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Abstract

In this paper we study the random approximate travelling wave solutions of the
stochastic KPP equations. Two new properties of the stochastic KPP equations are
obtained. We prove the ergodicity that for almost all sample paths, behind the wave
front x = γt, the lower limit of 1

t

∫ t
0 u(s, x)ds as t → ∞ is positive, and ahead of the wave

front, the limit is zero. In some cases, behind the wave front, the limit of 1
t

∫ t
0 u(s, x)ds

as t → ∞ exists and is positive almost surely. We also prove that behind the wave front,
for almost each ω, the solution of some special stochastic KPP equations converges to
a stationary trajectory of the corresponding stochastic differential equation. In front
of wave front, the solution converges to 0 which is another stationary trajectory of the
corresponding SDE. We also study the space derivative of the solution for large time.
We show that away from the wave front, for almost all large t the solution is flat in
the x-direction for almost all sample paths.

1 Introduction

Approximate random travelling wave solutions for stochastic KPP eqautions were studied by
[7], [10] and [25]. These equations arise in the study of the effect of a noise to approximate
travelling waves of semi-linear reaction diffusion equations. We say that the noise is mild if

km <
√

2c(0), where km = limt→∞
√

1
t

∫ t
0 k2(s)ds, assuming the limit exists. It was known

that in an environment of mild noise, the solution of the stochastic generalized KPP equation

du(t, x) = (
D

2
∆u(t, x) + c(u)u)dt + k(t)udWt, (1.1)

still evolves to an approximate travelling wave solution with a reduced speed γ

=
√

D(2c(0) − k2
m) in the limit as t → ∞. It was proved under some conditions which

will be specified in Section 3 that Equation (1.1) has a random travelling wave solution
([10],[7],[25]). The wave front was known as

x = γt, (1.2)
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and there are constants d1, d2, d3 > 0 such that for any h > 0

1

t
log u(t, x) < −d1 if x > (γ + h)t, for almost all ω (1.3)

and

−d3 ≤
log u(t, x)√
2t log log t

≤ d2 if x < (γ − h)t, for almost all ω (1.4)

for all sufficiently large t.
The travelling wave of the FKPP equation (when k = 0 and c(u) = 1 − u) was first

studied by [18] and [12]. Since then, it has attracted many mathematicians’ attentions (e.g.
[2],[3],[4],[5],[6],[9], [11],[13],[14],[16],[22],[24],[27], to name but a few.) It was defined as a
solution of the type u(t, x) = U(x − γt) and γ is the speed of the travelling wave. Here U
satisfies limz→−∞ U(z) = 1 and limz→+∞ U(z) = 0. Note that limt→∞ u(t, (γ − h)t) = 1 and
limt→∞ u(t, (γ + h)t) = 0 for any h > 0. This was extended to Freidlin’s type approximate
travelling wave for reaction diffusion equations by [13] so that it is applicable to much
more general situations. And a variety of stochastic methods has been developed to study
travelling waves ([5],[6],[9],[13],[14],[22]). Approximate travelling waves in a random media
were also studied in [13].

For the stochastic KPP equation (1.1), ahead of the wave front, the solution is expo-
nentially small (≤ e−d1t) almost surely and behaves the same as Freidlin’s approximated
travelling wave. But behind the wave front, the solution is oscillatory. It was clear that
the solution behind the wave front behaves differently from the solution ahead of the wave
front as (1.3) and (1.4) have shown. We call the regions behind and ahead of the wave front
the crest and the trough of the random approximate travelling wave, respectively. It was
remained open to understand the behaviour of the solution on the crest beyond (1.4). It
was pointed out in [10] suggested by the numerical works in [15] that in the limit t → ∞,
1
t

∫ t
0 u(s, x)ds should have a simple formula. The integral

∫ 1
0 uµ(t, x)dt was simulated numer-

ically in [15] for rescaled stochastic KPP equations. In this paper, we find a way to study
the limit of 1

t

∫ t
0 u(s, x)ds as t → ∞ for Equation (1.1). To explain this ergodicity result, we

demonstrate here a special case of Equation (1.1) with c(u) = c(1 − u), the latter c being a
constant and k(t) = k being a constant. In this case the equation is

du(t, x) = (
D

2
∆u(t, x) + c(1 − u)u)dt + kudWt, (1.5)

with initial condition u(0, x) = χx≤0. Define γ =
√

D(2c − k2). We have for any h > 0,

lim
t→∞

1

t

∫ t

0
inf

x≤(γ−h)t
u(s, x)ds = lim

t→∞
1

t

∫ t

0
sup

x
u(s, x)ds = 1 − k2

2c
, a.s.. (1.6)

This result is new in the literature. It is easy to see from (1.3) that on the trough,

lim
t→∞

1

t

∫ t

0
sup

x≥(γ+h)t
u(s, x)ds = 0, a.s.. (1.7)
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It is noted that these limits are true for almost all sample paths.
Our method is first to study the corresponding stochastic ordinary differential equation.

In Section 2, we find its explicit solution Y (t) to the SODE and thereafter we calculate
limt→∞

1
t

∫ t
0 Y (s)ds. In Section 3, we use the Feynman-Kac formula to obtain a comparison

result of the solution u(t, x) to Equation (1.1) and Y (t). So we can use the result in Section
2 to obtain limt→∞

1
t

∫ t
0 u(s, x)ds on the crest.

On the other hand, we study the pathwise property of the solution of a special stochastic
KPP equation (1.5). Note the corresponding stochastic differential equation

dY (t) = c(1 − Y (t))Y (t)dt + kY (t)dWt, (1.8)

has two stationary trajectories in the sense of Mohammed and Scheutzow. These are 0 and
Z(ω) given by

Z(ω) = (c
∫ 0

−∞
exp{(c − 1

2
k2)s + kWs}ds)−1. (1.9)

We can check 0 is unstable and Z(ω) is stable by calculating the Lyapunov exponent at each
point. The pathwise property for the stochastic KPP equation (1.5) we prove in this paper
is that for any h > 0, for x < (γ − h)t and a.e. ω,

|u(t, x, ω) − Z(θt(ω))| → 0 as t → ∞, (1.10)

and for x > (γ + h)t and a.e. ω,

u(t, x, ω) → 0 as t → ∞, (1.11)

where θt is the canonical Brownian shift. Here (1.10) is new while the convergence to 0 result
(1.11) was obtained in [7], [10] and [25]. We should point out here that we only obtain the
pathwise result for stochastic KPP equation (1.5). But we expect this result is true for a
wider class of the stochastic reaction diffusion equations.

In Section 4, we study the convergence of the space derivative of the solution. We prove
that

∫ t
0 |∇u(s, x)|ds converges as t → ∞. Therefore for almost all large t, ∇u(t, x) is small

for almost all (t, x) on the crest and the trough. This result is established by considering the
logarithmic derivative of the solution R(t, x) = −∇ log u(t, x). The space derivatives of the
logarithm of solutions for deterministic heat equations were studied by [20], [26]. The space
derivatives for nonlinear KPP equations were studied by [19] and [28]. For the nonlinear
generalized KPP equations, the fact that u(t, x) ≥ δ on the crest for a constant δ > 0 played
a crucial rule in the study of the space derivatives in [19] and [28]. But this is not true for
the stochastic generalized KPP Equation (1.1). We find in this paper that u(t, x) ≥ δ can
be replaced by (1.6), which is a much weaker requirement.
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2 Some preliminary results for certain related stochas-

tic ordinary differential equations

First we consider the following nonlinear stochastic ordinary differential equation,

dY (t, y) = αY (t, y)(β − Y (t, y)) dt + k(t)Y (t, y) dWt, Y0 = y, (2.1)

where α, β, and y > 0 are constants, Wt is a Brownian motion defined on a probability
space (Ω,F , P ), k(t) is a continuous function of t. It is easy to check Equation (2.1) has the
explicit solution (see e.g. [1])

Y (t, y) =
exp{αβt − 1

2

∫ t
0 k2(r)dr +

∫ t
0 k(r)dWr}

1
y

+ α
∫ t
0 exp{αβs − 1

2

∫ s
0 k2(r)dr +

∫ s
0 k(r)dWr} ds

, t ≥ 0. (2.2)

For simplicity, we assume that limt→∞
1
t

∫ t
0 k2(s)ds exists, and the limit is denoted by k2

m.

