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TWO PROBLEMS ASSOCIATED WITH CONVEX
FINITE TYPE DOMAINS

Alexander Iosevich, Eric Sawyer and Andreas Seeger

Abstract
We use scaling properties of convex surfaces of finite line type to
derive new estimates for two problems arising in harmonic analy-
sis. For Riesz means associated to such surfaces we obtain sharp
Lp estimates for p > 4, generalizing the Carleson-Sjölin theorem.
Moreover we obtain estimates for the remainder term in the lat-
tice point problem associated to convex bodies; these estimates
are sharp in some instances involving sufficiently flat boundaries.

1. Introduction

Let Ω be a convex domain in Rd with smooth boundary. We assume
that ∂Ω is of finite line type, that is, at each point each tangent line has
finite order of contact.

We discuss two problems in this paper. Both problems have in com-
mon that progress can be made using some approximate scaling prop-
erties of ∂Ω. We derive an extension of the Carleson-Sjölin theorem
concerning Lp convergence results for Riesz means defined by a distance
function associated to Ω; we assume that 1 ≤ p ≤ 4/3. We also give
asymptotics for the number of integer lattice points inside large dilates
of Ω; the bounds for the error terms are sharp in some cases where there
exist points with all lines tangent to the boundary having high order of
contact with ∂Ω.

1.1. Riesz means.

We assume that the origin belongs to the interior of Ω. Let ρ : Rd →
[0,∞) homogeneous of degree 1 be the Minkowski functional associated
to Ω; i.e. ρ is homogeneous of degree one, so that ρ(ξ) = 1 if ξ ∈ ∂Ω. The
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boundary Σρ := ∂Ω is then the unit sphere for the generalized distance
function ρ. The Bochner-Riesz operator associated to ρ is defined by

Ŝλ,ρf(ξ) = (1− ρ(ξ))λ+f̂(ξ);(1.1)

here our definition of the Fourier transform is f̂(ξ) =
∫
f(y)e−ı〈y,ξ〉 dy. It

is well known that if 1 ≤ p <∞ the Lp boundedness of the Bochner-Riesz
operator implies Lp convergence of the Riesz means F−1[(1−ρ/t)λ+f̂ ] to
the limit f if f ∈ Lp and t→∞.

A necessary condition for Lp boundedness is

λ > λ(p) = d|1/p− 1/2| − 1/2.(1.2)

Indeed in view of the compact support of the multiplier it is necessary for
Lp boundedness that the inverse Fourier transform of (1 − ρ)λ+ belongs
to Lp. Using standard asymptotic expansions one can show (working
near points on Σρ where the curvature does not vanish) that (1.2) is
necessary for F−1[(1− ρ)λ+] ∈ Lp.

It is known [9], [29] that the validity of an L2 restriction theorem for
the Fourier transform implies the Lp boundedness of the Bochner-Riesz
operator. Since Σρ is of finite type, say ≤ n, it follows from [3] that the
Fourier transform of d̂σ(ξ) of a smooth density carried by Σρ is O(|ξ|−µ)
for some µ with µ ≥ (d − 1)/n. Using the appropriate versions of the
Stein-Tomas restriction theorem [10] one can show that Lp boundedness
holds for 1 ≤ p ≤ 2(µ + 1)/(µ + 2) and λ > λ(p) (cf. [29]). Note that
2(µ+1)/(µ+2) = (2n+2d−2)/(2n+d−1) for the example xd =

∑d−1
i=1 xni

with even n, so that the range obtained in this way is small for large n.

Theorem 1.1. Suppose that d ≥ 2, 1 ≤ p ≤ 4/3, λ > d(1/p−1/2)−1/2,
and that Σρ is of finite line type. Then Sλ,ρ is bounded on Lp(Rd).

It is conjectured that Lp boundedness holds for the same range of
exponents as for the sphere. The conjecture for the sphere is that Lp

boundedness should hold for λ > λ(p) for p < 2d/(d + 1). This is cur-
rently known only in two dimensions, see [4]. Sjölin [28] extended this
result to arbitrary planar domains with smooth boundary, for some vari-
ants concerning convex domains in the plane with nonsmooth boundary,
see also the more recent paper by Ziesler and the third author [27]. For
partial results in higher dimensions, in the case that the Gauß curva-
ture of Σρ does not vanish, we refer to Bourgain [1] and for background
to [29]. Our proof of Theorem 1.1 uses a variant of Córdoba’s geomet-
rical proof [6] of the Carleson-Sjölin theorem and rescaling.
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1.2. Multitype and an estimate for the Fourier transform of
surface carried measure.

A precise estimate of the Fourier transforms of surface carried measure
is due to Bruna, Nagel, and Wainger [3]. Let Σ = ∂Ω and HP (Σ) the
affine tangent plane at P ∈ Σ, and let

B(P, δ) = {y ∈ Σ : dist(y,HP (Σ)) < δ}.(1.3)

Then

|d̂σ(ξ)| ≤ C
[
|B(P+, |ξ|−1)|+ |B(P−, |ξ|−1)|

]
(1.4)

where P± are the points on Σ for which ξ is a normal vector and |B|
denotes the surface measure of B. For many problems it is important
to know not just the size of the balls but also the distribution function
of x �→ |B(x, δ)| and how it relates to the notions of multitype and
type. We review the definition of multitype which is implicit in [26], see
also [17].

Consider a smooth real valued function Φ defined in a neighborhood
of the origin in a d− 1-dimensional Euclidean vector space Ed−1 so that
Φ(0) = ∇Φ(0) = 0. We say that a vector v in Ed−1 has contact of order
at least n + 1 if

Φ(sv) = O(sn+1) if s→ 0.

The sets

Sn = {v ∈ En : v has contact of order at least n + 1}(1.5)

are linear subspaces of Ed−1 and there are even integers m1, . . . ,mk so
that m1 < · · · < mk, 1 ≤ k ≤ d− 1, and m0 := m1 − 1 ≥ 1 and

0 = Smk � · · · � Sm0 := Ed−1;(1.6)

moreover the sequence is maximal, in the sense that Sn = Smk if mk−1 <
n ≤ mk. Define

(1.7) ai = mj if d− 1− dimSmj−1 < i ≤ d− 1− dimSmj ,

j = 1, . . . , k.

