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Abstract: The performance of principal component analysis suffers badly
in the presence of outliers. This paper proposes two novel approaches for ro-
bust principal component analysis based on semidefinite programming. The
first method, maximum mean absolute deviation rounding, seeks directions
of large spread in the data while damping the effect of outliers. The second
method produces a low-leverage decomposition of the data that attempts
to form a low-rank model for the data by separating out corrupted observa-
tions. This paper also presents efficient computational methods for solving
these semidefinite programs. Numerical experiments confirm the value of
these new techniques.
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1. Introduction

Principal component analysis (PCA), proposed in 1933 by Hotelling [30], is a
common technique for summarizing high-dimensional data. Principal compo-
nents are designed to identify directions in which the observations vary most.
As a consequence, PCA is often used to reduce the dimension of the data.

Statistics based on variance, such as principal components, are highly sensi-
tive to outliers [53]. The literature on robust statistics contains a wide variety of
techniques that attempt to correct this shortcoming [32]. Unfortunately, many
of these approaches are based on intractable optimization problems or lack a
principled foundation.

Our focus in this work is to develop new formulations for robust PCA that can
be solved efficiently using convex programming algorithms. Our first proposal,
which we call maximum mean absolute deviation rounding (MDR), exchanges
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the variance in the definition of PCA with a function less sensitive to outliers
known as the mean absolute deviation. Although this formulation leads to a non-
convex optimization problem, we demonstrate that it is possible to approximate
the optimum by relaxing to a semidefinite program and randomly rounding the
solution. This method can be viewed as the first provably good approximation
algorithm for a nontrivial instance of projection-pursuit PCA [35].

Our second proposal uses a different semidefinite program to split the input
data into the sum of a low-leverage matrix and a matrix of corrupted obser-
vations. We refer to this dissection as a low-leverage decomposition (LLD) of
the data. This method is similar in spirit to the rank-sparsity decomposition of
Chandrasekaran et al. [9]. While preparing this manuscript, we learned of an in-
dependent investigation into this formulation of robust PCA by Xu et al. [56, 57].

We describe algorithms that solve these semidefinite programs efficiently, and
we provide numerical experiments that confirm the effectiveness of these new
techniques. We begin with a brief overview of our proposals before laying out
the details in Sections 2 and 3.

1.1. The data model

Suppose that we have a family {xi}ni=1 of n observations in p dimensions. We
form an n × p data matrix X whose rows are the observations. We assume
the observations are centered; that is, 1

n

∑
i xi ≈ 0. While our methods do not

explicitly require centered data, this hypothesis allows us to interpret principal
components as directions of high variance in the data. We discuss practical
centering approaches in Section 5.

1.2. Maximizing the mean absolute deviation

Our first method is designed to mitigate a source of sensitivity in classical prin-
cipal component analysis. The top principal component vPCA is defined as a
direction of maximum variance in the data:

vPCA = argmax
‖v‖2=1

n∑

i=1

|〈xi,v〉|2 . (1)

The squared inner products in (1) may give outlying points an outsized influence.
Simply put, squaring a large number results in a huge number that may drag
the principal component away from the bulk of the data. We can reduce this
effect by replacing the squared inner product with a measure of spread that is
less sensitive to deviations outside the bulk of the data. We propose the use of
the absolute value of the inner product:

vMD = argmax
‖v‖2=1

n∑

i=1

|〈xi,v〉| , (2)
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where we have added the subscript MD to indicate that we have exchanged the
variance in equation (1) with a measure of spread known as the mean absolute
deviation (MD) [32, p. 2].

This revision results in some complications. The formulation (1) is an eigen-
vector problem that can be solved efficiently. In contrast, it is NP-hard to com-
pute vMD (see Section 2.3). Nevertheless, we develop an efficient randomized
algorithm that provably computes an approximate solution to (2). We call this
approach maximum mean absolute deviation rounding (MDR).

Our main result, Theorem 2.2, states that, for any failure probability δ > 0
and loss factor ε > 0, our algorithm produces a unit-norm vector vMDR such
that

n∑

i=1

|〈xi,vMDR〉| ≥ (1− ε)

√
2

π
max

‖v‖2=1

n∑

i=1

|〈xi,v〉| .

We find additional robust principal components by restricting the data to a sub-
space perpendicular to the previous components and solving (2) again, repeating
this process as necessary.

The algorithm requires the solution to a semidefinite program whose size
is polynomial in the number of observations. Since semidefinite programs are
solvable in polynomial time using interior-point methods, our algorithm is the-
oretically tractable. In practice, solving semidefinite programs can be daunting
even for moderately sized input data—say, more than 100 observations. To ad-
dress this issue, we detail a technique of Burer and Monteiro [6, 7] that can
usually solve our proposal efficiently. In Section 5 we provide some numerical
evidence that this approach succeeds.

This proposal is not without precedent. A more general formulation appears
in Huber’s book [31, p. 203], and it is now known as projection-pursuit PCA
(PP-PCA) [35]. The formulation (2) was rediscovered recently in [34], indicating
contemporary interest in this approach. We provide further detail on PP-PCA
in Section 2.2 and discuss the history of the method in Section 4.1.

