
Chapter 1

Two problems with variational expectation maximisation for

time-series models

Richard Eric Turner and Maneesh Sahani1

1.1 Introduction

Variational methods are a key component of the approximate inference and learning
toolbox. These methods fill an important middle ground, retaining distributional in-
formation about uncertainty in latent variables, unlike maximum a posteriori meth-
ods (MAP), and yet generally requiring less computational time than Monte Carlo
Markov Chain methods. In particular the variational Expectation Maximisation
(vEM) and variational Bayes algorithms, both involving variational optimisation of
a free-energy, are widely used in time-series modelling. Here, we investigate the
success of vEM in simple probabilistic time-series models. First we consider the
inference step of vEM, and show that a consequence of the well-known compact-
ness property of variational inference is a failure to propagate uncertainty in time,
thus limiting the usefulness of the retained distributional information. In particu-
lar, the uncertainty may appear to be smallest precisely when the approximation is
poorest. Second, we consider parameter learning and analytically reveal systematic
biases in the parameters found by vEM. Surprisingly, simpler variational approxi-
mations (such a mean-field) can lead to less bias than more complicated structured
approximations.

1.2 The variational approach

We begin this chapter with a brief theoretical review of variational Expectation
Maximisation algorithm, before illustrating the important concepts with a simple
example in the next section. The vEM algorithm is an approximate version of the
Expectation-Maximisation (EM) algorithm (Dempster, 1977). EM is a standard
approach to finding maximum likelihood (ML) parameters for latent variable mod-
els, including Hidden Markov Models and linear or non-linear State Space Models
(SSMs) for time-series. The relationship between EM and vEM is revealed when
EM is formulated as a variational optimisation of a free-energy (Hathaway, 1986;
Neal and Hinton, 1998). Consider observations collected into a set Y, that depend
on latent variables X and parameters θ. We seek to maximise the likelihood of the
parameters, log p(Y|θ). By introducing a new distribution over the latent variables,

1Gatsby Computational Neuroscience Unit, Alexandra House, 17 Queen Square, London,
WC1N 3A

1



2

q(X), we can form a lower bound on the log-likelihood using Jensen’s inequality,

log p(Y|θ) = log

∫

dX p(Y, X|θ) = log

∫

dX p(Y, X|θ)
q(X)

q(X)
, (1.1)

≥

∫

dX q(X) log
p(Y, X|θ)

q(X)
= F(q(X), θ). (1.2)

The lower bound is called the free-energy. The free-energy is smaller than the log-
likelihood by an amount equal to the Kullback-Leibler (KL) divergence between
q(X) and the posterior distribution of the latent variables, p(X|Y, θ)

F(q(X), θ) =

∫

dX q(X) log
p(X|Y, θ)p(Y|θ)

q(X)
(1.3)

= log p(Y|θ) −

∫

dX q(X) log
q(X)

p(X|Y, θ)
(1.4)

= log p(Y|θ) − KL(q(X)||p(X|Y, θ)). (1.5)

This expression shows that, for fixed θ, the optimum value for q is equal to p(X|Y, θ),
at which point the KL divergence vanishes and the free-energy equals the log-
likelihood. Thus, alternate maximisation of F(q, θ) with respect to q (the E-step)
and θ (the M-step) will eventually find parameters that maximise the likelihood
locally.

The EM algorithm is widely used to find ML parameter estimates, however, in
many models calculation of this posterior is intractable. For example, it is often
impossible to find an analytic form for p(X|Y) because the normalising constant
involves an intractable integral. Another common source of intractability arises in
models in which the number of latent variables is very large. For instance, a model
with K binary latent variables generally requires a posterior distribution over all
2K possible states of those variables. For even moderately large K this results in a
computational intractability.

One possible method of side-stepping these intractabilities is to use the vEM
approach (Jordan et al., 1999) which is to instead optimise q restricted to a class
of distributions Q, within which the minimum of the KL divergence can tractably
be found2

qvEM(X) = arg min
q(X)∈Q

KL(q(X)||p(X|Y, θ)) (1.6)

= arg min
q(X)∈Q

∫

dX q(X) log
q(X)

p(X|Y, θ)
. (1.7)

The optimal q is called the variational approximation to the posterior. Constrained
optimisation of q now alternates with optimisation of θ to find a maximum of the
free-energy, though not necessarily the likelihood. The optimal parameters are taken
to approximate the ML values.

There are two main ways in which q can be restricted to a class of tractable
distributions Q. The first method is to specify a parameteric form for the approxi-
mating distribution, q(X) = qγ(X). A common choice is a Gaussian in which case
the variational parameters, γ, are the mean and the covariance. The E-Step of vEM

2Other variational bounds may also be used in learning (e.g., Jaakkola and Jordan 2000).
However the term variational EM is generally reserved for the free-energy bound that we discuss
in this chapter.
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then amounts to minimising the KL divergence with respect to the parameters of
the approximating distribution,

qvEM = argmin
γ

KL(qγ(X)||p(X|Y, θ)). (1.8)

The second method is to define the class Q to contain all distributions that factor
over disjoint sets Ci of the latent variables in the problem,

q(X) =

I
∏

i=1

qi(xCi
). (1.9)

For example, if each latent variable appears in a factor of it own, the approximation
is called mean-field,

qMF(X) =

I
∏

i=1

qi(xi). (1.10)

Partial factorisations, which keep some of the dependencies between variables are
called structured approximations. Generally, these methods which rely on factored
classes may be more powerful than using a pre-specified parametric form, as the
optimal analytic form of the factors may often be obtained by direct optimisation of
the free-energy. To find this form we solve for the stationary points of a Lagrangian
that combines the free-energy with the constraint that each factor is properly nor-
malised. With respect to a factor qi(xCi

) we have

δ

δqi(xCi
)

(

F(q(X), θ) −

I
∑

i=1

λi

(
∫

dxCi
qi(xCi

) − 1

)

)

= 0, (1.11)

where the λi are the Lagrange multipliers. Taking the functional derivative, and
solving, we obtain

qi(xCi
) ∝ exp

(

〈log p(Y, X|θ)〉Q

j 6=i
qj(xCj

)

)

. (1.12)

This set of equations, one for each factor, may be applied iteratively to increase the
free-energy. The procedure is guaranteed to converge as the free-energy is convex
in each of the factors qi(xCi

) (Boyd and Vandenberghe, 2004).