The d−1-tuple a = (a1, . . . , ad−1) is then called the multitype of Φ at 0.
To illustrate the above definitions consider a convex body whose

boundary passes through the origin and nearby is given by the equa-
tion xd =

∑d−1
i=1 |xi|ai where the ai are even integers, with ai ≤ ai+1,

1 ≤ i ≤ d − 2. In this case the multitype is (a1, . . . , ad−1) and the
subspaces Sm above are Sm = span({ei : ai > m}) (and Sm = {0} if
m ≥ ad−1).
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We now fix P ∈ Σ, choose a unit normal nP and parametrize Σ near P
as a graph over its tangent plane at P . Thus the parametrization is given
by

v = Γ(v) �→ P + v + Φ(v)nP(1.8)

for v ∈ TPΣ, and Φ is a convex function vanishing of second order
at the origin. We perform the above construction for Φ(v) defined on
Ed−1 = TPΣ and obtain a flag of subspaces

0 = Smk

P � · · · � Sm0
P = TPΣ.(1.9)

Let Wj be the orthogonal complement of Smj

P in S
mj−1
P , j = 1, . . . , k,

then

TPΣ = W1 ⊕ · · · ⊕Wk.(1.10)

We denote by ΠP
j the orthonormal projection on TPΣ to Wj . We also

have a similar decomposition and projections ΠP
j to W ∗

j on T ∗
PΣ, here

we let W ∗
j the space of linear functionals on Wj extended by 0 on the

orthogonal complement of Wj . We can extend these projections to linear
maps on T ∗

PRd � (Rd)∗ by defining ΠP
j nP = 0.

On T ∗
PΣ we define a nonisotropic distance function ρ∗ by

ρ∗(η) =
k∑

j=1

|ΠP
j η|

mj
mj−1 ;(1.11)

here | · | denotes the Euclidean distance in Wj . If ξ ∈ T ∗
PRd is taken from

a suitable conic neighborhood of nP and ΠP denotes the projection to
T ∗
PΣ we define

ΘP (ξ) = ρ∗

(
ΠP ξ

〈ξ, nP 〉

)
.(1.12)

Finally we set for l ≤ d− 2

νl(P ) =
d−1∑
i=l

a−1
i =

k∑
j=1

dimS
mj−1
P − dimS

mj

P

mj
(1.13)

and write ν(P ) ≡ ν1(P ). An alternative description of ν(P ) (see [16]) is

ν(P ) = sup{q : dist(·, HPΣ) ∈ Lq(Σ)};(1.14)

in fact for q = ν(P ) the function dist(·, HPΣ)−1 belongs to the space
Lq,∞(Σ).

Our result for the Fourier transform of surface carried measure is
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Proposition 1.2. Let P ∈ ∂Ω. Then there is a neighborhood U of P
and a conic neighborhood V of {±nP } in Rd so that for all χ ∈ C∞

0 (U)
and all ξ ∈ V with |ξ| ≥ 1 we have

|χ̂dσ(ξ)| � ‖χ‖CN min{|ξ|−ν , |ξ|− 1
2−ν2 [ΘP (ξ)]ν−ν2− 1

2 };

here ‖χ‖CN = maxα≤N ‖χ(α)‖L∞(U) and N is sufficiently large.

In this statement N > d+mk will suffice. Note the proposition is an
improvement over previous results only in the case where all the principal
curvatures vanish (and thus a1 > 2).

1.3. A lattice point estimate.

Let

NΩ(t) = card(tΩ ∩ Zd).(1.15)

It is well known (and elementary) that NΩ(t) is asymptotic to td vol(Ω)
as t→∞ and that the error term

EΩ(t) = N (t)− td vol(Ω)(1.16)

is O(td−1). Moreover if ∂Ω has suitable curvature properties then the
error term improves; in particular if the Fourier transform of the surface
measure on the boundary satisfies d̂σ(ξ) = O(|ξ|−α) then the classical
method (see e.g. [11], [13, Theorem 7.7.16], and [24]) yields EΩ(t) =
O(td−1− α

d−α ). This estimate however is not sharp, and several authors
beginning with van der Corput have obtained improvements for the case
of nonvanishing Gauß curvature; see the monographs by Krätzel [18] and
Huxley [14], and in particular the papers by Krätzel and Nowak [20] and
recent improvements by W. Müller [22] for results on general convex
bodies with nonvanishing curvature in higher dimensions. In [24, I],
[25] Randol obtained better estimates for the case of convex domains
in the plane with finite type boundary; these are sharp for Ω = {x :
xk1 + xk2 ≤ 1} where k ≥ 4 is even. See also [23] for more refined results.
Generalizations to domains of the form Ω = {x : xk1 + · · ·+ xkd ≤ 1} are
in [24, II], [19].

Here we give a version for general convex bodies with finite type
boundary in higher dimensions. Let ν(P ) = ν1(P ) and ν2(P ) as in
(1.13) above.
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Theorem 1.3. Let

ν = min
P∈∂Ω

ν(P ), µ =
1
2

+ min
P∈∂Ω

ν2(P ).

Then there is a constant C depending on Ω so that

|EΩ(t)| ≤ CΩ(1 + td−1−ν + td−1− µ
d−µ ).(1.17)

Specifically, if Γ is the set of all points P ∈ ∂Ω at which all principal
curvatures vanish then

EΩ(t) =
∑
P∈Γ

td−1−ν(P )GP (t) + O(td−1− µ
d−µ )(1.18)

where GP (t) is bounded as t→∞. If the normal line determined by nP
coincides with Rei for some i ∈ {1, . . . , d} then lim supt→∞ |GP (t)| > 0.

We note that the number µ/(d − µ) is greater then (2d − 1)−1 since
µ > 1/2. In particular if the Gauß curvature only vanishes at one
point at the surface and if ν < µ/(d − µ), then there is A ∈ SO(d) so
that lim supt→∞ tν−d+1|EAΩ(t)| is positive (for other model cases com-
pare [19], [23]). (1.18) over P ∈ Γ is finite since Γ is a discrete subset
of ∂Ω (as noted in [16], cf. the proof of Lemma 2.2 below). We remark
that it is well known that for almost all rotations A ∈ SO(d) the error
terms EAΩ(t) improve, see [5], [31], [32], [23], [15], and [2].

We shall derive the estimate for the Fourier transform in Proposi-
tion 1.2 in the next section. Section 3 contains the application to the
lattice point problem. In Section 4 and Section 5 we prove results on
Bochner-Riesz multipliers; here we first consider the case of one non-
vanishing principal curvature and then in Section 5 the case of convex
domains.

Notation. Given two quantities A, B we write A � B if there is an
absolute positive constant C so that A ≤ CB. We write A ≈ B if
A � B and B � A.