1.3. A low-leverage decomposition

Our second proposal stems from a different interpretation of classical principal
component analysis. Instead of viewing classical principal components as direc-
tions of maximum variance, we can view them as an optimal low-rank model
for the data [8]. Suppose P ⋆ is a matrix that solves

minimize ‖X − P ‖F
subject to rank(P ) = T.

The dominant principal components of X are given by the T right singular
vectors of P ⋆ corresponding to the largest T nonzero singular values of P ⋆.

With real data, one is often faced with the situation where entire observations
are corrupted. Even when this is the case, we would still like to recover a low-
rank model. A natural formulation for identifying a low-rank model is based
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on the well-known heuristics for rank sparsity [20] and group sparsity [47]. We
propose to decompose the data matrix as X = P LLD + CLLD by solving the
semidefinite program

minimize
∑

i σi(P ) + γ
∑

j ‖cj‖2
subject to P +C = X.

(3)

Here, σi(P ) is the ith singular value of P , and ci is the ith row of C.
We view the optimal matrix P LLD as a surrogate for the low-rank approxima-

tion to the uncorrupted data, and the optimal matrixCLLD as an approximation
of the corrupted data. The formulation (3) has an interesting property even when
P LLD is not low-rank or CLLD is not row-sparse: P LLD is guaranteed to be a
low-leverage set of observations in a sense we make precise in Section 3.1. As a
result, we refer to X = P LLD+CLLD as a low-leverage decomposition (LLD) of
the data. We define the LLD components as the right singular vectors of P LLD.

This optimization problem is similar to the rank-sparsity decomposition prob-
lem proposed in [9]; see also [8]. We discuss these ideas at more length in Sec-
tion 4. As this manuscript was being prepared, we learned of an independent
investigation of the program (3) for robust PCA by Xu et al. [56, 57] that pro-
vides conditions for recovery of the support of the corruption and the row-space
of the uncorrupted observations.

1.4. Qualitative observations

Our experiments in Section 5 clearly demonstrate that our proposals are robust.
Qualitatively, we find that MDR is less sensitive to outliers than PCA, while
LLD is nearly insensitive to outliers. This suggests that MDR and LLD apply
in different situations; we discuss this point and other conclusions in Section 6.

1.5. Roadmap

Sections 2 and 3 describe our proposals in more detail, including theoretical
guarantees and practical algorithms. Section 4 offers an overview of previous
work on robust PCA, while Section 5 gives numerical experiments illustrating
the performance of our methods in various settings. We offer some conclusions in
Section 6, and include a technical appendix with the proofs of some supporting
results.

1.6. Notation

We work exclusively with real numbers. Bold capital letters refer to matrices
while bold lower-case letters are vectors. We represent the ith row of a matrix
A by ai and the jth entry of a vector a by aj . When clarity is required, the
notation [A]ij gives the (i, j)th matrix entry, while [a]i gives the ith vector

entry. The matrix A has adjoint A∗ and Moore–Penrose pseudoinverse A†.
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Table 1

Summary of the norms used in this work

Norm Description Description of Dual

‖A‖2→2 Maximum singular value of A Sum of the singular values of A

‖A‖2→∞
Maximum ℓ2 row norm of A Sum of the ℓ2 row norms of A

‖A‖1→∞
Maximum absolute entry of A Sum of the absolute entries of A

We use the compact convention for the singular value decomposition (SVD)
of a matrix: when A has rank r, we write its SVD as A = UΣV ∗, where U and
V have orthonormal columns, and Σ is a nonsingular diagonal matrix whose
entries are positive and are arranged in weakly decreasing order. The notation
A < B denotes that the difference A−B is positive semidefinite.

We use ∂ for the subgradient map of a convex function. For background on
subgradients, and convex analysis in general, we refer to the book [48].

The symbols P and E denote probability and expectation, respectively.

1.6.1. Norms

For 1 ≤ p < ∞, the ℓp norm of u is ‖u‖p = (
∑

i |ui|p)1/p, while the ℓ∞
norm of u is ‖u‖∞ = maxi |ui|. The Frobenius norm of a matrix is defined

by ‖A‖2F = 〈A,A〉, where 〈·, ·〉 represents the standard inner product.
We define the ℓp → ℓq operator norm and its dual respectively by

‖A‖p→q = sup
‖u‖p=1

‖Au‖q, and ‖B‖∗p→q = sup
‖A‖p→q=1

〈B,A〉 .

Table 1 describes some of the specific operator norms used in this work. We also
use the norms ‖A‖2→1 and ‖A‖∞→1 and their duals, which lack such simple
descriptions; see Sections 2.3 and 2.4.