1.2.1 A motivating example

Let us illustrate the EM and vEM algorithms described in the previous section
by applying them to a simple model. The same example will also then serve to
motivate the problems which are addressed later in this chapter. In the model a
one-dimensional observation y, is generated by adding a zero-mean Gaussian noise
variable with variance σ2

y to a latent variable, x, itself drawn from a zero mean
Gaussian, but with unit variance:

p(x) = Norm(x; 0, 1), and p(y|x, σ2
y) = Norm(y; x, σ2

y). (1.13)

The model may be viewed a very simple form of factor analysis with a one-dimensional
observation and one factor. There is only one parameter to learn: the observation
noise, σ2

y. For tutorial purposes, we consider exact maximum-likelihood learning of
this parameter from a single data-point. In fact, it is a simple matter to calculate
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the likelihood of the observation noise, p(y|σ2
y) = Norm(y; 0, σ2

y + 1), and therefore
this quantity could be optimised directly to find the maximum-likelihood estimate.
However, an alternative approach is to use the EM algorithm. The EM alorithm
begins by initialisating the observation noise. Next, in the E-Step, the approximat-
ing distribution q is updated to the posterior distribution over the latent variables
given the current value of the parameters, that is,

q(x) = p(x|y, σ2
y) = Norm

(

x;
y

1 + σ2
y

,
σ2

y

1 + σ2
y

)

. (1.14)

Then, in the M-Step, the observation noise is updated by maximising the free-
energy with respect to the parameter, which has a closed-form solution, σ2

y = y2 −
2y〈x〉q + 〈x2〉q. The E- and M-Step updates are then iterated, and this amounts to
coordinate ascent of the free-energy (with respect to the distribution and then to
the parameter) as illustrated in the upper left panel of figure 1.1A. Moreover, as
the free-energy is equal to the log-likelihood after each E-Step has been performed
(see figure 1.1B), the algorithm converges to a local optimum of the likelihood.

An alternative to exact ML learning is to use the vEM algorithm to return
approximate ML estimates. This requires the q distribution to be restricted to
a particular class, and as factored approximations are not an option for this one-
dimensional model, a parametric restriction is considered. An instructive constraint
is that the approximating distribution is a Gaussian with a flexible mean, but with a
fixed variance. In the E-Step of vEM, the mean is set to minimise the KL divergence,
which occurs when it is equal to the posterior mean. Therefore,

qµq
(x) = Norm(x; µq, σ

2
q) where µq =

y

1 + σ2
y

and σ2
q = const. (1.15)

The M-Step of vEM is identical to EM, but the expectations are taken with respect
to the new, approximate, distribution. As a result the free-energy is no longer
pinned to the log-likelihood after an E-Step and therefore vEM is not guaranteed
to converge to a local optimum of the likelihood. In fact, for the model considered
here, the vEM estimate is biased away from the maximum in the likelihood, towards
regions of parameter space where the variational bound is tightest (see figure 1.1).
One of the main questions considered in this chapter is what extent such biases are
a general feature of vEM.

1.2.2 Chapter Organisation

The motivating example in the previous section is a simple one, but it indicates
that parameter estimates from EM and vEM can be quite different. However, it is
unclear whether similar biases will arise for more realistic models, and in particular
in those for time-series. Moreover, the example considered in the previous section
involved estimating one parameter from one observation and a complete analysis
should also compare EM and vEM on large data-sets. After all, it is well known
that maximum-likelihood estimators can perform poorly when a large number of
parameters have to be estimated from a small data-set, and so the discrepancy
between EM and vEM noted above is not necessarily concerning. Of particular
interest is the behaviour of vEM in the limit of infinite data. Maximum-likelihood
estimators are often consistent, meaning that they converge to the true parameters
in this limit. Do vEM estimators inherit this property? The motivating example
indicates that a key determinant is the parameter dependence of the tightness of
the free-energy bound, given by KL(q(x)|p(y|x, θ)), and whether this is significant
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Figure 1.1: Schematics of EM and vEM using the model described in the text where the observation
takes the value y = 0.4. A. Top Left: Thin black curves are the contours of the free-energy,
FEM(q, σ2

y) for exact EM as a function of the observation noise (σ2
y , abscissa) and the mean of

the posterior distribution (µq , ordinate). The variance of the approximating distribution, σ2
q is

set to the optimal value at each point. The thick grey line indicates the optimal choice for µq ie.
the mean of the posterior distribution p(x|y, σ2

y). Ten updates using the EM algorithm are shown
(thick black lines). Each update consists of an E-Step, which moves vertically to the optimal
setting of µq (thick grey line), and an M-Step, which moves horizontally to the optimal setting
of σ2

y . By iterating these steps the algorithm converges via coordinate ascent to the optimum of
the free-energy, which is also the optimum of the likelihood. Bottom Left: Log-likelihood of
the observation noise. The value of the log-likelihood corresponds to the contour values along the
thick grey line in the plot above. Top Right: Contours of the free-energy, FvEM(q, σ2

y), for vEM

(black lines) in which the variance of the approximating distribution is fixed to the value σ2
q = 0.4.

The position of the optimum has shifted to a larger value of the observation noise and the vEM
algorithm converges onto this optimum (thick black lines). Bottom Right: The optimal free-
energy (thick grey line) is a lower bound on the log-likelihood of the observation noise (thick black
line). The value of the free-energy corresponds to the contour values along the thick grey line in
the plot above. B. Top Left: Schematic showing the first M-Step for Exact EM. After an initial
E-Step the free-energy, FEM(q1, σ2

y), (thick grey line) is tight to the log-likelihood (thick black
curved line) at the current value of the parameters (indicated by the vertical black line). In the
M-Step q is fixed, and the optimal parameters are found (thick vertical grey line). This corresponds
to the first horizontal line in the top left subplot of A. Top Middle: Schematic showing the second
M-Step of exact EM. After the second E-Step, the updated free-energy, FEM(q2, σ2

y), (thick, dark
grey line) is tight to the log-likelihood (thick black line) at the current value of the parameters
(indicated by the thick black vertical line). The old free-energy is shown for reference (thick,
light grey line). The result of the second M-Step is indicated by the thick vertical grey line.
Top Right: Schematic showing the free-energy after ten iterations, FEM(q10, σ2

y) (thick grey
line). The optimum is clearly close to that of the log-likelihood (thick black line). Bottom Left:

Schematic showing the first M-Step for vEM. As compared with the panel above, the free-energy,
FvEM(q(µq1, σ2

q1), σ2
y) (tick grey line), is not tight to the log-likelihood (thick black line). Bottom

Middle: Schematic showing the second M-Step for vEM. Bottom Right: Schematic showing the
free-energy after ten iterations, FvEM(q(µq10, σ2

q10), σ2
y) (thick grey line). The optimum clearly

lies to the right of the optimum of the log-likelihood (thick black line). It is biased to where the
variational approximation is tightest.
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in comparison to the peak in the likelihood. This size of this contribution to the
free-energy is studied in a simple setting in section 1.4. One intriguing possibility
is that the best approximations for learning are not necessarily those that yield the
tightest bounds, but rather those in which the tightness of the bounds depends least
on the parameters. Evidence that such an effect exists is provided in section 1.4.4
and further investigation, in section 1.4.6, reveals that it is fairly common.