Acknowledgement. We thank the referee for pointing out some mis-
prints and for making a suggestion concerning the exposition.

2. An estimate for Fourier transforms of surface carried
measures

We begin by reviewing some facts about classes of convex functions
in [3], [26], [16], [17].

Let BT ⊂ Rn denote the open ball of radius T centered at 0; it is
always assumed that T ≤ 1.
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Fix a flag V of subspaces 0 = Vk � · · · � V0 of Ed−1, with V0 =
Ed−1, and let m = (m1, . . . ,mk) be a k-tuple of even positive inte-
gers with m1 < · · · < mk. For 0 < b ≤ M , N ∈ Z+, N > mk, let
S

d−1
T (b,M,V,m,N) be the class of all CN (BT ) functions g with the

property that

g(0) = ∇g(0) = 0

d2

(dt)2
g(x + tθ)

∣∣
t=0

≥ 0 for all θ ∈ Sd−2, x ∈ BT

max
2≤j≤ml

∣∣∣∣∣
(
d

dt

)j

g(x + tθ)
∣∣
t=0

∣∣∣∣∣ ≥ b for all θ ∈ Sd−2 ∩ Vl−1, x ∈ BT

max
|α|≤N

∣∣∣∣( ∂

∂x

)α

g(x)
∣∣∣∣ ≤M for all x ∈ BT .

(2.1)

Here Sd−2 denotes the unit sphere in Ed. We also define a(V,m) =
(a1(V,m), . . . , al(V,m)) by

ai(V,m)=mj(V,m) if d−1−dim Vj−1 < i ≤ d− 1− dim Vj ,(2.2)

in analogy to (1.7).
Now if P ∈ Σ (with Σ = ∂Ω as in the introduction) and Ed−1 = TPΣ

then let Vj = S
mj

P ⊂ TPΣ as in (1.5). Let Φ be as in (1.8). Then there is
T > 0 and a neigborhood U of 0 so that for all w ∈ U the functions y �→
Φ(w+ y)−Ψ(w)− 〈y,∇wΦ(w)〉 belong to Sn

T (b,M,V,m,N); moreover
there are positive constants c0, C0, C1 so that

B(w, δ) = {y : |Φ(y)− Φ(w)− 〈∇wΦ(w), y − w〉| ≤ δ}(2.3)

belongs to BT if δ ≤ c0T
mk and satisfies

meas(B(w, δ)) ≤ Cδν ;(2.4)

see Proposition 2.1 in [17].

Lemma 2.1. Suppose that Φ ∈ S
d−1
T (b,M,V,m,N) and suppose that

a = (a1, . . . , ad−1) is the multitype at the origin. Let Ψw(y) = Φ(y) −
Φ(w) − 〈∇wΦ(w), y − w〉 and let a(w) = (a1(w), . . . , ad−1(w)) be the
multitype of Ψw at the origin. Then there is a neighborhood U of the
origin so that ai(w) ≤ ai for i = 1, . . . , d− 1 and all w ∈ U .
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Proof: Let Smi be as in (1.5) and let 6 > dimSmi . Recall that Sn =
Smj−1 for mj < n ≤ mj−1. Using continuity and compactness arguments
together with the definition of the spaces Smi we see that there is a
neighborhood U ⊂ Ũ of the origin so that for every w ∈ Ũ , every y ∈ U
and every 6-tuple of orthonormal vectors {u1, . . . , u�}

�∑
i=1

∑
s≤mj

∣∣(〈ui,∇y〉)sΨw(y)
∣∣ ≥ b0 > 0.(2.5)

The result of the lemma follows quickly from the definition of the mul-
titype.

We now let Σ denote the graph of Φ. On T0Σ = Rd−1 we define a
nonisotropic distance function ρ by

ρ(y) =
k∑

j=1

|Πjy|mj ;(2.6)

note that that the unit ball for ρ∗ in (1.11) is the polar set for the unit
ball for ρ.

The following lemma gives an improvement of estimates in [16] and
[17]. A rescaling argument is used as in those papers; the present im-
provement is obtained using a more careful argument for the rescaled
pieces.

Lemma 2.2. Let Φ be a convex smooth function defined in a neighbor-
hood of the origin in Rd−1, so that Φ(0) = ∇Φ(0) = 0. Let V be the
flag of subspaces {Smj} defined as in (1.5). Let a be the multitype of
Φ near 0, B(w, δ) as in (2.3) and ρ as in (2.6). Let ν =

∑d−1
i=1 a−1

i ,
ν2 =

∑d−1
i=2 a−1

i .
Then there is a neighborhood U of the origin and δ0 > 0 so that for

all 0 < δ ≤ δ0 and all w ∈ U

meas(B(w, δ)) ≤ Cδα[ρ(w)]ν−α, ν ≤ α ≤ 1
2

+ ν2.

Proof: We may assume that a1 > 2 since otherwise the theorem follows
already from the estimate (2.4). Let {u1, . . . , ud−1} an orthonormal basis
of Rd−1 so that

Smj = span{ui, d− 1− dimSmj < i ≤ d− 1}(2.7)

for j = 0, . . . , k−1. By performing a rotation we may assume that the ui
are the standard coordinate vectors.



Two Problems Associated with Convex Domains 161

Define dilations At by

Atx = (t
1

a1 x, . . . , t
1

ad−1 x).(2.8)

According to [26], [16] we may split

Φ(x) = Q(x) + R(x)

where Q is a convex polynomial satisfying

Q(Atx) = tQ(x)(2.9)

and

0 < |Q(x)| ≤ C1|x||∇Q(x)| ≤ C2|x|2
∑
i,j

∣∣∣∣ ∂2Q

∂xi∂xj
(x)

∣∣∣∣ ,(2.10)

and the remainder term R satisfies∣∣∣∣s−1 ∂
|α|

∂xα
(
R(Asx)

)∣∣∣∣ � s1/m(2.11)

for |x| ≤ T and all multiindices α = (α1, . . . , αd−1) with |α| ≤ N . Since
Q is positive away from the origin and homogeneous with respect to
dilations (At) we have that

Q(y) ≈ ρ(y)

where ρ is as in (2.6); in fact ρ(y) ≈∑d−1
i=1 |〈y, ui〉|ai .

Set Φ�(y) = 2�Φ(A2−�y) and note that Φ�(y) = Q(y) + R�(y), where
R� and its derivatives tend to zero uniformly on compact sets, as 6→∞.