Lemma 2.1 Let Y (t) be the solution of Equation (2.1). If αβ > 1
2
k2

m, then for any ε > 0,
there exists t0 > 0 such that,

P{|1
t

∫ t

0
Y (s) ds − (β − k2

m

2α
)| > ε for some t > T} < exp{− α2ε2T 2

32
∫ T
0 k2(r)dr

}, (2.3)

for all T > t0. In particular, as t → ∞,

1

t

∫ t

0
Y (s) ds → β − k2

m

2α
, (2.4)

almost surely.

Proof. It is easily seen that

∫ t

0
Y (s) ds =

1

α
log z(t) − 1

α
log z(0), (2.5)

where z(t) = 1
y0

+ α
∫ t
0 exp(αβs− 1

2

∫ s
0 k2(r)dr +

∫ s
0 k(r)dWr) ds. Define z∗(t) =

∫ t
0 exp(αβs−

1
2

∫ s
0 k2(r)dr) ds. Then it is easy to see that for any sufficiently small ε > 0, there exists

t∗0 > 0 such that for t > t∗0,

k2
m − 1

8
αε ≤ 1

t

∫ t

0
k2(s)ds ≤ k2

m +
1

8
αε, (2.6)

and

∫ t∗0

0
exp(αβs − 1

2

∫ s

0
k2(r)dr) ds ≤ M exp(αβt − 1

2
k2

mt +
1

8
αεt), (2.7)
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for a constant M > 0 and

log(
1

αβ − 1
2
k2

m + 1
8
αε

+ M) ≤ 1

8
αεt. (2.8)

And there exists t∗∗0 > t∗0 such that for t > t∗∗0 ,

exp(αβt∗0 −
1

2
k2

mt∗0 −
1

8
αεt∗0) ≤

1

2
exp(αβt − 1

2
k2

mt − 1

8
αεt), (2.9)

and

log(
1

2(αβ − 1
2
k2

m − 1
8
αε)

) ≥ −1

8
αεt. (2.10)

Therefore for t > t∗0, from (2.6) and (2.7),

z∗(t) =
∫ t

0
exp(αβs − 1

2

∫ s

0
k2(r)dr) ds

=
∫ t∗0

0
exp(αβs − 1

2

∫ s

0
k2(r)dr) ds +

∫ t

t∗0

exp(αβs − 1

2

∫ s

0
k2(r)dr) ds

≤
∫ t∗0

0
exp(αβs − 1

2

∫ s

0
k2(r)dr) ds +

∫ t

t∗0

exp(αβs − 1

2
k2

ms +
1

8
αεs) ds

=
∫ t∗0

0
exp(αβs − 1

2

∫ s

0
k2(r)dr) ds

+
1

αβ − 1
2
k2

m + 1
8
αε

[exp(αβt − 1

2
k2

mt +
1

8
αεt) − exp(αβt∗0 −

1

2
k2

mt∗0 +
1

8
αεt∗0)]

≤ (
1

αβ − 1
2
k2

m + 1
8
αε

+ M) exp(αβt − 1

2
k2

mt +
1

8
αεt). (2.11)

And similarly, from (2.6) and (2.9), for t > t∗∗0 ,

z∗(t) =
∫ t

0
exp(αβs − 1

2

∫ s

0
k2(r)dr) ds

≥
∫ t

t∗0

exp(αβs − 1

2

∫ s

0
k2(r)dr) ds

≥
∫ t

t∗0

exp(αβs − 1

2
k2

ms − 1

8
αεs) ds

=
1

αβ − 1
2
k2

m − 1
8
αε

[exp(αβt − 1

2
k2

mt − 1

8
αεt) − exp(αβt∗0 −

1

2
k2

mt∗0 −
1

8
αεt∗0)]

≥ 1

2(αβ − 1
2
k2

m − 1
8
αε)

exp(αβt − 1

2
k2

mt − 1

8
αεt). (2.12)

Then taking logarithm to (2.11) and (2.12), it is easy to see from (2.8) and (2.10) that for
t > t∗∗0 ,

(αβ − k2
m

2
− 1

4
αε)t ≤ log z∗(t) ≤ (αβ − k2

m

2
+

1

4
αε)t.
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Recall that 1√∫ t

0
k2(r)dr

∫ s
0 k(r)dWr (0 ≤ s ≤ t) is a time changed Brownian motion

X (

∫ s

0
k2(r)dr∫ t

0
k2(r)dr

). Here X (u) is a standard Brownian motion with of time u. Therefore Y(s) =

∫ s
0 k(r)dWr =

√∫ t
0 k2(r)drX (

∫ s

0
k2(r)dr∫ t

0
k2(r)dr

). Define C1 = log α and C2 = log( 1
y0

+ α).

For any ε > 0, take t0 ≥ t∗∗0 such that |C1−log y0|
αt0

< 1
2
ε and |C2−log y0|

αt0
< 1

2
ε. For any T ≥ t0,

define

ΩT = {ω ∈ Ω : − αεT

4
√∫ T

0 k2(r)dr
< X (u) <

αεT

4
√∫ T

0 k2(r)dr
, for all 0 ≤ u ≤ 1}, (2.13)

then from the wellknown Doob’s inequality (see [21])

P{ΩT} > 1 − exp{− α2ε2

32
∫ T
0 k2(r)dr

T 2},

and for each ω ∈ ΩT , and t ≥ T , and s ≤ t,

|Y(s)| = |
∫ s

0
k(r)dWr|

=

√∫ t

0
k2(r)dr|X (

∫ s
0 k2(r)dr∫ t
0 k2(r)dr

)|

≤
√∫ t

0
k2(r)dr

αεT

4
√∫ T

0 k2(r)dr

≤ αεt

4
, (2.14)

for all 0 ≤ s ≤ t. Then it follows easily that for ω ∈ ΩT , and t ≥ T ,

αz∗(t)e−
1
4
αεt ≤ z(t) ≤ (

1

y0

+ α)z∗(t)e
1
4
αεt. (2.15)

It turns out that for ω ∈ ΩT , and t ≥ T ,

(αβ − k2
m

2
− 1

2
αε)t + C1 ≤ log z(t) ≤ (αβ − k2

m

2
+

1

2
αε)t + C2.

So from (2.5), for ω ∈ ΩT , and t ≥ T ,

β − k2
m

2α
− ε

2
+

C1 − log y0

αt
≤ 1

t

∫ t

0
Y (r) ds ≤ β − k2

m

2α
+

ε

2
+

C2 − log y0

αt
.

Then by the definition of t0, we have for ω ∈ ΩT , and all t ≥ T (≥ t0)

β − k2
m

2α
− ε ≤ 1

t

∫ t

0
Y (r) ds ≤ β − k2

m

2α
+ ε.
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So (2.3) follows. ✷

We need to generalize the above result to more general nonlinear SDEs. We have the
following lemma. The key point of the proof is to use a comparison method.

Lemma 2.2 Suppose c ∈ C(R+), and there exist constants a ≥ b > 0 such that by ≤
c(0) − c(y) ≤ ay for all y ≥ 0, and c(0) > k2

m/2. If Y (t) denotes the solution of

dY (t) = Y (t)c(Y (t)) dt + k(t)Y (t) dWt, Y0 = y0 (2.16)

then for any ε > 0, there is t0 = t0(ε) > 0 such that,

P{1

a

(
c(0) − k2

m

2

)
− ε ≤ 1

t

∫ t

0
Y (s) ds ≤ 1

b

(
c(0) − k2

m

2

)
+ ε for all t ≥ T}

> 1 − exp{− a2ε2T 2

32
∫ T
0 k2(r)dr

}, (2.17)

for all T > t0. In particular, for a.e. ω,

1

a

(
c(0) − k2

m

2

)
≤ lim inf

t→∞
1

t

∫ t

0
Y (s) ds ≤ lim sup

t→∞

1

t

∫ t

0
Y (s) ds ≤ 1

b

(
c(0) − k2

m

2

)
.