Before considering the biases in parameters learned using vEM, we first consider
the E-Step of vEM in isolation. It is well known that variational approximations,
like those derived in the vEM E-Step, tend to be compact (MacKay, 2003). In other
words, the variational approximation has a tendency to have a smaller entropy than
the true distribution. The evidence for this folk-theorem is reviewed in the next
section with particular emphasis on the relevance to time-series modelling. Then,
in section 1.3.3, we show a consequence of compactness in mean-field approxima-
tions is a complete failure to propagate uncertainty between time-steps, this makes
the popular mean-field approximations most over-confident exactly when they are
poorest.

Both the compactness and parameter learning biases are exemplified using very
simple time-series models, although the conclusions are likely to apply more gener-
ally.

1.3 Compactness of variational approximations

In this section we consider approximating a known distribution, p(x), with a sim-
pler one, q(x), by minimising the variational KL divergence, KL(q(x)||p(x)). This
operation forms the E-Step of vEM (see equation 1.7) and so its behaviour has
implications for how the full algorithm behaves. Before considering a number of
instructive examples, it is immediately clear from the form of the variational KL
that at any point where the true density is zero, the approximation must also be
zero (otherwise the KL divergence will be infinity). A consequence of this fact is
that when a distribution which has two modes that are separated by a region of
zero density is approximated by a unimodal distribution, then the approximation
will model just one of the modes, rather than averaging across them. This is one
example of a general tendency for variational approximations to have a smaller
entropy than the target distribution. This section explores this so-called compact-
ness property of variational approximations, before considering the implications for
time-series modelling.

1.3.1 Approximating mixtures of Gaussians with a single Gaussian

It has just been argued above that when the true distribution contains two modes
which are separated by an intermediate region of zero density, the approximation
will be compact. However, it is unclear what happens when the intermediate region
does not dip to zero. In order to investigate this situation, consider approximating
a one-dimensional mixture of Gaussians with a single Gaussian, where

p(x|θ) =

K
∑

k=1

πkNorm(x; µk, σ2
k), and q(x) = Norm(x; µq, σ

2
q ). (1.16)

In figure 1.2 a number of examples are shown for a range of different parameter
choices for the mixture. As expected, for mixtures with two clearly defined modes
(right-hand column of figure 1.2), the approximation matches the mode with the
largest variance, rather than averaging across both of them (Bishop, 2006). In these
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cases the entropy of the approximation is less than that of the true distribution.
However, for intermediate distributions, in which the modes are joined by a signifi-
cant bridge of probability-density, the variational approximation does average across
the modes and in some cases the entropy of the approximation is larger than the
true distribution. The conclusion is that the compactness property is a useful guide
to the behaviour of variational methods when applied to highly-multimodal distri-
butions, but that there are examples when variational methods are not compact
(as measured by their entropy relative to that of the true distribution). Variational
approximations commonly used in clustering are an example of the former (Bishop,
2006), but variational approximations to independent component analysis can result
in the latter (Turner et al., 2008).
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Figure 1.2: Each panel shows a variational approximation to a true distribution. The true dis-
tribution is a mixture of two Gaussians (grey line) and the approximating family is a Gaussian
(black line). The parameters of the mixture were set so that each component has equal weight
(π1 = π2 = 1

2
). The difference between the means of the mixture components increases from the

left column of panels (where µ1 − µ2 = 0) to the right column of panels (where µ1 − µ2 = 10).
The ratio of the variances increases from bottom row of panels (where σ2

1/σ2
2 = 1) to the top row

of panels (where σ2
1/σ2

2 = 10). The smaller of the two variances is fixed, σ2
2 = 1. The bottom

left is therefore a mixture of two Gaussians with the same mean and variance and this is another
Gaussian. The approximation is therefore exact and the entropy difference, shown at the top of
each panel, is therefore zero. In general the entropy of the approximation can be less than (normal
font) or greater than (bold font) the true entropy.

1.3.2 Approximating a correlated Gaussian with a factored Gaussian

The examples above indicate how compactness operates for univariate distributions,
when the approximating distribution is restricted to a particular parametric form.
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Next, we consider approximating a bivariate distribution using the mean-field ap-
proximation. The true distribution is a zero-mean, correlated Gaussian distribution
with principal axes oriented in the directions e1 = 1√

2
[1, 1]T and e2 = 1√

2
[1,−1]T

with variances σ2
1 and σ2

2 respectively (after MacKay, 2003), so

p(x1, x2|Σ) = Norm(x1, x2; 0, Σ) , Σ = σ2
1e1e

T
1 + σ2

2e2e
T
1 . (1.17)

This correlated Gaussian is approximated in the mean-field approach by a separable
distribution, q(x1, x2) = q(x1)q(x2), and by considering the fixed-points of equation
1.12 the optimal updates are found to be,

q(xi) = Norm

(

xi; 0,
1

2

σ2
1σ2

2

σ2
1 + σ2

2

)

. (1.18)

That is, the optimal factored approximating distribution is a spherical Gaussian that
has a precision which is equal to the diagonal elements of the precision matrix of the
original Gaussian (that is, (Σ−1)i,i). This is an example of a more general result,
that variational approximations between two Gaussians match precisions, which will
be seen again later in the chapter. Consider now the behaviour of the variational
approximation in the case where variance of the two components is very different
(e.g. σ2

1 > σ2
2). The width of the approximating distribution becomes σ2

2/2, and
therefore independent of the longer length-scale. In this sense the approximation
is becoming compact; it matches the smallest length scale in the posterior. In the
next subsection, this result will be rediscovered from the contrasting perspective of
mean-field inference in time-series models.

1.3.3 Variational approximations do not propagate uncertainty

Fully factored variational approximations (so called mean-field approximations)
have been used for inference in time-series models as they are fast and yet still
return estimates of uncertainty in the latent variables (Beal, 1998). Here, we show
that in a simple model, the variational iterations fail to propagate uncertainty be-
tween the factors, rendering these estimates of uncertainty particularly inaccurate
in time-series models (see Winn and Minka, 2007, for a related example).

We consider a time-series model with a single latent variable xt at each time-
step drawn from a first-order auto-regressive prior with coefficient λ and innovations
variance σ2,

p(xt|xt−1) = Norm(xt; λxt−1, σ
2). (1.19)

The marginal mean of this distribution is zero and the marginal variance is σ2
∞ =

σ2

1−λ2 . As the time series of greatest interest tend to be those which exhibit strong
temporal structure, we will study models in which with the autoregressive parameter
λ is close to unity3. The observed variables yt depend only on the latent variable
at the corresponding time-steps. The precise form of p(yt|xt) will not be important
here.