Denote by a(w) = (a1(w), . . . , ad−1(w)) the multitype of Q at w.
Then a(0) = a and by Lemma 2.1 there is M > 0 so that ai(w) ≤ ai for
0 ≤ ρ(w) ≤ 2−M+2 and, by (2.10/11), a1(w) = 2 for 0 < ρ(w) ≤ 2−M+2;
note that nothing is said about the position of the spaces Sm(w). Now
for any point w there is an open ball U(w) of radius T (w)/4 and a
flag V(w) consisting of l(w) nested subspaces and an l(w)-tuple m(w)
so that for x ∈ U(w) the functions

h �→ Qx(h) = Q(x + h)−Q(x)− 〈∇Q(x), h〉
belong to a class S

d−1
T (w)(b(w),M(w),V(w),m(w), N) so that ai(V(w),

m(w)) ≥ ai and a1(V(w),m(w)) = 2.
By the metric property of the nonisotropic balls B(w, δ) there are

constants C2 � C1 � 1 and δ1 � 1 so that

B(y, δ) ⊂ {x : C−1
1 ρ(y) ≤ ρ(x) ≤ C1ρ(y)} if ρ(y) ≥ C2δ;(2.12)

we may assume that C1 ≥ 22M+4.
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We shall now show that there are constants c0 > 0, C0 > 1 so that
for 2−� ≤ c0

(2.13) |B(y, δ)| ≤ δα2�(α−ν) if 2−l−M ≤ ρ(y) ≤ 2−l−M+1,

δ ≤ C−1
0 2−M−�, 0 ≤ α ≤ ν2 +

1
2
.

Let

W = {y : C−2
1 2−M−2 ≤ ρ(y) ≤ C−1

1 2−M+2}(2.14)

which because of C1 ≥ 22M+4 is contained in the open ball of radius 2−M

centered at the origin. We may cover the compact annulus W by finitely
many open balls Ui with center wi ∈ W and radius T (wi)/4 so that
Qx ∈ S

d−1
T (wi)

(b(wi),M(wi),V(wi),m(wi), N) provided that |x − wi| ≤
T (wi)/2.

Since Φ� converges to Q in the CN -topology uniformly on compact
sets, there is a positive constant c0 so that for 2−� ≤ c0 the functions

h �→ Φ�(x + h)− Φ�(x)− 〈∇Φ�(x), h〉(2.15)

belong to S
d−1
T (wi)

( b(wi)
2 , 2M(wi),V(wi),m(wi), N) if |x−wi| ≤ T (wi)/2.

By the finite type property there is a δ0 > 0 so that for γ ≤ δ0 and
x ∈ Ui the caps

W�(x, γ) ⊂ {z : |Φ�(z)− Φ�(x)− 〈∇Φ�(x), z − x〉| ≤ γ}

are contained in the double of Ui; moreover we have

|W�(x, γ)| ≤ Cγ
1
2+ν2 , γ ≤ δ0,(2.16)

by the analogue of (2.4) with exponent 1/2 + ν2; here C is independent
of 6.

Now in order to show that (2.13) holds we assume that C−1
1 2−l−M ≤

ρ(y) ≤ C−1
1 2−l−M+1 and observe that the image of B(y, δ) under the

linear transformation A2� is W�(A2�y, 2�δ) which is contained in W ,
in fact in a Ui if 2�δ ≤ δ0. Since detA2� = 2�ν we have |B(y, δ)| �
2−�ν |W�(A2�y, 2�δ)| and (2.13) follows.

Finally if δ ≤ C−1
0 2−M−� we use |B(y, δ)| = O(δν) instead and observe

that in this range δα2�(α−ν) � δν , provided that α ≥ ν. This together
with (2.13) proves the asserted statement.
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Lemma 2.3. Let Φ, V, a, U be as in Lemma 2.2, N > d + ad−1. For
ξ ∈ Rd define

F (ξ) =
∫

χ(y)e−ı(〈ξ′,y〉+ξdΦ(y)) dy.

There is a neighborhood Ũ ⊂ U of the origin and a conic neighborhood V
of ed so that for ξ ∈ V

|F (ξ)|≤C‖χ‖CN |ξ|−α

∑
j

[
Πjξ

|ξd|

] mj
mj−1

ν−α

, ν≤α≤ 1
2

+ ν2.(2.17)

Proof: We may assume that (2.7) holds and that the ui’s form the stan-
dard basis in Rd−1. Observe that then∑

j

|Πjη|
mj

mj−1 ≈
d−1∑
i=1

|ξi|a
′
i

with a′i = ai/(ai − 1).
Assume that s/2 ≤ ρ(x) ≤ 2s and s is small. Then |A1/sx| ≈ 1 and

|Qxi
(A1/sx)| ≤ C. But Qxi

(A1/sx) = s−1+1/aiQxi
(x) so that |Qxi

(x)| �
s
1− 1

ai . Similarly by (2.11) the remainder term Rxi satisfies the same
estimate so that

|Φxi(x)| �
(
d−1∑
k=1

|xk|ak

)1− 1
ai

for small x and therefore
d−1∑
i=1

|Φxi
(x)|a′

i �
d−1∑
k=1

|xk|ak .

Now let x(ξ) be the unique point at which ξ is normal to the graph of Φ.
By the Bruna-Nagel-Wainger estimate for the Fourier transform (1.4)
and Lemma 2.2 we have that

|F (ξ)| � |ξ|−αρ(x(ξ))ν−α

and since x(ξ) is determined by ξi/ξd = ±Φxi(x(ξ)) for i = 1, . . . , d− 1,
the estimate (2.17) follows.

3. Lattice point estimates

In this section we prove Theorem 1.3. We use a variant of the classical
proof (see [24] for the two-dimensional case). Choose ζ ∈ C∞

0 (Rd) so
that ζ is nonnegative, ζ(x) = 0 if |x| ≥ 1, and

∫
ζ(x) dx = 1. Define
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ζε(x) = ε−dζ(ε−1x). We work with the ε-regularization χΩ ∗ ζε of the
characteristic function of Ω and define

Nε(t) =
∑
k∈Zd

χtΩ ∗ ζεt(k).

By the Poisson summation formula

Nε(t) =
∑
k∈Zd

tdχ̂Ω(2πtk)ζ̂(2πεtk)

= td vol(Ω) +Rε(t)

(3.1)

where
Rε(t) =

∑
k �=0

tdχ̂Ω(2πtk)ζ̂(2πεtk).