Proof. If c satisfies the conditions in the lemma, then

ay

(
c(0)

a
− y

)
≤ yc(y) ≤ by

(
c(0)

b
− y

)

for all y ≥ 0. The lemma now follows from the comparison theorem for SDE’s (see e.g. [17])
and Lemma 2.1. ✷

Remark 2.3 (i) We are only interested in the case c(0) > 1
2
k2

m. It is easy to see that if
c(0) < 1

2
k2

m, then Y (t) → 0 as t → ∞ a.s.
(ii) If lim

t→∞
1
t

∫ t
0 k2(s)ds does not exist, we can denote k2

m = lim inf
t→∞

1
t

∫ t
0 k2(s)ds and k̄2

m =

lim sup
t→∞

1
t

∫ t
0 k2(s)ds. If αβ > 1

2
k̄2

m, then the result is

β − k̄2
m

2α
= lim inf

t→∞
1

t

∫ t

0
Y (s)ds ≤ lim sup

t→∞

1

t

∫ t

0
Y (s)ds = β − k2

m

2α
, (2.18)

almost surely. The results in next two sections are still valid with some necessary restatements
as (2.18).

In next section, we will also need the following lemma.
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Lemma 2.4 Assume c(y) is decreasing. Let N(t) be a solution of

d

dt
N(t) = c(N(t))N(t) − 1

2
k2(t)N(t), N(0) = y0. (2.19)

Then there exists t0 > 0 such that for t > t0, the solution to (2.24) satisfies

N(t)e
inf

0≤σ≤t

∫ t

σ
k(r)dWr ≤ Y (t) ≤ N(t)e

sup
0≤σ≤t

∫ t

σ
k(r)dWr

. (2.20)

Proof. Assume Y (t) ≤ N(t)e
sup

0≤σ≤t

∫ t

0
k(r)dWr

is not true for all t > t0 for any t0. Assume t′ is

such a large time that e
sup

0≤σ≤t′

∫ t′

σ
k(r)dWr

> 1 and

Y (t′) > N(t′)e
sup

0≤σ≤t′

∫ t′

σ
k(r)dWr

. (2.21)

It is evident that Y (t′) > N(t′). Define τ such that Y (τ) = N(τ) and Y (s) ≥ N(s) for
τ < s ≤ t′. First note that

N(t′) = N(τ)e
∫ t′

τ
c(N(r))dr− 1

2

∫ t′

τ
k2(r)dr. (2.22)

Then it is easy to see that

Y (t′) = y0e
∫ t′

0
c(Y (r))dr− 1

2

∫ t′

0
k2(r)dr+

∫ t′

0
k(r)dWr

= Y (τ)e
∫ t′

τ
c(Y (r))dr− 1

2

∫ t′

τ
k2(r)dr+

∫ t′

τ
k(r)dWr

≤ N(τ)e
∫ t′

τ
c(N(r))dr− 1

2

∫ t′

τ
k2(r)dre

sup
0≤s≤t′

∫ t′

σ
k(r)dWr

≤ N(t′)e
sup

0≤s≤t′

∫ t′

σ
k(r)dWr

. (2.23)

This contradicts (2.21). Therefore the second inequality in (2.20) is proved. The first part
in (2.20) can be proved similarly. ✷

Consider equation (2.1) with constant k in the remaining part of this section

dY (t, y) = αY (t, y)(β − Y (t, y)) dt + kY (t, y) dWt, Y0 = y. (2.24)

Here W is a one dimensional Brownian motion on Wiener space (Ω,F , P ). That is to say
that Ω is the space of all continuous paths ω : R → R given the topology of uniform
convergence, F is the Borel σ-field, P is the Wiener measure and W is defined by W (t, ω) =
ω(t). It is easy to see that the solution (2.2) of equation (2.24) defines a stochastic flow
Y (s) : (R+ ∪ {0}) × Ω → R+ ∪ {0}. Recall the canonical Brownian shift

θ(t, ω)(s) = ω(t + s) − ω(t).
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Then by flow property we know that W (t + s, ω) = W (s, θtω) + W (t, ω). So

W (s, θtω) = W (t + s, ω) − W (t, ω) (2.25)

Define

Z(ω) = (α
∫ 0

−∞
exp{αβs − 1

2
k2s + kW (s)}ds)−1. (2.26)

Simple calculation shows

Z(θtω) = (α
∫ 0

−∞
exp{αβs − 1

2
k2s + kW (s + t, ω) − kW (t, ω)}ds)−1

=
exp{αβt − 1

2
k2t + kW (t, ω)}

α
∫ 0
−∞ exp{αβ(s + t) − 1

2
k2(s + t) + kW (s + t, ω)}ds

=
exp{αβt − 1

2
k2t + kW (t, ω)}

α
∫ t
−∞ exp{αβs − 1

2
k2s + kW (s, ω)}ds

.

Then it is easy to check that

Y (t, Z(ω), ω) = Z(θt(ω)). (2.27)

According to Mohammed-Scheutzow’s definition of stationary trajectory ([23]), Z(ω) is a
nontrivial stationary trajectory of equation (2.24). One can calculate the Lyapunov exponent
of the linearized equation at the stationary trajectory (c.f. [1]). Moreover, for any y > 0,
consider the derivative flow Vt = DY (t, y)V where V being given and V0 = V . Here D is
the derivative with respect to y. First note that Vt satisfies the following linear stochastic
differential equation, which can be obtained by differentiating equation (2.24),

dVt = α(β − 2Y (t, y))Vtdt + kVtdW (t), V0 = V. (2.28)

Solving equation (2.28) we obtain

Vt = V exp{α
∫ t

0
(β − 2Y (s, y))ds − 1

2
k2t + kW (t)}. (2.29)

It turns out that

lim
t→∞

1

t
log Vt = αβ − lim

t→∞
2α

t

∫ t

0
Y (s, y)ds − 1

2
k2 + lim

t→∞
1

t
kW (t)

= −(αβ − k2

2
) < 0, P.a.s.. (2.30)

Here we used Lemma 2.1 to calculate limt→∞
1
t

∫ t
0 Y (s, y)ds. Similar to [23], there is a sure

event Ω∗ ∈ F with θ(t, .)Ω∗ = Ω∗ for all t ∈ R such that for each ω ∈ Ω∗, for any y > 0, for
the discretized flow Yn,

lim
n→∞

1

n
log |Y (n, y, ω) − Z(θn(ω))| = lim

n→∞
1

n
log |Y (n, y, ω) − Y (n, Z(ω), ω)|

= −(αβ − k2
m

2
) < 0. (2.31)
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But according to [1] (P185), EZ(ω) < ∞. Therefore by Jensen’s inequality, E log+ Z(ω) <
E log(1+Z(ω)) ≤ log(1+EZ(ω)) < ∞. That is to say the integrability condition of Lemma
3.4 in [23] is satisfied. Therefore we can apply the Lemma to pass (2.31) to continuous time
to derive the following lemma.

Lemma 2.5 Let Y (t, y) be the solution of stochastic differential equation (2.24), Z(ω) be
defined by (2.26) and θt be the canonical Brownian shift. Then there is a sure event Ω∗ ∈ F
with θ(t, .)Ω∗ = Ω∗ such that for any y > 0, and for each ω ∈ Ω∗,

lim
t→∞

1

t
log |Y (t, y, ω) − Z(θt(ω))| = −(αβ − k2

2
) < 0. (2.32)

3 Ergodic property and pathwise property of the stochas-

tic KPP equations

We consider the following stochastic KPP equation

du(t, x) =
(

D

2
∆u(t, x) + u(t, x)c(u(t, x))

)
dt + k(t)u(t, x) dWt, u|t=0 = u0, (3.1)

where u0 = χ(−∞,0]. Here Wt is a Brownian motion on the probability space (Ω,F , P ). Recall
k2

m = limt→∞
1
t

∫ t
0 k2(s)ds assuming the limit exists. Assume

Condition (i). Function c(u) is continuous and c(u) ≤ c(0) and c(u) < 0 for u > 1.
Condition (ii). Function c(u) is decreasing.
Condition (iii). There exist constants a ≥ b > 0 such that bξ ≤ c(u) − c(u + ξ) ≤ aξ for

any ξ ≥ 0 and u ≥ 0.
Condition (iv). c(0) > 1

2
k2

m.