If we choose a mean-field approximating distribution which is factored over
time q(x1:T ) =

∏T
t=1 q(xt), the update for the latent variable at time t follows from

3In fact the effective time-scale of equation 1.19 is τeff = −1/ log(λ) and so a change in λ from
0.9 to 0.99 is roughly equivalent to a change from 0.99 to 0.999. This is important when the size
of the biases in the estimation of λ are considered in section 1.4.3.



9

equation 1.12,

q(xt) =
1

Z
p(yt|xt) exp(〈log p(xt|xt−1)p(xt+1|xt)〉q(xt−1)q(xt+1)), (1.20)

=
1

Z ′ p(yt|xt)Norm

(

xt;
λ

1 + λ2
(〈xt−1〉 + 〈xt+1〉) ,

σ2

1 + λ2

)

(1.21)

=
1

Z ′ p(yt|xt)qprior(xt). (1.22)

That is, the variational update is formed by combining the likelihood with a vari-
ational prior-predictive qprior(xt) that contains the contributions from the latent
variables at the adjacent time-steps. This variational prior-predictive is interesting
because it is identical to the true prior-predictive when there is no uncertainty in
the adjacent variables. As such, none of the (potentially large) uncertainty in the
value of the adjacent latent variables is propagated to q(xt), and the width of the
variational predictive is consequently narrower than the width of state-conditional
distribution p(xt|xt−1) (compare to equation 1.19)4.

Temporally factored variational methods for time-series models will thus gen-
erally recover an approximation to the posterior which is narrower than the state-
conditional distribution. As the whole point of time-series models is that there are
meaningful dependencies in the latents, and therefore the state-conditional often
has a small width, the variational uncertainties may be tiny compared to the true
marginal probabilities (see 1.3). Thus, the mean-field approach is not all that dif-
ferent to the “zero-temperature EM” or MAP-based approach (in which the joint
probability of observed data and latent variables is optimised alternately with re-
spect to the latent variables—with no distributional information—and the param-
eters), except that we find the mean of the posterior rather than a mode. In the
next section, it will be shown that this does have some advantages over the MAP
approach, notably that pathological spikes in the likelihood can be avoided.

In conclusion, although variational methods appear to retain some information
about uncertainty, they fail to propagate this information between factors. In par-
ticular, in time-series with strong correlations between latents at adjacent times, the
mean-field variational posterior becomes extremely concentrated, even though it is
least accurate in this regime. An ideal distributional approximation would perhaps
behave in the opposite fashion, returning larger uncertainty when it is likely to be
more inaccurate.

1.4 Variational approximations are biased

In the last section we showed that variational approximations under-estimate the
uncertainties in inference. We will now investigate how these inaccuracies affect the
parameter estimates returned by vEM. This question is important in many contexts.
For example, scientific enquiry is often concerned with the values of a parameter, to
substantiate claims like “natural scenes vary slowly” or “natural sounds are sparse”.

What makes for a good variational approximation in this case? The instant
reaction is that the free-energy should be as tight to the log-likelihood as possible.
That is, the optimal KL divergence at each parameter setting,

KL*(θ) = argmax
q(x)

KL(q(X)||p(X|Y, θ)), (1.23)

4This problem only gets worse if the prior dynamics have longer dependencies, e.g. if
p(xt|xt−1:t−τ ) = Norm(

Pτ
t′=1 λt′xt−t′ , σ

2) then the variational prior-predictive has a variance,
σ2

1+
P

τ
t′=1

λ2
t′

.



10

−1 0 1

−1

−0.5

0

0.5

1

x t

x
t−1

λ = 0.9

−1 0 1

λ = 0.99

−1 0 1

λ = 0.999

Figure 1.3: Compactness in mean-field approximations for time-series. The average true prior-
predictive (black ellipses, showing the probability density contour at one standard deviation) is
shown together with the mean-field approximations (grey circles, also showing the probability
density contour at one standard deviation), for three settings of λ. The marginal variance of the
true prior-predictive is 1. The marginal variance of the mean-field approximation is (1−λ2)/(1+λ2)
which is tiny for typical values of λ in time-series models. Notice that this example is equivalent

to the previous example in section 1.3.2 involving a bivarate Gaussian when, σ2
1 = σ2

1−λ
and

σ2
2 = σ2

1+λ
.

should be as small as possible for all θ. However, the conclusion from the motivating
example in section 1.2.1, is that from the perspective of learning it is more important
to be equally tight everywhere. In other words it is more important for the KL-term
to be as parameter-independent as possible: If KL*(θ) varies strongly as a function
of the parameters, this can shift the peaks in the free-energy away from the peaks
in the likelihood, toward the regions were the bound is tighter. This perspective
explains a previous observation whereby variational Bayes typically prunes out too
many components of a mixture model (MacKay, 2001).

We now illustrate this effect in a linear SSM and show that consequences can
include mis-estimation of the time constant with which the latent variables evolve,
under-estimation of the overlap of emission weights, and unwanted pruning of emis-
sion weights. Moreover, we show that the mean-field approximation can actually
have less severe parameter-dependent biases than two structural approximations,
and can therefore lead to better vEM parameter estimates, even though it is less
tight everywhere. We also show that the biases in parameter estimates increase
considerably the more parameters are estimated.

1.4.1 Deriving the learning algorithms

In the following we first introduce an elementary SSM, for which we can find the
exact log-likelihood, log p(y|θ). We then examine the properties of a set of different
variational learning algorithms. This set comprises a mean-field approximation, two
different structural approximations, and zero-temperature EM. This final approxi-
mation can be thought of as vEM where the approximating distributions are delta
functions centred on the maximum a posteriori (MAP) estimates (Neal and Hinton,
1998). The analysis of these schemes proceeds as follows: First the optimal E-Step
updates for these approximations are derived; Second, it is shown that, as the
SSM is a simple one, the free-energies and the zero-temperature EM objective func-
tion can be written purely in terms of the parameters. That is, maxq(x) F(θ, q(x))
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and maxX log p(Y, X|θ) have closed form solutions, and do not require iterative up-
dates to be computed as is usually the case. Thus, we can study the relationship
between the peaks in the log-likelihood and the peaks in the free-energies and zero-
temperature EM objective function, for any dataset. This is analogous to the lower
right hand panel of figure 1.1A for the motivating example.

