O(X×Y ) with A∞×B∞ ∈ W+. Assume, to show a contradiction, that there is a strictly

increasing function ϕ : � → � with Aϕ(n) × Bϕ(n) /∈ W+. Choose (a, b) ∈ W ∩ (A∞, B∞).

Since U := {x ∈ X | (x, b) ∈ W } is open with A∞ ∈ U+ and ηX co-reflects convergent

sequences, there is some strictly increasing function ψ : � → � and a converging

sequence (xn)n → x∞ in X with x∞ ∈ U and ∀n ∈ � . xn ∈ Aϕψ(n) ∩ U. By Lemma 3.1,

the set V := {y ∈ Y | {x∞, xn | n ∈ �} × {y} ⊆ W } is open in Y . As B∞ ∈ V+, there is

some n1 ∈ � with ∀n � n1 . Bϕψ(n) ∈ V+. Hence (Aϕψ(n1) × Bϕψ(n1)) ∩ W �= �, which is a

contradiction.

Theorem 5.6. The functor Mω : Seq → ωMCSeq preserves countable products.
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Proof. Let Xi be a sequential space for i ∈ �. We only need to show that the function ι

defined in Lemma 5.3 is continuous. It suffices to prove that for every open O in
∏

i Xi

the preimage W := ι−1{O+} satisfies the requirements of Lemma 3.7.

(a) Since ι ◦
∏

i ηXi = η∏
i Xi

, we have (
∏

i ηXi )
−1[W ] = O.

(b) Let (Ai)i ∈ W . Then there is some x ∈ O ∩
∏

i Ai. Lemma 3.2 yields some l ∈ � with

{π�l(x)} ×
∏

i>l Xi ⊆ O. Hence {A0} × . . .× {Al} ×
∏

i>l Mω(Xi) ⊆ W .

(c) Let l ∈ � and x ∈
∏

i>l Xi. By Lemma 3.1, U := {z ∈
∏

i�l Xi | z@x ∈ O} is open.

Since U+ is open in Mω(
∏

i�l Xi) and Mω preserves finite products, the set{
(A0, . . . , Al) ∈

∏
i�l

Mω(Xi) |A0@ . . .@Al@(
∏
i>l

ηXi )(x) ∈ W

}

=

{
(A0, . . . , Al) ∈

∏
i�l

Mω(Xi) | ∃z ∈
∏
i�l
Ai . z@x ∈ O

}

=

{
(A0, . . . , Al) ∈

∏
i�l

Mω(Xi) |
∏
i�l
Ai ∈ U+

}

is open in
∏

i�l Mω(Xi).

(d) Let x ∈
∏

i Xi and (Ai)i ∈
∏

i Mω(Xi) with (
∏

i ηXi )(x) ∈ W and(∏
i

ηXi

)
(x) �∏

i Mω(Xi) (Ai)i .

Then x ∈
∏

i Ai ∩ O, which implies (Ai)i ∈ W .

It follows that the restriction of Mω to a reflection from QCB to its subcategory of

monotone convergence spaces, ωMCQCB, also preserves countable products.
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