Let Br be a Brownian motion in R1 on a probability space (Ω̂, F̂ , P̂ ). Note Br and Wr

are independent. Then u(t, x) satisfies the following Feynman-Kac formula:

u(t, x) = Êu(0, x +
√

DBt)

exp{
∫ t

0
c(u(t − r, x +

√
DBr))dr − 1

2

∫ t

0
k2(r) dr +

∫ t

0
k(r) dWr}. (3.2)

Here Ê is the expectation with respect to the probability measure P̂ .
Recall that under Conditions (i), (ii) and (iv) ([10],[7],[25])

v(t, x) exp
(

inf
0≤σ≤t

∫ t

σ
ks dWs

)
≤ u(t, x, ω) (3.3)

≤ v(t, x) exp

(
sup

0≤σ≤t

∫ t

σ
ks dWs

)
,

10



where v(t, x) is the solution of the following deterministic reaction diffusion equation

∂v

∂t
=

D

2
∆v + v(c(v) − 1

2
k2(t)), v(0, ·, ω) = χ(−∞,0]; (t, x) ∈ R+× R. (3.4)

In this section, we prove some new results about the random travelling waves. First,
from (1.3) it is trivial to see

lim
t→∞

1

t

∫ t

0
u(s, (γ + h)s)ds = 0, (3.5)

for any h > 0. We will investigate the same limit behind the wave front. But generally
speaking, we don’t know whether or not the limit actually exists except in some special
cases (this will be clear later). However we will be able to give the upper limit and lower
limit of 1

t

∫ t
0 u(s, x)ds on the crest as t → ∞. The upper limit is straightforward.

Theorem 3.1 Suppose c satisfies Conditions (i), (ii) and (iii) and let u be the solution of
(3.1). Then for almost all ω,

lim sup
t→∞

1

t

∫ t

0
sup
x∈R

u(s, x) ds ≤ 1

b

(
c(0) − k2

m

2

)
.

Proof. Let Y (t) be the solution of (2.24) with Y (0) = 1. First note that Y (t, x) = Y (t) is
the solution of (3.1) with the initial condition Y (0, x) = 1. Therefore for any τ ≤ t, it is
easy to see

Y (t) = Y (t − τ)e
∫ τ

0
c(Yt−r)dr− 1

2

∫ τ

0
k2(t−r)dr−

∫ τ

0
k(t−r)dWt−r . (3.6)

We will prove 0 ≤ u(t, x) ≤ Y (t, x) = Y (t) for all x ∈ R. Assume it is wrong, then u(t, x) >
Y (t) for certain t and x. Define a stopping time τ = inf{r : u(t− r, x +

√
DBr) ≤ Y (t− r)}.

Then by Markov property of Brownian motion, as c is decreasing,

u(t, x) = Êu(t − τ, x +
√

DBτ )

exp{
∫ τ

0
c(u(t − r, x +

√
DBr))dr − 1

2

∫ τ

0
k2(t − r) dr −

∫ τ

0
k(t − r) dWt−r}

≤ Y (t − τ) exp{
∫ τ

0
c(Y (t − r))dr − 1

2

∫ τ

0
k2(t − r) dr −

∫ τ

0
k(t − r) dWt−r}

= Y (t). (3.7)

Therefore we have desored inequality. The result now follows from Lemma 2.2. ✷

The proof of a lower bound is more complicated. The following lemma is needed.

Lemma 3.2 Assume Conditions (i) and (ii), then a.s.

lim
t→∞

1

t
log u(t, t

√
(2c(0) − k2

m)D) = 0. (3.8)

11



Proof. Let v be the solution of (3.4). Recall (e.g. [9]) that for any ε > 0, there exists t0 > 0
such that

−εt

2
≤ log v(t, t

√
(2c(0) − k2

m)D) ≤ εt

2
, t ≥ t0.

Similar to the proof of Lemma 2.1, for any T ≥ t0, there exists ΩT ⊂ Ω with P{ΩT} >
1 − exp{− ε2

8
∫ T

0
k2(r)dr

T 2}, such that for each ω ∈ ΩT , and t ≥ T ,

|
∫ s

0
k(r)dWr| ≤

εt

2
, (3.9)

for all 0 ≤ s ≤ t. It follows from (3.3) that for all t ≥ T and ω ∈ ΩT ,

−ε <
1

t
log u(t, t

√
(2c(0) − k2

m)D) < ε,

which completes the proof. ✷

Lemma 3.3 Suppose c satisfies Conditions (i), (ii), (iii) and (iv) and let u(t, x) be the
solution of (3.1) and Y (t) be the solution of (2.16) with Y (0) = 1. Let h > 0 be arbitrary.
Then for any λ, there exist t0 > 0 and δ > 0 such that

P{ inf
x<t(γb/a−h)

u(t, x)

Y (t)
≥ 1 − λ, for all t ≥ T} > 1 − exp{−δT}, (3.10)

for any T ≥ t0.

Proof. Let h ∈ (0, γ b
2a

). For any λ > 0, let ε > 0 be small enough such that

λh(c(0) − k2
m

2
)/(4a) − bλε − 2ε ≥ 0. (3.11)

From Lemma 2.2, we know there exists t∗0 > 0 such that for any T ≥ t∗0, there exists Ω1,ε
T ⊂ Ω

with P (Ω1,ε
T ) > 1 − e

− a2ε2( b
2a )2T2

32
∫ b

2a T

0
k2(r)dr such that for any ω ∈ Ω1,ε

T , and for all s ≥ b
2a

T

1

a
(c(0) − k2

m

2
) − ε ≤ 1

s

∫ s

0
Y (r)dr ≤ 1

b
(c(0) − k2

m

2
) + ε (3.12)

From Lemma 3.2 and Lemma 2.4, we know there exist t1 = t1(ε(λ)) and Ω2,ε
T ⊂ Ω for all

T ≥ t1, with P (Ω2,ε
T ) > 1 − e−δ2T for a constant δ2 > 0, such that if ω ∈ Ω2,ε

T ,

u(s, γs) ≥ e−εs, for all s ≥ T, (3.13)

and

e−εs ≤ Y (s)(ω) ≤ eεs, for all s ≥ T. (3.14)

12



It is trivial to see that there is a t2 > 0 such that for all s ≥ t2,

e
− h2s

8D(1− b
a + h

2γ ) + e−
(h− b

2a γ)2

2D
s ≤ λ

4
. (3.15)

Define t0 = max{2a
b
t∗0, t1, t2}. Let T ≥ t0 be arbitrary. Define Ω0,ε

T = Ω1,ε
T ∩ Ω2,ε

T . First, it is

evident that there is a δ > 0 such that P (Ω0,ε
T ) > 1 − e−δT and for any ω ∈ Ω0,ε

T and s ≥ T ,
we have (3.12), (3.13-3.15). Now we shall show that for all ω ∈ Ω0,ε

T , and all t ≥ T ,

inf
x<t(γb/a−h)

u(t, x)

Y (t)
≥ 1 − λ. (3.16)

Suppose (3.16) is false, i.e., there exist λ > 0, ω ∈ Ω0,ε
T and t ≥ T , x∗ = x∗(t) < t(γb/a − h)

such that u(t, x∗(t), ω) ≤ (1−λ)Y (t, ω). Here T and Ω0,ε
T are defined as above. Since u(t, ·, ω)

is decreasing we have that

0 ≤ u(t, (
γb

a
− h)t, ω) ≤ u(t, x∗(t), ω) ≤ (1 − λ)Y (t, ω). (3.17)

For such a t and ω, define a stopping time

τ̂ t = inf{r ≥ 0; X̂ t
r �∈ F},

where

X̂ t
r = (t − r, (γb/a − h)t +

√
DBr).

Here

F = Ft = {(s, x); s > 0, x < γs, u(s, x) ≤ (1 − λ

2
)Y (s)}.

Note τ < t as u(0, x) = 1 = Y0 for x < 0 therefore line s = 0 lies out side of F .
The boundary of F consists of two parts. We denote the part along x = γs by ∂F1 and

the remaining part by ∂F2. Define

Ω̂1 = {ω̂ ∈ Ω̂; X̂ t
τ̂ t ∈ ∂F1, τ̂ t /∈ [(1 − b/a + h/2a)t, (1 − b/2a)t]}

Ω̂2 = {ω̂ ∈ Ω̂; X̂ t
τ̂ t ∈ ∂F1, τ̂ t ∈ [(1 − b/a + h/2a)t, (1 − b/2a)t]},

Ω̂3 = {ω̂ ∈ Ω̂; X̂ t
τ̂ t ∈ ∂F2}.