Consider an SSM which has two latent variables per time-step, two time-steps,
and two-dimensional observations. We take the priors on the latent variables to be
linear-Gaussian, and the observations are given by summing the weighted latents
at the corresponding time-step and adding Gaussian noise,

p(xk,1) = Norm

(

xk,1; 0,
σ2

x

1 − λ2

)

, (1.24)

p(xk,2|xk,1) = Norm
(

xk,2; λxk,1, σ
2
x

)

, (1.25)

p(yd,t|x1,t, x2,t) = Norm

(

yd,t;

2
∑

k=1

wd,kxk,t, σ
2
y

)

. (1.26)

This defines a joint Gaussian over the observations and latent variables. From this
we can compute the likelihood exactly by marginalising. Defining the vector of
observations, y = [y11, y21, y12, y22]

T , and the matrix Md,d′ =
∑2

k=1 wd,kwd′,k, the
likelihood is given by,

p(y1:2,1:2|θ) = Norm(y; 0, σy), σy = Iσ2
y +

σ2
x

1 − λ2

[

M λM
λM M

]

. (1.27)

The posterior distribution over the latent variables is also Gaussian, and is given by,
p(x|y) = Norm(µx|y, Σx|y), where the vector of latent variables is x = [x11, x21, x12, x22]

T .
In order to ease notation, we define weight vectors and matrices:

w1 =

[

w11

w21

]

= |w1|

[

cos(φ1)
sin(φ1)

]

, (1.28)

w2 =

[

w12

w22

]

= |w2|

[

cos(φ2)
sin(φ2)

]

, and W =

[

w11 w12

w21 w22

]

. (1.29)

Then, the covariance and mean of the posterior distribution are given by

Σ−1
x|y =

















|w1|2
σ2
y

+ 1
σ2
x

w
T
1 w2

σ2
y

− λ
σ2
x

0

w
T
1 w2

σ2
y

|w2|2
σ2
y

+ 1
σ2
x

0 − λ
σ2
x

− λ
σ2
x

0 |w1|2
σ2
y

+ 1
σ2
x

w
T
1 w2

σ2
y

0 − λ
σ2
x

w
T
1 w2

σ2
y

|w2|2
σ2
y

+ 1
σ2
x

















, (1.30)

µx|y =
1

σ2
y

Σx|y

[

W 0
0 W

]

y. (1.31)

The posterior is correlated through time because of the linear-Gaussian prior, and
correlated across chains because of explaining away 5. The correlations through time

5Explaining away is the name given to the phenomenon in probabilistic modelling where the
observation of an effect of two possible independent causes, leads to (anti-)correlation in the
posterior distribution over those two causal latent variables. Suppose that either latent may take
on a value that could account for the observation. Then if one does so, it “explains away” the
observed effect, and the observed data no longer constrains the other. Thus, conditioned on the
observation, the distribution over each latent depends on the value of the other, even if there was
no such dependence in the prior.
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increase as the prior becomes “slower” (|λ| increases) and less noisy (σ2
x decreases).

The correlations across chains increase as the magnitude of the weights increase
(|wd|

2), and the angle between the weights (φ1 − φ2) or the observation noise (σ2
y)

decreases.
We now derive the optimal E-Step for four different approximations: The first

three approximations provide uncertainty estimates and these are the fully factored
mean-field approximation (qMF), factorisation over chains but not time (qFC), and
factorisation over time but not chains (qFT), as shown in the following table:

factored over time unfactored over time
chains factored qMF(x) qFC(x)

chains unfactored qFT(x) p(x|y) = q(x)

The factorisations are therefore,

qMF(x) = q
(1)
MF(x11)q

(2)
MF(x12)q

(3)
MF(x21)q

(4)
MF(x22), (1.32)

qFC(x) = q
(1)
FC(x11, x12)q

(2)
FC(x21, x22), (1.33)

qFT(x) = q
(1)
FT(x11, x21)q

(2)
FT(x12, x22). (1.34)

The optimal E-Step updates for these three distributions can be found by min-
imising the variational KL. Each factor is found to be Gaussian, with a mean and
precision that match the corresponding elements in µx|y and Σ−1

x|y. The fourth and

final approximation is zero-temperature EM (qMAP), for which the E-Step is given
by the MAP estimate for the latent variables for the current parameter setting. As
the posterior is Gaussian, the mode and the mean are identical and so the MAP
estimates are identical to the variational values for the means.

The next step is to compute the free-energies. In the first three cases, the Gaus-
sianity of the posterior and the uncertainty preserving variational approximations
enables the KL divergences to be calculated analytically:

KLi

(

A
∏

a=1

q
(a)
i (xa)||p(x|y)

)

=
1

2
log

∏A
a=1 det

(

Σ
(a)
i

)

det
(

Σx|y
) . (1.35)

That is, the KL divergence is the log-ratio of the volume of the approximation (as
measured by the matrix determinants) to the volume of the true posterior. It should
be noted that the whole point of variational methods is that this quantity is usually
intractable to compute, and it is only because the example is very simple that it is
possible here. Using this expression we find,

KL*
MF =

1

2
log
(

σ2
y + |w1|

2σ2
x

)2 (
σ2

y + |w2|
2σ2

x

)2
/γ (1.36)

KL*
FC =

1

2
log
(

(

σ2
y + |w1|

2σ2
x

)2
− λ2σ4

y

)(

(

σ2
y + |w2|

2σ2
x

)2
− λ2σ4

y

)

/γ

(1.37)

KL*
FT =

1

2
log
(

σ4
x|w1|

2|w2|
2 sin2(φ1 − φ2) +

(

|w1|
2 + |w2|

2
)

σ2
xσ

2
y + σ4

y

)2
/γ

(1.38)

where

γ =
((

|w1|
2 + |w2|

2
)

σ2
xσ2

y + σ4
x|w1|

2|w2|
2 sin2(φ1 − φ2) + (1 + λ2)σ4

y

)2

−
(

λσ2
yσ2

x

(

|w1|
2 + |w2|

2
)

+ 2λσ4
y

)2
. (1.39)
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In the fourth approximation, the KL divergence between a Gaussian and a delta
function is infinite. Therefore, the KL term is discarded for zero-temperature EM
and the log-joint is used as a pseudo free-energy. To ease notation, in what follows
KLi = KL*

i .

1.4.2 General properties of the bounds: A sanity check

We now verify that these results match our intuitions. For example, as the mean
field approximation is a subclass of the other approximations, it is always the loosest
of the bounds, KLMF > KLFC, KLFT > 0, which is bourne out by the expressions.
Furthermore, qFT becomes looser than qFC when temporal correlations dominate
over the correlations between chains. For instance, if the weights have identical
magnitude, |w1| = |w2| = |w|, then KLFT > KLFC when explaining away (EA)
becomes more important than temporal correlation (TC) in the posterior,

EA

TC
< 1, where EA =

| cos(φ1 − φ2)||w|2

σ2
y

and TC =
|λ|

σ2
x

. (1.40)

Moreover, qFC is equivalent to the mean field approximation, KLMF = KLFC, when
there are no temporal correlations, λ = 0 or σ2

x = ∞, and in this case the true
posterior matches qFT, KLFT = 0. Similarly, qFT is equivalent to the mean-field
approximation when the observation noise is infinity σ2

y = ∞, and here qFC is exact
(KLFC = 0). Finally, it is noted that as qFT is the only one which captures cross-
chain correlations due to explaining away, it is the only one which is dependent on
the relative angle between the weights.