By the divergence theorem

χ̂Ω(ξ) =
∫

Ω

e−ı〈x,ξ〉 dx = ı

d∑
i=1

ξi
|ξ|2Fi(ξ)(3.2)

where

Fi(ξ) =
∫

Σ

ni(y)e−ı〈y,ξ〉 dσ(y)(3.3)

and ni denotes the ith component of the outer normal vector nP .
Let Γ be the set of points P ∈ Σ at which all principal curvatures

vanish. As noticed in [16] it follows from (2.10/11) that the set Γ is
discrete, thus finite by compactness. For every P ∈ Γ we choose a
narrow conic symmetric neighborhood VP of the normals {±nP }, a small
neighborhood UP of P in Σ, and a C∞

0 function χP whose restriction
to Σ vanishes off U and so that χP equals one in a neighborhood of P .
We may arrange these neighborhoods so that the sets V P ∩{ξ : |ξ| ≥ 1},
P ∈ Γ are pairwise disjoint, and that the normals to all points in a
neighborhood of UP are contained in VP (thus the UP ’s are disjoint
too).

Define

Fi,P (ξ) =
∫

Σ

χP (y)ni(y)e−ı〈y,ξ〉 dσ(y).

If the cones VP are chosen sufficiently narrow, we have

Fi,P (ξ) �

min{|ξ|−ν(P ), ξ−( 1
2+ν2(P ))}ΘP ( ΠP ξ

〈nP ,ξ〉 ) if ξ ∈ VP

CN |ξ|−N if ξ /∈ VP .
(3.4)
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The estimate for ξ ∈ VP follows from Proposition 1.2, and the estimate
for ξ /∈ VP follows by a simple integration by parts; namely if t �→ γ(t)
parametrizes Σ near P then |〈γ′(t), ξ〉| ≈ |ξ| for γ(t) ∈ UP and ξ /∈ VP .

Moreover by the Bruna-Nagel-Wainger estimate we have∣∣∣∣∣Fi(ξ)− ∑
P∈Γ

Fi,P (ξ)

∣∣∣∣∣ � |ξ|−µ, µ =
1
2

+ inf
P∈Σ

ν2(P );(3.5)

here we used the definition of Γ and the fact that χP equals one near P .
We now estimate the remainder term Rε(t) where ε � 1/t will be

suitably chosen. Let dist∞ denote the distance taken with respect to the
6∞ metric in Rd, or Zd. For P ∈ Γ let

AP = {k ∈ VP ∩ Zd : k != 0, dist∞(k,RnP ) ≤ 3/4}

BP = {k ∈ VP ∩ Zd : k != 0, dist∞(k,RnP ) > 3/4}

C = {k ∈ Zd : k != 0, k /∈ ∪P∈ΓVP }.

Let

A
i
P (t) =

∑
k∈AP

tdζ̂(2πεtk)
2πki
|2πk|2Fi,P (2πtk)

B
i
P (t) =

∑
k∈BP

tdζ̂(2πεtk)
2πki
|2πk|2Fi,P (2πtk)

C
i
P (t) =

∑
k∈C

tdζ̂(2πεtk)
2πki
|2πk|2Fi,P (2πtk)

D
i(t) =

∑
k �=0

tdζ̂(2πεtk)
2πki
|2πk|2

(
Fi(2πtk)−

∑
P∈Γ

Fi,P (2πtk)

)

then

Rε(t) =
d∑

i=1

(
D

i(t) +
∑
P∈Γ

(Ai
P (t) + B

i
P (t) + C

i
P (t))

)
.(3.6)

When evaluating Ai
P we essentially sum over integers in a tubular

neighborhood of a line and by the estimate (2.4) we certainly get

|Ai
P (t)| �

∑
k∈AP

td|tk|−1−ν � td−1−ν .(3.7)
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Next for the estimation of Di
P we use the rapid decay estimate in (3.4)

to obtain

|Di
P (t)| �

∑
k �=0

td|tk|−N � td−N(3.8)

and for Ci
P we use (3.5) which yields

|Ci
P (t)| � CN

∑
k �=0

td(1 + |εtk|)−N (1 + |tk|)−µ−1 � εµ+1−d.(3.9)

Finally

|Bi
P (t)| �

∑
k �=0
k∈VP

td|tk|− 3
2−ν2(P )ΘP

(
ΠP k

〈k,nP 〉

)
(1 + |εtk|)−N

and we claim that for λ ≥ 1

(3.10)
∑
|k|≈λ
k∈VP

td|tk|− 3
2−ν2(P )ΘP

(
ΠP k

〈k,nP 〉

)
(1 + |εtk|)−N

� λd−
3
2−ν2(P ) min{1, (λεt)−N}

which implies

|Bi
P (t)| � ε

3
2+ν2(P )−d � ε−(d−1−µ).(3.11)

We verify (3.10). Let a = a(P ) be the multitype at P . In view of
dist(k,RnP ) ≥ 3/4 it is straightforward to check that

ΘP

(
ΠP k

〈k,nP 〉

)
≈ ΘP

(
ΠP ξ

〈ξ,nP 〉

)
if |ξ − k|∞ ≤ 1/2, k ∈ BP .

Thus we may replace the sum in (3.10) by an integral. After performing
a suitable rotation in this integral we have to show that

(3.12)
∫
|ξd|≈λ

∫
|ξ′|≤λ

|ξ|−3/2−ν2(P )

(
d−1∑
i=1

|ξi|a
′
i

|ξ|a′
i

)ν−ν2(P )− 1
2

dξ′ dξd

� λd−
3
2−ν2(P ).

Now (
∑d−1

i=1 (|ξi|/|ξ|)a
′
i)ν−ν2− 1

2 � (|ξ1|/|λ|)a
′
1(1/a1−1/2) with a′1(1/a1 −

1/2) > −1, and therefore the integral in (3.12) is bounded by

λd−1−3/2−ν2(P )

∫
|ξ1|≤λ

(|ξ1|/|λ|)a
′
1(1/a1−1/2) dξ1 � λd−3/2−ν2(P ).

This shows (3.10).
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To finish the proof we note that

Nε(t(1− Cε)) ≤ NΩ(t) ≤ Nε(t(1 + Cε))

where C is a constant depending only on the geometry of Ω. Thus, by
taking into account the leading term in (3.1) we see that

EΩ(t) � (td−1−ν + tdε + ε−(d−1−µ))

and the desired estimate follows if we choose ε = t−d/(d−µ). This com-
pletes the proof of (1.17).

Lower bounds: To show (1.18) we work with our choice ε = ε(t) =
t−d/(d−µ). For (1.18) we simply set

GP (t) =
d∑

i=1

tν(P )−d−1
A
i
P (t)

which we already showed to be bounded above. However we have to
verify the claim that lim supt∈∞ |GP (t)| > 0 in the case where nP = ±ei.