From the Feynman-Kac formula for u(t, x) and the strong Markov property of Brownian
motions, we see that

u(t, (γb/a − h)t, ω)

= Ê

[
u(X̂ t

τ̂ t) exp

(∫ τ̂ t

0
c(u(X̂ t

r, ω)) dr +
∫ t

t−τ̂ t
k(r) dWr(ω) − 1

2

∫ t

t−τ̂ t
k2(r) dr

)]

=
3∑

i=1

ui(t, (γb/a − h)t, ω),

13



where

ui(t, (γb/a − h)t, ω)

= ÊχΩ̂i
u(X̂ t

τ̂ t , ω)

× exp

(∫ τ̂ t

0
c(u(X̂ t

r, ω)) dr +
∫ t

t−τ̂ t
k(r) dWr(ω) − 1

2

∫ t

t−τ̂ t
k2(r) dr

)
, (3.18)

for i = 1, 2, 3. We shall obtain lower bound on each of the ui’s . It is trivial to see that

u1(t, x) ≥ 0, for any (t, x). (3.19)

To obtain a lower bound on u2(t, (γb/a − h)t) we start by considering the first integral
in the exponential. Since u(r, x) ≤ (1 − λ/2)Y (r) for (r, x) ∈ F , from Conditions (ii) and
(iii), it is easy to see

∫ τ̂ t

0
c(u(X̂ t

r)) dr ≥
∫ τ̂ t

0
c((1 − λ/2)Yt−r) dr ≥

∫ τ̂ t

0
c(Yt−r) dr +

bλ

2

∫ τ̂ t

0
Yt−r dr. (3.20)

Note if s ∈ [(1 − b
a

+ h
2a

)t, (1 − b
2a

)t], then b
2a

t ≤ t − s ≤ ( b
a
− h

2a
)t. It is evident that as

ω ∈ Ω1,ε
T , t ≥ T

bλ

2

∫ s

0
Y (t − r) dr =

bλ

2

(∫ t

0
Y (r) dr −

∫ t−s

0
Y (r) dr

)

≥ bλ

2
[(

1

a
(c(0) − k2

m

2
) − ε)t − ((

1

b
(c(0) − k2

m

2
) + ε)(

b

a
− h

2a
)t]

=
bλ

2
[

h

2ab
(c(0) − k2

m

2
)t − εt − ε(

b

a
− h

2a
)t]

≥ λh

4a

(
c(0) − k2

m

2

)
t − bλεt. (3.21)

Since Y (t) satisfies (3.1) with u0 ≡ 1, there is an implicit Feynman-Kac formula for Y (t).
Using the strong Markov property as above we find that

exp

(∫ τ̂ t

0
c(Yt−r) dr +

∫ t

t−τ̂ t
k(r) dWr −

1

2

∫ t

t−τ̂ t
k2(r) dr

)
= Y (t)(Y (t − τ̂ t))−1. (3.22)

Recall (3.13) and (3.14). As t ≥ 2aT/b, so

u(t − τ̂ t, γ(t − τ̂ t)) ≥ e−ε(t−τ̂ t) > e−εt for all ω̂ ∈ Ω̂2, (3.23)

and

e−ε(t−τ̂ t) ≤ Y (t − τ̂ t)(ω) ≤ eε(t−τ̂ t). (3.24)
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Hence for ω ∈ Ω0,ε
T , and t ≥ T , from (3.18),(3.20-3.22),

u2(t, (γb/a − h)t) ≥ ÊχΩ̂2
Y (t)(Y (t − τ̂ t))−1eλht(c(0)−k2

m/2)/(4a)−bλεt−εt

≥ P̂ (Ω̂2)Y (t)e(λh(c(0)−k2
m/2)/(4a)−bλε−2ε)t

≥ P̂ (Ω̂2)Y (t). (3.25)

We also have that

u3(t, (γb/a − h)t) ≥ ÊχΩ̂3
(1 − λ

2
)Y (t − τ̂ t)e

∫ τ̂ t

0
c(Yt−r) dr+

∫ t

t−τ̂ t k(r) dWr−
∫ t

t−τ̂ t k(r)2 dr/2

ebλ
∫ τ̂ t

0
Yt−r dr/2

≥ P̂ (Ω̂3)(1 − λ

2
)Yt, (3.26)

since Y (t, ω) satisfies an implicit Feynman-Kac formula (3.22) and
∫ s
0 Yt−r dr ≥ 0 for all

s ∈ [0, t].
Note if ω̂ ∈ Ω̂1 and τ < (1− b

a
+ h

2γ
)t, then Xs has to meet x = γs at a time τ ≤ (1− b

a
+ h

2γ
)t.

Therefore (γ b
a
− h)t +

√
DBτ ≥ γ( b

a
− h

2γ
)t. This is followed by

√
DBτ > h

2
t. It turns out

from Doob’s inequality (see [21]) that

P̂{ω̂ ∈ Ω̂1 and τ < (1 − b

a
+

h

2γ
)t}

≤ P̂{
√

DBτ >
h

2
t, and τ < (1 − b

a
+

h

2γ
)t}

≤ P̂{ sup
0≤s≤(1− b

a
+ h

2γ
)t

√
DBs >

h

2
t} ≤ exp{− (h

2
t)2

2D(1 − b
a

+ h
2γ

)t
}

= exp{− h2t

8D(1 − b
a

+ h
2γ

)
}. (3.27)

Similarly, if ω̂ ∈ Ω̂1 and τ > (1− b
2a

)t, then Xs has to meet x = γs at a time τ > (1− b
2a

)t.

Therefore (γ b
a
− h)t +

√
DBτ ≤ γ( b

2a
)t. This is followed by

√
DBτ ≤ (h− b

2a
)t. It turns out

that

P̂{ω̂ ∈ Ω̂1 and τ > (1 − b

2a
)t}

≤ P̂{
√

DBτ ≤ (h − b

2a
)t and (1 − b

2a
)t ≤ τ ≤ t}

≤ P̂{ inf
0≤s≤t

√
DBs < (h − b

2a
γ)t}

≤ exp{−(h − b
2a

γ)2

2D
t}. (3.28)
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Recall (3.15). It is obvious that (3.27) and (3.28) imply P̂ (Ω̂1) ≤ λ
4

as t ≥ T . It follows from

(3.18), (3.19), (3.25) and (3.26) that for ω ∈ Ω0,ε
T , and t ≥ T

u(t, (γb/a − h)t) =
3∑

i=1

ui(t, (γb/a − h)t)

≥ (1 − λ

2
)Y (t)(P̂ (Ω̂2) + P̂ (Ω̂3))

= (1 − λ

2
)Y (t) − (1 − λ

2
)Y (t)P̂ (Ω̂1)

= (1 − λ

2
)Y (t) − λ

4
Y (t)

≥ (1 − 3λ

4
)Y (t), (3.29)

if T is sufficiently large. This contradicts (3.17). Therefore we have proved that for any

λ > 0, and sufficiently large T , if ω ∈ Ω
0,ε(λ)
T and and t ≥ T ,

inf
x<t(γb/a−h)

u(t, x) ≥ (1 − λ)Y (t). (3.30)

✷

Theorem 3.4 Suppose c satisfies Conditions (i), (ii), (iii) and (iv) and u solves the SPDE
(3.1). Let h > 0 be arbitrary. For any ε > 0, there exist t0 = t0(ε) and δ(ε) > 0 such that,

P{1

t

∫ t

0
inf

x<s(γb/a−h)
u(s, x) ds >

1

a

(
c(0) − k2

m

2

)
− ε for all t ≥ T} > 1 − exp{−δT}, (3.31)

for all T ≥ t0

Proof. According to Lemma 3.3 and Lemma 2.2, there exist t1, δ1 > 0 and Ωε
1,T ⊂ Ω with

P (Ωε
1,T ) > 1 − exp{−δ1T} for any T ≥ t1 such that for all s ≥ T and ω ∈ Ωε

1,T ,

inf
x<s(γb/a−h)

u(s, x) > (1 − aε

3(c(0) − k2
m

2
)
)Y (s), (3.32)

and

1

t

∫ t

0
Y (s)ds ≥ 1

a
(c(0) − k2

m

2
) − ε

3
. (3.33)