Having verified that the expressions for the KL divergences appear reasonable,
we can now consider how the maxima in the log-likelihood relate to the maxima in
the free-energies. Unfortunately, there is no closed form solution for the location
of these maxima, but in the simple examples which follow, the free-energies and
likelihoods can be visualised. In general, we will be concerned with the consistency
of the variational estimators, which means the behaviour when we have a large
number of observations from the same time series. In this case the average likelihood
becomes,

lim
N→∞

1

N
log p(y1:N |Σy) = −

1

2
log detΣy −

1

2
Σ−1

y
lim

N→∞

1

N

N
∑

n=1

ynyT
n (1.41)

= −
1

2
log detΣy −

1

2
Σ−1

y

〈

yyT
〉

. (1.42)

When the data are drawn from the forward model,
〈

yyT
〉

can be computed ana-
lytically. In all cases the ML estimators are found to be consistent, and therefore
equal to the true parameters in the limit of infinite data.

Although the model is simple, it has seven parameters and this means there are
a great number of possible learning scenarios ranging from learning one parameter
with the others fixed, to learning all parameters at once. In the following we high-
light several illustrative examples in order to elucidate the general properties of the
variational approach. First we consider learning a single parameter (the dynamical
parameter, the observation noise, the innovations noise, the orientation of one of
the weights, and the magnitude of one of the weights) with the other parameters set
to their true values. This will allow us to develop some intuition about the ways in
which different approximations lead to different biases in the parameter estimates.
In this case, the log-likelihood and free-energies are easy to visualise; some typical
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Figure 1.4: Biases in the free-energies for learning the dynamical parameter, λ, and the observation
noise, σ2

y, of a simple linear dynamical system. The true parameters were λ = 0.9, σ2
x = 1 − λ2 =

0.19, wT
1 = [1, 0] ,wT

2 = [1, 0], and σ2
y = 0.43. In both columns A and B one parameter is learned

and the others are set to their true values. A. Shows the results of learning λ, and B. learning
σ2
y . Large panels show the log-likelihood (thick black line) and the free-energies of the uncertainty

preserving methods (FMF by a thick grey line, FFC by the crosses, and FFT by the circles).
Small panels show the zero-temperature EM approach (qMAP). The maxima of these functions
are indicated by the vertical lines. The maximum of the log-likelihood lies at the true value of the
parameters. The bottom two panels show a zoomed in region of the top two panels.

examples are shown in figure 1.4 and figure 1.5. We then consider how the bias
changes as a function of the true parameters, and observe that there is no univer-
sally preferred approximation, but instead the least biased approximation depends
on the parameter that is being learned and on the value of the true parameters.
Next we will study the bias when learning the dynamic parameter and the observa-
tion noise simultaneously, as this provides a typical example of how the variational
approach performs when multiple parameters are learned. The conclusion is that
the biases become significantly larger as more parameters are estimated.

1.4.3 Learning the dynamical parameter, λ

We begin by considering learning the dynamical parameter λ, with the other pa-
rameters fixed to their true values. In order to ensure the effects of explaining away
are properly considered the weights are set to be identical, with unit magnitude
(w1 = w2 and |wk|

2 = 1).
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As the magnitude of the dynamical parameter increases, so does the correlation
in the posterior between successive latent variables in the same chain (xk,1 and xk,2).
This means that qFT, which factorises over time, results in a looser variational bound
as the magnitude of λ increases (KLFT increases, equation 1.38). Furthermore, as
the correlation between latents in the same chain increases, (xk,1 and xk,2), so does
the correlation between x11 and x22 (because explaining away is propagated through
time by the dynamics). This means, somewhat surprisingly, that qFC which does
not factorise over time, but over chains, also becomes looser as the magnitude of
λ increases. That is, KLFC also increases with the magnitude of λ. In both cases,
this λ-dependence in the tightness of the bound means that the corresponding
variational free-energies peak at lower values of λ than the likelihood, and therefore
both approximations yield under-estimates (see Wang and Titterington 2004 for a
similar result).

The mean-field approximation suffers from both of the aforementioned effects,
and it is therefore looser than both. However, with regard to their dependence on
λ, KLMF and KLFT are equivalent. Consequently the mean-field approximation,
qMF, and qFT, which factors over time, recover identical values for the dynamical
parameter, even though the former is looser. Curiously, the solution from zero-
temperature EM (qMAP) is also identical to those solutions. One of the conclusions
to draw from this is that most severe approximation need not necessarily yield the
most biased parameter estimates.

1.4.4 Learning the observation noise, σ2
y, and the dynamical noise, σ2

x

Next we consider learning the observation noise σ2
y, with the other parameters fixed

to their true values. Once again, in order to ensure the effects of explaining away are
properly considered we consider identical, unit magnitude weight vectors (w1 = w2

and |wk|
2 = 1).

Decreasing the observation noise increases the correlation between variables at
the same time step, i.e., between x1t and x2t. This means that qFC, which factors
over chains, becomes worse as σ2

y decreases, and therefore KLFC is an increasing
function of σ2

y. On the other hand, as the observation process becomes less noisy the
hidden states are more precisely determined by local information, and so correlations
between them in the prior become less important. Thus, qFT, which factorises
over time but not over chains, becomes tighter as σ2

y decreases i.e. KLFT is a
decreasing function of σ2

y. We have now indicated that KLFC and KLFT have
opposite dependencies on σ2

y. As the mean-field approximation shares both of these
effects its maximum lies somewhere between the two, depending on the settings of
the parameters. This means that whilst qFT under-estimates the observation noise,
and qFC over-estimates it, the loosest approximation of the three, the mean-field
approximation, can actually provide the best estimate, as its peak lies in between
the two. In the next section we will characterise the parameter regime over which
this occurs.