We now assume that nP = ei (the case nP = −ei is handled in the
same way). Then define

GP (t)

= tν(P )+1−d
∑

κ∈Z\{0}
(2π)−1tdζ̂(2πt−µ/(d−µ)κei) sign(κ)|κ|−1Fi,P (2πtκei).

We split this sum into parts GP (t) = I(t) + II(t) where

IP (t)

=(2π)−1tν(P )+1
∑

κ∈Z\{0}
sign(κ)|κ|−1Fi,P (2πtκei)

IIP (t)

=(2π)−1tν(P )+1
∑

κ∈Z\{0}
(1− ζ̂(2πt−µ/(d−µ)κei)) sign(κ)|κ|−1Fi,P (2πtκei).

For the estimation of II we note that |(1 − ζ̂(2πt−µ/(d−µ)κei))| �
min{1, t−µ/(d−µ)κ} with and since Fi,P (2πtκei) = O((tκ)−ν) we get the
estimate

|II(t)| � t−
µ

d−µ .

To examine I(t) we parametrize by our assumption on nP = ei.

Fi,P (2πtκei) = e−ıκ〈P,ei〉
∫
y′∈Rd−1

χ0(y′)(1 + |∇Φ(y′)|2)1/2eıκΦ(y′) dy′
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where Φ ≡ ΦP is convex, vanishes of second order at the origin of Rd−1

and has multitype a(P ) there; χ0 is smooth, compactly supported and
equal to one in a neighborhood of the origin. By the convexity 〈P, nP 〉 =
〈P, ei〉 != 0. To examine the integral we may use an asymptotic expansion
derived in [26] (stated there for κ→∞, but the statement for κ→ −∞
follows similarly). We obtain

Fi,P (2πtκei) = e−2πıtκ〈P,ei〉κ−νc0(P )e
πi
2ν sign(κ) + O(κ−ν−η)

where c0(P ) > 0 and η is the reciprocal of the least common multiple of
a1, . . . , an. Thus

I(t) = c0(P )π−1
∑
κ>0

|κ|−ν−1 sin
(
2πκt〈P, ei〉 − π/(2ν)

)
+ O(κ−ν−1−η).

The sum defines a periodic function which is not identically zero, by
the uniqueness theorem for Fourier series. Combining this with the es-
timation for the error term II(t) we see that lim supt→∞ |GP (t)| > 0.

Remark. For almost all rotations the estimates for the error term im-
prove. There is r > 2 so that

|EAΩ(t)| ≤ C(A)td−1− d−1
d+1 log1/r(2 + t)

(indeed C is in Lq(SO(d)) for q < r). As in [2] this is proved using a
result on the maximal function

M(θ) = sup
r>0

r(d+1)/2|χ̂Ω(rθ)|

which was shown by Svensson [30] to be in Lq0(Sd−1) for some q0 > 2
(under our assumption of finite line type, see also [25] for a similar
result with additional real analyticity assumption). Indeed, letRε,A(t) =∑

k �=0 χΩ(2πtAk)ζ̂(2πεtk) and

Mj(A) = sup
2j≤t≤2j+1

|Rεj ,A(t)|, with εj = 2−2jd/(d+1)

then for q ≤ q0

‖Mj‖Lq(SO(d)) ≤ 2jd
∑
k �=0

(1 + |εj2j |k|)−N (2j |k|)−(d+1)/2

×
(∫

|M(A k
|k| )|

qdA

)1/q

� 2j(d−1− d−1
d+1 )‖M‖Lq(Sd−1)
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by the (standard) choice of εj . But

|EAΩ(t)|t−(d−1− d−1
d+1 ) log−1/r(2 + t)

� 1 +

∑
j>0

|Mj(A)2−j(d−1− d−1
d+1 )(1 + j)−1/r|q

1/q

which is in Lq(SO(d)) for r < q0.
We remark that the methods in W. Müller’s paper [22] could be

used to improve the above bound to |EAΩ(t)| ≤ C(A)td−1− d−1
d+1−β where

β = β(Ω) > 0 and C is finite almost everywhere.

4. Bochner-Riesz multipliers - the case of one
nonvanishing principal curvature

In this section we shall prove a general theorem concerning multipliers
of Bochner-Riesz type associated to surfaces with at least one nonvan-
ishing principal curvature. Then, in the subsequent section, we shall
deduce Theorem 1.1 by rescaling arguments.

In what follows Mp will be the space of Fourier multipliers on Lp(Rd);
‖m‖Mp

is the operator norm of the operator Tm defined by T̂mf(ξ) =
m(ξ)f̂(ξ).

We split variables in Rd as ξ = (ξ̃, ξd) and in the statement of the
proposition we further split ξ̃ = (ξ1, ξ′) ∈ R × Rd−2. The proof of the
following result uses the ideas from the two-dimensional case, see [9], [6].

Proposition 4.1. Let ε > 0, N ≥ d + 1 + 2/ε, and let g ∈ CN (Rd−1).
Suppose that there is a cube U centered at the origin and a > 0 so that

∂2g

∂ξ2
1

(ξ1, ξ′) ≥ a

in U . Let χ be supported in U and let φ be a smooth function supported
in (1/2, 2). Let 0 < δ � 1 and

mδ(ξ) = χ(ξ)φ(δ−1(ξd − g(ξ1, ξ′))).

Then
‖mδ‖M4 ≤ Cεδ

− d−2
4 −ε,

where Cε depends only on a, ε, U , the CN (U) norms of the functions g,
χ and the Cd+1 norm of φ.
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Proof: We may assume that U is the unit cube, and that the support
of χ has small diameter. We decompose mδ =

∑
kmδ,k where k =

(k2, . . . , kd−1) ranges over (d− 2)-tuples of integers ki ≤ Cδ−1/2 and

mδ,k(ξ) = mδ(ξ)
d−1∏
i=2

ψ(δ−1/2ξi − ki)

for suitable ψ ∈ C∞
0 satisfying

∑∞
n=−∞ ψ(s − n) = 1, so that suppψ ⊂

[−1, 1]. Let ψ̃ ∈ C∞
0 ([−2, 2]) so that ψ̃ is equal to 1 on the support of ψ.