Let t0 > t1 satisfy

1

t0
ln 2 +

c(0)t1 + t
1
2
0

t0
<

ε

3
. (3.34)
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Then for any T ≥ t0, define

Ω2,T = {ω ∈ Ω : sup
0≤s≤t1

∫ s

0
k(r)dW (r) ≤ T

1
2}. (3.35)

It is easy to see that P (Ω2,T ) > 1 − exp{−δ2T} for a constant δ2 > 0. Moreover, for all
ω ∈ Ω2,T with T ≥ t0,

1

t

∫ t1

0
Y (s)ds <

ε

3
. (3.36)

for all t ≥ T .
So for T ≥ t0, define ΩT = Ω1,T ∩ Ω2,T . It is easy to see P (ΩT ) > 1 − exp{−δT} for a

costant δ > 0 and ω ∈ ΩT ,

1

t

∫ t

0
inf

x<s(γb/a−h)
u(s, x)ds ≥ 1

t

∫ t

t1
inf

x<s(γb/a−h)
u(s, x)ds

≥ (1 − aε

3(c(0) − k2
m

2
)
)
1

t

∫ t

t1
Y (s)ds

= (1 − aε

3(c(0) − k2
m

2
)
)
1

t
(
∫ t

0
Y (s)ds −

∫ t1

0
Y (s)ds)

≥ (1 − aε

3(c(0) − k2
m

2
)
){1

a
(c(0) − k2

m

2
) − ε

3
− ε

3
}

>
1

a
(c(0) − k2

m

2
) − ε, (3.37)

for all t ≥ T . Here we have used (3.32), (3.33) and (3.36). The proof is completed. ✷

Remark 3.5 (i). Although the solutions of the stochastic generalized KPP equations may
not converge as time and space tend to ∞, Theorem 3.4 tells us that the time average grows
linearly with time for large time. In some special case, 1

t

∫ t
0 u(s, x)ds converges on the crest.

For this see Remark 3.5 (ii). It is trivial to see 1
t

∫ t
0 u(s, x)ds converges to zero on the trough.

(ii). Note that if a = b, i.e. if c is linear, we find that for any h > 0 almost all ω ∈ Ω,

lim
t→∞

1

t

∫ t

0
inf

x<(γ−h)s
u(s, x) ds = lim

t→∞
1

t

∫ t

0
sup
x∈R

u(s, x) ds = c(0) − k2
m

2
. (3.38)

Now we consider the following stochastic KPP equation (3.1) when c(u) = c(1− u), and
k is a constant

du(t, x) =
(

D

2
∆u(t, x) + cu(t, x)(1 − u(t, x))

)
dt + ku(t, x) dWt, u|t=0 = u0, (3.39)

where u0 = χ(−∞,0]. Here Wt is a Brownian motion on the Wiener space (Ω,F , P ), and c is
a constant.
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Theorem 3.6 Let u(t, x) be the solution of (3.39) and θt be the canonical Brownian shift.
Then

lim
t→∞

sup
x<(γ−h)t

|u(t, x, ω) − Z(θtω)| = 0, P.a.s (3.40)

for any h > 0. Here γ =
√

2D(c − k2
m

2
) and Z(ω) is given by

Z(ω) = (c
∫ 0

−∞
exp{(c − 1

2
k2)s + kW (s)}ds)−1. (3.41)

Proof. Let Y (t) = Y (t, 1). The proof follows from Lemma 2.5, Lemma 3.3 and the inquality
u(t, x) ≤ Y (t) immediately. ✷

4 Behaviour of the derivatives

It is easy to see that the solution u(t, x) is C2 in x for all t > 0 and almost all ω ∈ Ω (see
[25]). Let R(t, x) = −D∇ log u(t, x) for t > 0, then it is easy to verify that R(t, x) satisfies
the following Burgers’ equation for t > 0 and a.e. ω ∈ Ω:

∂

∂t
R(t, x) + R(t, x)∇R(t, x) =

D

2
∆R(t, x) + c′(u(t, x))u(t, x)R(t, x). (4.1)

Let yr be the solution of the following stochastic differential equation up to explosion time

dyr =
√

DdBr − R(t − r, yr)dr, y0 = x. (4.2)

Here Br is a Brownian motion on the probability space (Ω̂, F̂ , F̂r, P̂}. See [8] for explosion
time.

We first prove that yr is nonexplosive.

Lemma 4.1 Assume Conditions (i) and (ii). Then for any t > 0, the solution yr to the
Equation (4.2) is nonexplosive up to any time t0 < t for almost all ω̂ and ω.

Proof. We fix t > 0. Let

Et = e−
1
2

∫ t

0
k2(r)dr+

∫ t

0
k(r)dWr (4.3)

and

V(t, x) = u(t, x)E−1
t . (4.4)

Then V satisfies the following reaction diffusion equation (see [25]),

∂

∂t
V(t, x) =

D

2
∆V + c(EtV)V , (4.5)

V(0, x) = u0(x) = χx≤0.

18



Applying Feynman-Kac formula, we have for any x,

V(t, x) = Êu0(xt)e
∫ t

0
c(Et−rV(t−r,xr))dr

≤ ec(0)tÊu0(xt)

≤ M(t). (4.6)

Here M(t) = ec(0)t, xt = x +
√

DB(t), B(t) is a Brownian motion on the probability space
(Ω̂, F̂ , P̂ ) and Ê is the expectation with respect to P̂ . As c(u) is decreasing, so

c(Et−rV(t − r, xr)) ≥ c(Et−rM(t − r)). (4.7)

Therefore

V(t, x) ≥ Êu0(xt)e
∫ t

0
c(Et−rM(t−r))dr

= e
∫ t

0
c(Et−rM(t−r))drH(t, x). (4.8)

Here H(t, x) is the solution of the heat equation ∂
∂t

H(t, x) = D
2
∆H(t, x) with H(0, x) = χx≤0.

It is easy to see that H(t, x) is decreasing with respect to x, so for all x ≤ 0,

H(t, x) ≥ H(t, 0) =
∫ 0

−∞

1√
2πDt

e−
y2

2Dt dy =
1

2
. (4.9)

It follows from (4.8) and (4.9) that for all x ≤ 0,

V(t, x) ≥ 1
2
e
∫ t

0
c(Et−rM(t−r))dr. (4.10)

On the other hand, V(t, x) satisfies

V(t, x) =
∫

R
pt(y, x)u0(y)dy +

∫ t

0

∫
R

pt−r(y, x)c(ErV(r, y))V(r, y)dydr, (4.11)

where

pt(y, x) =
1√

2πDt
e−

(y−x)2

2Dt .

Differentiating (4.11) with respect to x, we have

∇xV(t, x) =
∫

R
(∇xpt(y, x))u0(y)dy +

∫ t

0

∫
R
(∇xpt−r(y, x))c(ErV(r, y))V(r, y)dydr. (4.12)

It follows that there exists a constant C > 0 such that

|∇v(t, x)| ≤
∫

R

1√
Dt

√
(y − x)2

Dt
pt(y, x)u0(y)dy
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+
∫ t

0

∫
R

1√
D(t − r)

√√√√ (y − x)2

D(t − r)
pt−r(y, x)c(ErV(r, y))V(r, y)dydr

≤ C√
t

∫
R

1√
4πDt

e−
(y−x)2

4Dt u0(y)dy

+
∫ t

0

C√
t − r

∫
R

1√
4πD(t − r)

e−
(y−x)2

4D(t−r) dy max{c(0), |c(ErM(r))|}M(r)dr

≤ C√
t

+ C
∫ t

0

max{c(0), |c(ErM(r))|}M(r)√
t − r

dr. (4.13)

It then follows from (4.10) and (4.13) that for any x ≤ 0,

|R(t, x)| = | − ∇u(t, x)

u(t, x)
| = | − ∇V(t, x)

V(t, x)
|

≤
C√
t
+ C

∫ t
0

max{c(0),|c(ErM(r))|}M(r)√
t−r

dr

1
2
e
∫ t

0
c(Et−rM(t−r))dr

≤ (
2C√

t
+ 2CE(t, ω))e−

∫ t

0
c(Et−rM(t−r))dr. (4.14)

Here E(t, ω) is bounded for almost all ω and so R(t, x) is bounded for almost all ω ∈ Ω for
any x ≤ 0.