The final approximation scheme, zero-temperature EM, behaves catastrophically
when it is used to learn the observation noise, σ2

y. This is caused by a narrow spike
in the likelihood-surface at σ2

y = 0. At this point the latent variables arrange
themselves to explain the data perfectly, and so there is no likelihood penalty (of
the sort − 1

2σ2
y

(y1,t − x1,t − x2,t)
2). In turn, this means the noise variance can be

shrunk to zero which maximises the remaining terms (∝ − log σ2
y). The small cost

picked up from violating the prior-dynamics is no match for this infinity. This
is not a very useful solution from either the perspective of learning or inference.
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It is a pathological example of overfitting6: there is an infinitesimal region of the
likelihood-posterior surface with an infinite peak. By integrating over the latent
variables, even if only approximately in a variational method for example, such
peaks are discounted, as they are associated with negligible probabilitiy mass and so
make only a small contribution to the integral. Thus, although variational methods
often do not preserve as much uncertainty information as we would like, and are
often biased, by recovering means and not modes they may still provide better
parameter estimates than the catastrophic zero-temperature EM approach.

Finally we note that learning the dynamical noise σ2
x with the other parameters

fixed at their true values results in a very similar situation: qFC under-estimates σ2
x,

and qFT over-estimates it, while the mean-field approximation returns a value in
between. Once again the MAP solution suffers from an overfitting problem whereby
the inferred value of σ2

x is driven to zero. The fact that learning σ2
y and σ2

x results in
similar effects indicates that the conclusions drawn from these examples are quite
general.

1.4.5 Learning the magnitude and direction of one emission weight

Finally we consider learning the emission weights. In order to explicate the various
factors at work it is useful to separately consider learning the orientation of the
weight vector and its magnitude. Consider first learning the orientation of one of the
weights whilst its magnitude, and the value of the other parameters in the model, are
known and fixed to their true values (shown in figure 1.5). The relative orientation
of the pair of weights is the critical quantity, because this determines the amount
of explaining away. If the weights are orthogonal (φ1 − φ2 = π(n + 1/2)), there is
no explaining away (〈x1tx2t〉p(x|y) = 0), and so qFC is exact and qMF and qFT are
equivalent. In contrast, if the weights are parallel (φ1 − φ2 = nπ), explaining away
is maximised and qMF and qFC are at their loosest because they do not model the
dependencies between the chains. qFT is also at its loosest in this region (because it
does not capture the ‘diagonal’ correlations 〈x11x22〉p(x|y) and 〈x21x12〉p(x|y) which
are strongest here). The result is that all the approximations are biased toward
settings of the weights which are more orthogonal than the true setting. The bias
in qMF, qFC and qMAP are equal and can be substantial (see figure 1.5 and figure
1.6). The bias in qFT is somewhat less as it captures the correlations induced by
explaining away. Finally, we consider learning the magnitude of the second weight
when all other parameters set to their true values (this includes the direction of the
second weight). For low magnitudes, qFC is tightest as the temporal correlations
dominate over explaining away, but for high magnitudes the situation is reversed and
qFT is tightest. Consequently, qFC under-estimates the magnitudes (often severely
thereby pruning the weight entirely, see figure 1.5B), whilst qFT over-estimates the
magnitudes. As the mean-field approximation suffers from both effects, its estimates
lie between the two and can therefore be less biased. Once again the MAP solution
suffers from an over-fitting problem, where the estimated weight magnitudes blow
up to infinity.

1.4.6 Characterising the space of solutions

In the previous section we found examples where the mean-field approximation was
the most unbiased (see figure 1.4B. and 1.5B.). How typical is this scenario? To
answer this question we look at the extent of the bias in parameter values returned
by the four approximate learning schemes, over a wide range of different data sets

6This is the SSM analogue to Mackay’s (2003) so-called KABOOM! problem in soft K-means.
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Figure 1.5: Biases in the free-energies for learning the weights of a simple linear dynamical system.
The true parameters are λ = 0.9, σ2

x = 1 − λ2 = 0.19, wT
1 = [1, 0], wT

2 = [cos(π/8), sin(π/8)] and
σ2
y = 0.3. In both columns, A and B, one parameter is learned and the others are set to their

true values. A. Learning the orientation (φ2) of the second weight, wT
2 = [cos(φ2), sin(φ2)]. B.

Learning the magnitude of the second weight, wT
2 = |w2|[cos(π/8), sin(π/8)]. Large panels show

the log-likelihood (thick black line) and the free-energies of the uncertainty preserving methods
(FMF by a thick grey line, FFC by the crosses, and FFT by the circles). Small panels show the
zero-temperature EM approach (qMAP). The maxima of these functions are indicated by the
vertical lines. The maximum of the log-likelihood lies at the true value of the parameters.
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Figure 1.6: A. Biases for infering a single parameter as a function of σ2
y and λ. Lighter colours

indicate a bias of smaller magnitude. The bias is defined as ∆Θ = ΘINF − ΘML so that over-
estimation results in a positive bias. For all points, σ2

x = 1 − λ2. The columns correspond to
the four approximations. Top Row: Bias in estimating λ. All the schemes return underestimates
and so the biases are always negative. Bottom Row: Bias in estimating σ2

y. The sign of the bias

is indicated by the ‘+’ and ‘-’ symbols. B. The best approximation for finding σ2
y indicated by

marker-type (qMF grey filled-circles, qFC black crosses and qFT black open-circles). The black
solid line is r = σ2

x/|λ|σ2
y = 1 and below it qFT is tightest, and above it qFC is tightest.

with different true parameter values. As the likelihood or free-energy surfaces may
be multimodal—and we are not interested here in failures of learning due to lo-
cal optima—the optimal parameters were found using three different optimisation
schemes: grid-based search; direct gradient ascent on the free-energy; and coordi-
nate ascent of the free-energy (or vEM). For the examples of this section, all three
methods returned identical results up to experimental error.

One typical example—the bias in inferring λ for many different maximum-
likelihood settings of σ2

y and λ—appears in figure 1.6A. In each case σ2
x was set

to its true value, 1 − λ2. The parameter λ is under-estimated in all cases, often
substantially (e.g. for qMF, qFT and qMAP, at high σ2

y and λ values, the bias is
almost one). The bias from using qFC is always smaller than that from using the
others, and thus in this case it is to be preferred everywhere. However, this simple
situation where one of the approximation schemes is universally superior does not
generalise when learning other parameters. For example, the bias for inferring σ2

y

is shown in figure 1.6B. As noted in the previous section, qFC over-estimates the
observation noise, whilst qFT and qMAP under-estimate it. The mean-field approx-
imation combines the behaviours of qFC and qFT and therefore under-estimates in
regions where λ and σ2

y are small, and over-estimates in regions where they are
large. In the intermediate region, these effects cancel and this is the region in which
the mean-field approximation is the best of all the approximations. This is shown
in figure 1.6C which indicates the best approximation to use for inferring the ob-
servation noise at different parts of the space. The figure shows that the mean-field
solution is to be preferred over a fairly large part of the space.