Denote by Tk the convolution operator with Fourier multiplier mδ,k

and by Rk the convolution operator with Fourier multiplier ψ̃(δ−1/2ξ′−
k). Note that ‖Rk‖Lp→Lp ≤ C, 1 ≤ p ≤ ∞. Then for 2 ≤ p ≤ ∞∥∥∥∥∥∑

k

Rkgk

∥∥∥∥∥
p

�
(∑

k

∥∥gk∥∥p′p
)1/p′

which follows for p = ∞ from Minkowski’s inequality and for p = 2 by
orthogonality; for 2 < p <∞ one uses interpolation. Since Tk = RkTkRk

it follows that∥∥∥∥∥∑
k

Tk

∥∥∥∥∥
L4→L4

≤ Cδ−(d−2)/4 sup
k
‖Tk‖L4→L4

and therefore it suffices to show that

‖Tk‖L4→L4 � δ−ε.(4.1)

The estimate (4.1) is proved using arguments in [6] which we will
sketch. For ν∈Z we define operators Tk,ν and Sν by Ŝνf(ξ)= ψ̃(δ−1/2ξ1−
ν) and T̂k,νf(ξ) = ψ(δ−1/2ξ1 − ν)T̂kf(ξ). Then Tk =

∑
ν Tk,νSνf where

the sum is extended over integers ν with |ν| � δ−1/2 since we assume
that the support of χ is small.

Now∥∥∥∥∥∑
ν

Tk,νSνf

∥∥∥∥∥
2

4

=

∥∥∥∥∥∥
∑
ν,ν′

(Tk,νSνf)(Tk,ν′Sν′f)

∥∥∥∥∥∥
2

≤
∑

�:2�δ1/2�1

∥∥∥∥∥∥∥∥∥
∑

(ν,ν′):

|ν−ν′|≈2�

(Tk,νSνf)(Tk,ν′Sν′f)

∥∥∥∥∥∥∥∥∥
2

.

(4.2)



Two Problems Associated with Convex Domains 171

It can be checked that the family of functions (Tk,νSνf)(Tk,ν′Sν′f) has
an orthogonality property which implies that∥∥∥∥∥∥∥∥∥

∑
(ν,ν′)

|ν−ν′|≈2�

(Tk,νSνf)(Tk,ν′Sν′f)

∥∥∥∥∥∥∥∥∥
2

�

∥∥∥∥∥∥
(∑

ν

|Tk,νSνf |2
)1/2

∥∥∥∥∥∥
2

4

.(4.3)

The proof of (4.3) is based on an idea of C. Fefferman [9]; in higher
dimensions one uses the following

Lemma 4.2. Suppose that a′ ∈ Rd−2, |a′| � 1, and the vectors ξ̃, η̃, ζ̃,
ω̃ satisfy

(i) ξ + η − ζ̃ − ω̃ = 0,
(ii) ξ1 > ζ1 > 0, η1 < ω1 < 0,
(iii) |ξ̃|, |η̃|, |ζ̃|, |ω̃| ∈ [2�−1δ1/2, 2�+1δ1/2],
(iv) ξ′, η′, ζ ′ and ω′ belong to the cube of sidelength 4δ1/2 centered

at a′.

Then

g(ξ̃) + g(η̃)− g(ζ̃)− g(ω̃) ≥ c2�δ1/2
(
|ξ1 − ζ1|+ |η1 − ω1|

)
.(4.4)

In (4.4), c depends only on the lower bound of gξ1ξ1 and the C4 norm
of g in suppχ.

Sketch of Proof: A Taylor expansion about the origin yields

g(ξ̃) + g(η̃)− g(ζ̃)− g(ω̃) = I + II + III + IV

where

I=
1
2
gξ1ξ1(0)(ξ2

1 + η2
1 − ζ2

1 − ω2
1)

II=
1
2
(
ξ1〈gξ1ξ′(0), ξ′〉+η1〈gξ1ξ′(0), η′〉−ζ1〈gξ1ξ′(0), ζ ′〉−ω1〈gξ1ξ′(0), ω′〉

)
III=

1
2
(
〈ξ′, gξ′ξ′(0)ξ′〉+〈η′, gξ′ξ′(0)η′〉−〈ζ ′, gξ′ξ′(0)ζ ′〉−〈ω′, gξ′ξ′(0)ω′〉

)
IV =r(ξ̃) + r(η̃)− r(ζ̃)− r(ω̃)
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where r vanishes of third order at the origin. (4.4) is proved by verifying

I ≈ 2�δ1/2(|ξ1 − ζ1|+ |η1 − ω1|)

II ≤ C2�δ

III ≤ Cδ

IV ≤ C22�δ(|ξ1 − ζ1|+ |η1 − ω1|).
The straightforward calculation is omitted; we note that formula (6.30)
in [21] turns out to be useful in order to carry it out.

Proof of Proposition 2.1, cont.: By (4.3) it remains to show that∥∥∥∥∥∥
(∑

ν

|Tk,νSνf |2
)1/2

∥∥∥∥∥∥
4

� δ−ε‖f‖4.(4.5)

Let Γk(t) = (−∇
ξ̃
g(t, δ1/2k), 1) which gives a one parameter family

of vectors normal to Σρ.
For σ ≥ 2 let Rk,σ be the set of all cylinders whose base is a d − 2

dimensional ball of radius s and whose height is σs (any s > 0), so that
the axis is parallel to Γk(t) for some |t| ≤ 1.

Define the maximal function

Mk,σf(x) = sup
x∈R

R∈Rk,σ

1
|R|

∫
R

|f(y)| dy.

Then arguing as in [6] and using standard estimates for the kernel of
Tk,ν we see that∫ ∑

ν

|Tk,νSνf(x)|2w(x) dx �
∫ ∑

ν

|Sνf(x)|2Mk,δ−1/2w(x) dx.

The Lp norm of (
∑

ν |Sνf |2)1/2 is bounded by the Lp norm of f , for
p ≥ 2 (see [6]) and therefore we can finish our proof by using duality
and showing that

‖Mk,σf‖2 ≤ Cεσ
ε‖f‖2(4.6)

uniformly in k.
If we knew that for every ξ the function t �→ 〈ξ,Γk(t)〉 changed sign

at most M times then it would follow from a result by Córdoba [7] that
(4.6) holds with σε replaced by C1M [log σ]C2 . This hypothesis may not
be satisfied, but we can get around this point by a simple approxima-
tion. Namely, divide [−1, 1] into σε/2 intervals [aj , bj ] of lengths σ−ε/2.
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Let Pk,j(t) be the vector valued Taylor polynomial of degree [2/ε] of
∇

ξ̃
g(·, δ1/2k) expanded about aj , and let Γk,j(t) = (−Pk,j(1), 1). Then

|Γk(t)− Γk,j(t)| ≤ Cσ−1 for t ∈ [aj , bj ].
Let Rk,σ,j be the set of all cylinders whose base is a d−2-dimensional

ball of radius s whose height is σs, so that the axis is parallel to Γk,j(t)
for some |t| ≤ 1. If Mk,σ,j denotes the associated maximal operator then
it is immediate that Mk,σf ≤

∑
j Mk,σ,jf where the sum contains only

O(σε/2) terms. Córdoba’s result yields the L2 bound Cε[log σ]C2 for each
Mk,σ,j . This finishes the proof of (4.6).