Now it is easy to see ∇V(t, x) ≤ 0 (this is because u(0, x) is nonincreasing and can
be approximated by a regular and nonincreasing function. Then directly differentiating
Equation (4.5) with the regular initial condition and using the Feynman-Kac formula, we
can easily see the space derivative is nonpositive. The claim follows then from taking the
limit.) Therefore R(t − r, yr) ≥ 0. Integrating (4.2), we have

ys =
√

DBs −
∫ s

0
R(t − r, yr)dr ≤

√
DBs. (4.15)

That is to say ys cannot be explosive to +∞ at any finite time ω̂ almost surely and for all
ω. But according to (4.14), the solution cannot be explosive to −∞ at any time s ≤ t0 < t
ω̂ almost surely and for almost all ω ∈ Ω as the drift −R(t− r, yr) is bounded for almost all
ω, yr < 0 and r ≤ t0 < t. Here t0 is any time t0 < t. ✷

Before we prove the main theorem of this section, we present some priori estimate for
v(t, x) which will be used in the proof. Here v(t, x) was defined by eqauation (3.4). We don’t
strive to get the best possible estimates here. By comparison, under Conditions (i) and (ii),
it is easy to see

v(t, x) ≤ 1. (4.16)

Therefore c(v) ≥ 0. It follows that

v(t, x) = Êu0(xt)e
∫ t

0
c(v(t−s,xs))ds− 1

2

∫ t

0
k2(s)ds
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≥ e−
1
2

∫ t

0
k2(s)dsÊu0(xt)

= e−
1
2

∫ t

0
k2(s)ds

∫ 0

−∞

1√
2πDt

e−
(y−x)2

2Dt dy

= e−
1
2

∫ t

0
k2(s)ds

∫ − x√
Dt

−∞

1√
2π

e−
y2

2 dy.

It is easy to see if x ≤ 1,

v(t, x) ≥ 1√
2π

e−
1
2

∫ t

0
k2(s)ds

∫ − 1√
Dt

−∞
e−

y2

2 dy

≥ 1√
2π

e−
1
2

∫ t

0
k2(s)ds

√
Dt

Dt + 1
e−

1
2t .

Here we used a wellknown inequality
∫ ∞
a e−

y2

2 dy ≥ 1
a+ 1

a

e−
a2

2 (see e.g. [21]). Therefore if

x ≤ 1,

log v(t, x) ≥ log
1√
2π

− 1

2

∫ t

0
k2(s)ds +

1

2
log Dt − log(Dt + 1) − 1

2Dt

≥ log
1√
2π

− log 2 − 1

2
log Dt − 1

2

∫ t

0
k2(s)ds − 1

2Dt
. (4.17)

And if x > 1,

v(t, x) ≥ 1√
2π

e−
1
2

∫ t

0
k2(s)ds 1

x√
Dt

+ 1
x√
Dt

e−
x2

2Dt

=
1√
2π

x
√

Dt

x2 + Dt
e−

1
2

∫ t

0
k2(s)ds− x2

2Dt .

It turns out that for 1 ≤ x ≤ γt,

log v(t, x)

≥ log
1√
2π

+ log x +
1

2
log Dt − log(x2 + Dt) − 1

2

∫ t

0
k2(s)ds − x2

2Dt

≥ log
1√
2π

− log(γ2 + D) +
1

2
log D − 1

2
log t − 1

2

∫ t

0
k2(s)ds − γ2

2D
t. (4.18)

We are going to prove the main theorem of this section. In addition to Conditions (i)-(iv),
set

Condition (v). For any u > 0, c′(u) ≤ −d0 for a constant d0 > 0.

Theorem 4.2 Assume Conditions (i)-(v). There exist t0 > 0 and C1 > 0, C2 > 0 and δ > 0,
such that,

P{ω ∈ Ω : sup
x≤( b

a
γ−h)t

|∇u(t, x)

u(t, x)
| ≤ C1 exp{−C2

√
t for all t ≥ T} > 1 − exp{−δT}, (4.19)
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and

P{ω ∈ Ω :
∫ ∞

t
sup

x≤( b
a
γ−h)t

|∇u(s, x)|ds ≤ C1 exp{−C2

√
t} for all t ≥ T}

> 1 − exp{−δT}, (4.20)

for any T > t0, and h > 0.

Proof. Recall R = −D∇ log u, ys is defined by (4.2) and R satisfies (4.1). Similar to [28],
applying Ito’s formula, we can prove that R(t−s, ys) exp{∫ s

0 c′(u(t− r, yr))u(t− r, yr)dr} is a
martingale with respect to F̂s on (Ω̂, F̂ , F̂s, P̂} for 0 ≤ s < t. Then by martingale property
we have for a.e. ω ∈ Ω,

R(t, x) = ÊR
(

t

2
, y t

2

)
exp

{∫ t
2

0
c′(u(t − r, yr))u(t − r, yr)dr

}
.

Note by integration by parts formula, Ito’s formula and (4.1),

∫ t
2

0
R(t − s, ys) exp

{∫ s

0
c′(u(t − r, yr))u(t − r, yr)dr

}
ds

=
t

2
R

(
t

2
, y t

2

)
exp

{∫ t
2

0
c′(u(t − r, yr))u(t − r, yr)dr

}

−
∫ t

2

0
(s) exp

{∫ s

0
c′(u(t − r, yr))u(t − r, yr) dr

}

×
[
− ∂

∂s
R(t − s, rs) +

√
D∇R(t − s, ys)dBs −∇R(t − s, ys)R(r − s, ys)ds

+
D

2
∆R(t − s, ys)ds + c′(u(t − s, ys))u(t − s, ys)ds

]

=
t

2
R

(
t

2
, y t

2

)
exp

{∫ t
2

0
c′(u(t − r, yr))u(t − r, yr)dr

}

−
√

D
∫ t

2

0
(s) exp

{∫ s

0
c′(u(t − r, yr))u(t − r, yr) dr

}
∇R(t − s, ys)dBs.

It turns out that

R(t, x) =
2

t
Ê

∫ t
2

0
R(t − s, ys) exp

{∫ s

0
c′(u(t − r, yr))u(t − r, yr)dr

}
ds

+
2
√

D

t
Ê

∫ t
2

0
(s)∇R(t − s, ys) exp

{∫ s

0
c′(u(t − r, yr))u(t − r, yr) dr

}
dBs

=
2

t
Ê

∫ t
2

0
R(t − s, ys) exp

{∫ s

0
c′(u(t − r, yr))u(t − r, yr) dr

}
ds .
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Applying Cauchy-Schwarz inequality we have

|R(t, x)| ≤
√

2√
t

(
Ê

∫ t
2

0
< R(t − s, ys), R(t − s, ys) >

exp
{
2

∫ s

0
c′(u(t − r, yr))u(t − r, yr) dr

}
ds

) 1
2

. (4.21)

Now we establish some preliminary estimate for R(t, x). Let J(t, x) = −D log u(t, x),
then we can check that J satisfies the following nonlinear stochastic Hamilton Jacobi Bellman
equation,

dJ(t, x) +
1

2
|∇J(t, x)|2dt =

D

2
∆J(t, x)dt + c(u)dt − 1

2
k2(t)dt + k(t)dWt. (4.22)

Applying Itô’s formula to J(t − r, yr) for 0 ≤ r < t we have

dJ(t − r, yr) = − ∂

∂r
J(t − r, yr) dr + ∇J(t − r, yr)(

√
DdBr − R(t − r, yr) dr)

+
D

2
∆J(t − r, yr) dr

=
√

D∇J(t − r, yr) dBr −
1

2
〈∇J(t − r, yr),∇J(t − r, yr)〉 dr

−c(u(t − r, yr)) dr +
1

2
k2(t − r)dr − k(t − r)dWt−r .