Next we consider biases in estimating the weight vectors (see figure 1.7). When
learning the vector orientations, qMF, qFC and qMAP turn out to exhibit identical
biases. (Indeed, it is generally true that if the MAP solution does not suffer from
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over-fitting, then it is equal to the mean-field approximation in these Gaussian
models.) These approximations do not model explaining away and so they are most
biased in regions where the true weights are approximately parallel (φ1 ≈ φ2). On
the other hand, qFT does capture inter-chain correlations, and so is superior for
any setting of the true parameters 7. When learning the weight vector magnitudes,
qFT is superior in regions where explaining away is large compared to the temporal
correlations, whilst qFC is superior in regions where temporal correlations dominate
over explaining away. However, there is a large intermediate region where the mean-
field approximation is the least biased. Once again, the tightness of the free-energy
approximations is a poor indicator of which is the least biased.

The main conclusions from this section are that the biases in variational meth-
ods are often severe. The examples above indicate that factorisations across time
can ignore strong temporal correlations in the data, and factorisations across chains
can erroniously prune out emission weights. Furthermore, which is the best approx-
imation depends not only on which parameter has to be learned, but also on the
true value of parameters. Suprisingly, mean-field approximations are often superior
to structured methods when a single parameter is estimated.

1.4.7 Simultaneous learning of pairs of parameters

So far we have considered estimating a single parameter keeping the others at their
true values. What happens when we infer pairs of parameters at once? Consider,
for instance, inferring the dynamical parameter λ and the observation noise σ2

y with
σ2

x held at its true value (see figure 1.8). As before, three methods are used to find
the optimal parameter settings (gridding, gradient ascent and vEM). In this case, a
small minority of the objective functions are multi-modal, and then the agreement
between the methods depends on the initialisation. To avoid this ambiguity, the
gradient based methods were initialised at the values returned from the method of
gridding the space. This procedure located the global optima. The most striking
feature of figure 1.8A. is that the biases are often very large (even in regimes where
the structural approximations are at their tightest). In principle, if the mapping
between the inferred paramters and true parameters were known it might be possible
to correct for the biases in the variational estimates. However, multiple different
settings of the true parameters result in the same inferred parameters and so it is
impossible to correct the variational estimates in this way.

Figure 1.8B. shows that, in contrast to the case where only one parameter is
inferred at a time, the mean-field solution is no-longer superior to the structural
approximations. It also indicates that whilst tightness is a guide for choosing the
best approximation, it is not very accurate. It is also notable that when all three
parameters are inferred together (data not shown), the biases become even larger.

1.4.8 Discussion of the scope of the results

The examples considered in this chapter were chosen to be simple so that exact
results could be computed and visualised. It is necessary, then, to consider how
the effects described here generalise to longer time-series (T > 2) with more hidden
variables (K > 2). Unfortunately, it is generally not tractable to analyse these,
more complex, scenarios. However, increasing the length of the time-series and the

7It is common practice to use zero-temperature EM (qMAP) to learn weights in sparse-coding
models and then to make a detailed statistical comparison of the learned weights to biological
analogues derived from experiments in visual cortex. The result here—that zero-temperature EM
recovers weights which are significantly more orthogonal than the true weights—raises concerns
that this practice will be seriously affected by biases in the learned weights.
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Figure 1.7: Parameter dependence of the biases in learning the weights. A. Biases in learning the
relative orientation (∆φ) of the weights as a function of the true relative orientation (φ1 − φ2)
and the observation noise σ2

y. The magnitude of the weights is unity, |wk| = 1 and the dynamical

parameters are set to λ = 0.9 and σ2
x = 1−λ2. All of the approximations over-estimate the angular

separation of the weights, but qFT is less or equally biased everywhere. B. Biases in learning the
relative orientation of the weights as a function of the true orientation (φ1−φ2) and the dynamical
parameter, λ. The observation noise is fixed to σ2

y = 0.1 and the state-noise to σ2
x = 1−λ2. Again,

qFT less or equally biased everywhere. C. Biases in learning the magnitude of the second weight
as a function of the true relative orientation (φ1 − φ2) and the observation noise. The other
parameters are set to, λ = 0.9 and σ2

x = 1−λ2. The MAP estimate qMAP returns an infinite value
for the weights everywhere and is therefore not shown. D. The least biased approximation for
finding the magnitude of the weight (indicated by marker-type; qMF grey filled-circles, qFC black
crosses and qFT black open-circles) as a function of the relative orientation of the weights and the
observation noise. Above the solid line, qFC is the tighter approximation and below it qFT is the
tighter approximation.
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number of latent chains results in a posterior distribution that has a richer correla-
tional structure. That is, the posterior covariance matrix has a greater number of
off-diagonal terms. The variational approximations considered here would therefore
ignore larger parts of this structure, and so one might expect the KL terms, and
the associated biases, to be correspondingly larger.

There are many ways of assessing the performance of vEM. This chapter has
focussed exclusively on the consistency of the methods and the biases in learned
parameters. However, another relevant set of criteria come from tasks which require
prediction of some kind, for instance, to fill-in missing data or to denoise. How does
vEM fair in this new scenario? In order to answer this question it is necessary to
specify the task more accuarately. Consider then, a task in which the first stage
involves learning the model parameters from a training set, and the second involves
filling in a section of missing-data in a test set using the mean of the approximate
posterior. Given the same set of parameters, all four appoximations will make
identical predications for the missing section (the mean of the true posterior). The
differences between the four approximations are therefore entirely dependent on
the quality of the parameters learned during the first stage of the experiments. As
the task requires accurate learning of both the temporal dynamics (to predict the
missing latent variables), and the emission weights (to predict the missing data from
the missing latent variables), all of the approximation schemes will perform poorly
compared to the optimal prediction.

1.5 Conclusion

We have discussed two problems in the application of vEM to time-series mod-
els. First, the compactness property of variational inference leads to a failure to
propagate posterior uncertainty through time. Second, the dependence of the tight-
ness of the variational lower bound on the model parameters often leads to strong
biases in parameter estimates. We found that the relative bias of different approx-
imations depended not only on which parameter was sought, but also on its true
value. Moreover, the tightest bound did not always yield the smallest bias: in some
cases, structured approximations were more biased than the mean-field approach.
Variational methods did, however, avoid the over fitting problem which plagues
MAP estimation. Despite the shortcomings, variational methods remain a valid,
efficient alternative to computationally costly Markov Chain Monte Carlo methods.
However, the choice of the variational distribution should be complemented with
an analysis of the dependency of the variational bound on the model parameters.
Hopefully, these examples will inspire new algorithms that pool different variational
approximations in order to achieve better performance (e.g. mixtures of variational
approximations Jaakkola and Jordan, 1998).
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