5. Proof of Theorem 1.1

The L1 version of the theorem is well known, and therefore by an
interpolation argument one has to show the boundedness on L4/3(Rd),
or, equivalently, on L4(Rd).

We split (1 − ρ(ξ))λ+ = h0(ρ(ξ)) + h1(ρ(ξ)) where h0 is supported in
{t : t ≤ 1−ε0} for suitable small ε0 and h1 is supported in {t : t > 1−2ε0}.
Then h0(ρ(ξ)) is a Fourier multiplier in M1; the mild singularity at
the origin can be handled e.g. by an averaging argument in [8, p. 248],
replacing ρ by ρN for large N .

Let ξ0 ∈ Σρ. It suffices to show that there exists a neighborhood V
of ξ0 (in Rd) so that h1(ρ(ξ))χ̃ is a multiplier on Rd for λ > (d − 2)/4
if χ̃ ∈ C∞ and supported in V . The multiplier norm is invariant under
rotations and we may assume that Σρ can be parametrized as a graph
ξd = G(ξ̃), ξ̃ ∈ Rd−1 near ξ0, so that ρ(ξ) < 1 if ξd > G(ξ̃). We write

χ(ξ)h1(ρ(ξ)) = χ(ξ)H(ξ)(ξd −G(ξ̃))λ+ where H(ξ) =

(
1− ρ(ξ)

ξd −G(ξ̃)

)λ

.

A Taylor expansion of ρ about ξd = G(ξ̃) shows that H is smooth on
suppχ; therefore by the algebra property of Mp it suffices to show that
χ̃(ξ)(ξd −G(ξ1, ξ′))λ+ belongs to M4 if supp χ̃ is sufficiently close to ξ0.

Let a = (a1, . . . , ad−1) be the multitype of Σρ at ξ0, in the sense of
Subsection 1.2. By an affine transformation we may assume that ξ0 = 0,
G(0) = ∇G(0) = 0, and that G = Q + R where Q and R are as in
the proof of Lemma 2.2: The function Q is mixed homogeneous of de-
gree (a1, . . . , ad−1), i.e. if As(ξ̃) = (s

1
a1 ξ1, . . . , s

1
ad−1 ξd−1) then Q satisfies

Q(As(ξ̃)) = sQ(ξ̃). The remainder term R satisfies
∣∣∣s−1 ∂|α|

∂ξα

(
R(Asξ̃)

)∣∣∣ ≤
CM,Ns

1/m for small x and s and all multiindices α = (α1, . . . , αd−1) with
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|α| ≤ N . In particular |R(ξ̃)| ≤ Q(ξ̃)/10 if Q(ξ̃) ≤ 2−r0+2 for suitably
large r0.

Next we set Rr(ξ̃) = 2rR(A2−r ξ̃), so that Gr = Q+Rr tends to G in
the C∞ topology, as r → ∞. Since the Hessian of Q has rank 1 where
1/4 < Q(ξ̃) ≤ 4 (see (2.10)), the same is true for Gr = Q + Rr if r is
large; we may assume that the matrix norm of (Q + Rr)′′ is bounded
below uniformly in r if r ≥ r0.

Let φ1 be supported in (1/2, 2) such that
∑

k≥0 φ1(2ks) = 1 for 0 <
s ≤ 1. Then we have to show a bound for the M4 norm of

κj(ξ) = χ̃(ξ)φ1(2j(ξd −G(ξ1, ξ′)))(ξd −G(ξ1, ξ′))λ+.

Here we may assume that χ̃(ξ) = 0 when Q(ξ̃) ≥ 2−r0 .
We now perform a further decomposition in terms of G(ξ̃). Let η ∈

C∞
0 (R) so that η(s) = 1 if |s| ≤ 1/2 and η(s) = 0 if |s| ≥ 1; also let

η0 = η and for integer r > 0 let ηr(s) = η(2−rs)− η(2−r+1s). Let

κj,n(ξ) = κj(ξ)ηn(2jG(ξ̃))

so that κj,n is supported where |ξd − G(ξ̃)| ≈ 2−j and G(ξ̃) ≈ 2n−j if
n ≥ 0 and G(ξ̃) � 2−j if n = 0. Using the assumption on the support of
the cutoff function χ̃ we see that κj,n = 0 for j ≤ n + r0.

For the pieces κj,n we employ a scaling argument (for a similar argu-
ment in two dimensions see [12]). For the scaling we use the dilations
ξ �→ (A2n−j (ξ̃), 2n−jξd). Define for n > 0

κ̃j,n(ξ̃, ξd) = φ1(2n(ξd −Gj−n(ξ1, ξ′)))(ξd −Gj−n(ξ1, ξ′))λ+η1(Gj−n(ξ̃));

for n = 0 we use the same formula but with η1 replaced by η = η0. Then

κj,n(A2n−j ξ̃, 2n−jξd) = 2(n−j)λχ̃(A2n−j ξ̃, 2n−jξd)κ̃j,n(ξ̃, ξd)

so that

‖κj,n‖Mp
� 2(n−j)λ‖κ̃j,n‖Mp

.

It is now easy to see that the C4 norm of κ̃j,0 is � 2−jλ and κ̃j,0 is
supported in a fixed ball with diameter independent of j.

Therefore

‖κ̃j,0‖Mp � 2−jλ, 1 ≤ p ≤ ∞.
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Note that for j − n ≥ r0 the multipliers κ̃j,n are supported where
1/4 < Q(ξ̃) < 4, and by construction the matrix norm of G′′

j−n is in
this region bounded above and below, for j − n ≥ r0. We may apply
Proposition 4.1 (with δ = 2−n), to see that for 0 < n ≤ j − r0

‖κ̃j,n‖M4 � 2(n−j)λ2−n(λ− d−2
4 )

and the assertion of Theorem 1.1 follows by summing over 0 < n ≤ j−r0,
j > 0.
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