For any integer N , let τN = inf {s ∈ [0, t] : |∇J(t − r, yr)| ≥ N} and τN = ∞ if |∇J(t − r, yr)| <
N for any 0 ≤ s ≤ t. Therefore

J
(
t −

(
t

2
∧ τN

)
, y t

2
∧τN

)
− J(t, x)

=
√

D
∫ t

2
∧τN

0
∇J(t − r, yr) dBr −

1

2

∫ t
2
∧τN

0
〈∇J(t − r, yr),∇J(t − r, yr)〉 dr

−
∫ t

2
∧τN

0
c(u(t − r, yr)) dr +

1

2

∫ t
2
∧τN

0
k2(t − r)dr −

∫ t
2
∧τN

0
k(t − r)dWt−r.

Taking expectations and noticing that
∫ t

2
∧τN

0 ∇J(t − r, yr) dBr is a martingale we have

1

2
Ê

∫ t
2
∧τN

0
〈∇J(t − r, yr),∇J(t − r, yr)〉 dr

= J(t, x) − ÊJ
(
t −

(
t

2
∧ τN

)
, y t

2
∧τN

)

−Ê
∫ t

2
∧τN

0
c(u(t − r, yr)) dr +

1

2

∫ t
2
∧τN

0
k2(t − r)dr −

∫ t
2
∧τN

0
k(t − r)dWt−r.
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Let N → ∞ we obtain

1

2
Ê

∫ t
2

0
〈∇J(t − r, yr),∇J(t − r, yr)〉 dr

= J(t, x) − ÊJ
(

t

2
, y t

2

)
− Ê

∫ t
2

0
c(u(t − r, yr)) dr

+
1

2

∫ t
2

0
k2(t − r)dr −

∫ t
2

0
k(t − r)dWt−r. (4.23)

From Condition (iii), it is easy to see −c(u) ≤ a(u− 1) < au. Recall (4.17) and (4.18). It is
easy to see that there exist constants δ > 0, M > 0 and Ω1

T ⊂ Ω with P (Ω1
T ) > 1−exp{−δT}

such that for ω ∈ Ω1
T , and t ≥ T , and x ≤ γt,

inf
s≤s≤t

∫ s

0
k(r)dWr ≥ −M

8
t, (4.24)

− log v(t, x) ≤ M

8
t, (4.25)

sup
s≤s≤t

∫ s

0
k(r)dWr ≤ M

4
t, (4.26)

−Ê
∫ t

2

0
c(u(t − r, yr)) dr ≤ aÊ

∫ t
2

0
u(t − r, yr)dr

≤ a
∫ t

2

0
sup

y
u(t − r, y)dr

≤ M

4
t, (4.27)

|
∫ t

2

0
k(t − r)dWt−r| ≤ M

4
t. (4.28)

It follows from (4.24-4.26), (4.16) and (3.3) that if ω ∈ Ω1
T , and t ≥ T , and x ≤ γt,

J(t, x) ≤ M

4
t, (4.29)

−ÊJ(
t

2
, y t

2
) ≤ M

4
t. (4.30)

It turns out from (4.23), (4.27-4.30) that if ω ∈ Ω1
T , and t ≥ T , and x ≤ γt, then

1

2
Ê

∫ t
2

0
〈∇J(t − r, yr),∇J(t − r, yr)〉 dr ≤ Mt.

Therefore by (4.21) we have if ω ∈ Ω1
T , and t ≥ T , and x ≤ γt,

|R(t, x)| ≤ 2
√

M. (4.31)

Now we are in a position to estimate R(t, x) on the crest. Denote yr the solution of (4.2)
with y0 = x = ( b

a
γ − h)t. Denote K1 = {(s, y) : y ≤ ( b

a
γ − 1

2
h)s}. Define for each ω ∈ Ω1

T ,

τ = inf{s : (t − r, yr) �∈ K1}.
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Then if τ ≤
√

t, the process (t − r, yr) meets the line y = ( b
a
γ − 1

2
h)s with yτ = ( b

a
γ −

1
2
h)(t − τ) ≥ ( b

a
γ − 1

2
h)(t −

√
t) ≥ ( b

a
γ − 1

4
h)t for t > t0 where t0 is a constant such that

( b
a
γ − 1

2
h)
√

t < 1
4
ht for all t > t0. Notice also (4.31), we have for t > t0 (we require t0 large

enough such that 2
√

Mt ≤ 1
8
ht for all T > t0) and all ω ∈ Ω1

T , and t ≥ T ,

P̂{τ ≤
√

t}

≤ P̂{ max
0≤r≤

√
t
yr ≥

1

4
ht}

= P̂{ max
0≤r≤

√
t
{
√

DBr −
∫ r

0
R(t − s, ys)ds} ≥ 1

4
ht}

≤ P̂{ max
0≤r≤

√
t

√
DBr ≥

1

8
ht}

≤ exp{− h2

128D
t

3
2}.

Therefore we have for T > t0 and each ω ∈ Ω1
T , t ≥ T ,

R(t, x) = ÊR(t − τ ∧ t

2
, yτ∧ t

2
) exp{

∫ τ∧ t
2

0
c′(u(t − r, yr))u(t − r, yr)dr}

= Êχτ≤
√

tR(t − τ, yτ ) exp{
∫ τ

0
c′(u(t − r, yr))u(t − r, yr)dr}

+Êχ√
t<τ≤ t

2
R(t − τ, yτ ) exp{

∫ τ

0
c′(u(t − r, yr))u(t − r, yr)dr}

+Êχτ> t
2
tR(

t

2
, y t

2
) exp{

∫ t
2

0
c′(u(t − r, yr))u(t − r, yr)dr}.

It turns out using (4.31) that for T > t0 and each ω ∈ Ω1
T , t ≥ T ,

|R(t, x)| ≤
√

2MP̂ (τ ≤
√

t))

+
√

2MÊχ√
t<τ≤ t

2
exp{−d0

√
t(

1√
t

∫ √
t

0
u(t − r, yr)dr)}

+
√

2MÊχτ> t
2
t exp{−d0t

2
(
1
t
2

∫ t
2

0
u(t − r, yr)dr)}.

Recall Theorem 3.4, then for T > t0 and each ω ∈ Ω1
T , t ≥ T ,

|R(t, x)| ≤
√

2M exp{− h2

128D
t

3
2}

+
√

2MÊχ√
t<τ≤ t

2
exp{−d0

√
t(

1√
t

∫ √
t

0
inf

y≤( b
a
γ− 1

2
h)(t−r)

u(t − r, y)dr)}

+
√

2MÊχτ> t
2
t exp{−d0

t

2
(
1
t
2

∫ t
2

0
inf

y≤( b
a
γ− 1

2
h)(t−r)

u(t − r, y)dr)}
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≤
√

2M exp{− δ2

128
t

3
2}

+
√

2M exp{−d0
1

2a
(c(0) − k2

2
)
√

t}

+
√

2M exp{−d0
1

2a
(c(0) − k2

2
)
t

2
}

≤ C1 exp{−C2

√
t},

for constants C1 > 0 and C2 > 0. That is to say for each ω ∈ Ω1
T and T ∗ > t ≥ T > 0,

∫ T ∗

t
sup

x≤( b
a
γ−h)s

|∇u(s, x)|ds

≤
∫ T ∗

t
C1 exp{−C2

√
s} sup

x≤( b
a
γ−h)s

u(s, x)ds

≤ C1 exp{−1

2
C2

√
t}

∫ T ∗

t
exp{−1

2
C2

√
s}d(

∫ s

t
sup

x≤( b
a
γ−h)r

u(r, x)dr)

≤ C1 exp{−1

2
C2

√
t} exp{−1

2
C2

√
T ∗}

∫ T

t
sup

x≤( b
a
γ−h)r

u(r, x)dr

+
1

2
C1C2 exp{−1

2
C2

√
t}

∫ T ∗

t

1√
s

exp{−1

2
C2

√
s}

∫ s

t
sup

x≤( b
a
γ−h)r

u(r, x)drds

≤ C3 exp{−1

2
C2

√
t}T ∗ exp{−1

2
C2

√
T ∗} + C3 exp{−C2

√
T ∗},

for a constant C3 > 0. Therefore taking the limit T ∗ → +∞,∫ ∞

t
sup

x≤( b
a
γ−h)s

|∇u(s, x)|ds ≤ 2C3 exp{−C2

√
t}.

✷

Remark 4.3 One can improve exp{−C2

√
t} in (4.20) to exp{−C2t

r} for any 0 < r < 1.
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