2. Maximum mean absolute deviation rounding

Our first method is based on the classical interpretation of the top principal
component as the direction of maximum empirical variance in multidimensional
data. It is well known that the variance is highly sensitive to outliers in the
data [53]. The field of robust statistics has reacted by developing and analyzing
robust measures of spread known as robust scales; see [32, Ch. 5] or [40, Sec.
2.5]. This literature describes a generic method for determining robust princi-
pal components by replacing the variance with a robust measure of scale. Li
and Chen [35] published the first investigation of this proposal under the name
projection-pursuit PCA (PP-PCA). Our proposal is a specific instance of PP-
PCA with the mean absolute deviation scale (4). We show that this formulation
is computationally intractable, but we develop an algorithm that provably ap-
proximates its solution. To our knowledge, this is the first rigorous algorithm
for PP-PCA with a robust scale.
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2.1. Scales

A scale is a function that measures the spread of one-dimensional data [32,
Ch. 5]. The most common scale is the empirical standard deviation, defined1 as

std(y) =

(∑

i

y2i

)1/2

= ‖y‖2,

where we assume the data y is centered. Of course, the standard deviation is
not the only way to measure the spread of the data. An alternative proposal [32,
p. 2] is the mean absolute deviation (MD). For centered data y, the MD scale
is defined as

MD(y) =
∑

i

|yi| = ‖y‖1. (4)

More generally, a scale is a function S : Rn → R such that S(αy) = |α|S(y).
Scales are typically chosen so that they are less sensitive to outliers than the
standard deviation. The robust statistics literature focuses on scales that have a
positive breakdown point: the value of the scale cannot be arbitrarily corrupted
by nefariously chosen observations, so long as the fraction of bad observations
in the entire data set is small. Although the mean absolute deviation has a
breakdown point of zero, it exhibits more efficient behavior than the standard
deviation under contaminated distributions [53].

2.1.1. Scales for multivariate data

We extend the definition of scales to multivariate observations by considering
the scale of the data in a given direction. For a unit Euclidean norm vector u,
the entries of the product Xu give the projections of the rows of X onto the
direction u. Note that if X is centered in the sense of Section 1.1, then the
projection Xu is also centered by linearity.

We then define the scale of X in the direction u to be the scale of the
projected data S(Xu). As noted in [31], this definition is equivariant under an
orthogonal change of basis: for any orthogonal matrix Q, the scale of X in the
direction u is equal to the scale of XQ∗ in the direction Qu.

2.2. Projection-pursuit PCA

Classically, the top principal component is defined as the direction where the
empirical standard deviation in the data is largest:

vPCA = argmax
‖v‖2=1

std(Xv). (5)

1One usually defines scales so that they are unbiased estimates of the sample standard
deviation when the data is drawn from a normal distribution. We are interested in the direction
of maximal scale, not the value of the scale in this direction, so we can safely ignore the
normalization factor.
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One natural approach for finding robust components replaces the standard de-
viation in (5) with a robust scale S(·). The robust component is then defined as
the direction of maximum robust scale

vPP = argmax
‖v‖2=1

S(Xv).

We define further robust components inductively by adding orthogonality con-
straints:

v
(k)
PP = argmax

‖v‖2=1

v⊥v
(j)
PP for j<k

S(Xv). (6)

This greedy method for constructing orthogonal components based on robust
scales goes by the name projection-pursuit PCA. While this scheme was orig-
inally proposed by Huber [31, p. 203], it was first studied in detail by Li and
Chen [35]. The fact that PP-PCA reduces to PCA when the scale is given by
the standard deviation is a consequence of the variational characterization of
eigenvectors by Courant and Fischer.

As we discuss in Section 2.6.1, the orthogonal restriction step is straight-
forward to implement using standard techniques from numerical linear algebra.
Therefore, the crux of any PP-PCA method involves the computation of a single
direction of maximum scale. As we will see immediately, this computation is a
rather thorny issue in the case of the MD scale.

2.3. PP-PCA with the MD scale is NP-hard

Finding the top classical principal component is an eigenvector problem that
amounts to computing the direction where the ℓ2 → ℓ2 norm is achieved. Simi-
larly, PP-PCA with the MD scale amounts to finding a vector that achieves an
operator norm. Indeed, the problem vMD = argmax‖v‖2=1 ‖Xv‖1 is equivalent
to the problem

Find vMD such that ‖XvMD‖1 = ‖X‖2→1 and ‖vMD‖2 = 1. (7)

Unfortunately, exchanging the ℓ2 norm for the ℓ1 norm leads to an NP-hard
computational problem. To see this, we require the following result, which we
establish in the Appendix.

Fact 2.1. For each matrix X, the identity ‖X‖22→1 = ‖XX∗‖∞→1 holds.

Rohn [49] shows that there exists a class of positive matrices M such that the
existence of a polynomial-time algorithm for accurately computing ‖M‖∞→1 for
all M ∈ M implies P = NP. Since we can factor positive matrices M = RR∗ in
polynomial time using, for example, a Cholesky factorization, the existence of
an accurate polynomial-time algorithm that computes ‖R‖22→1 for any matrix
R implies that P = NP.

The observation that Equation (6) is NP-hard to solve for the specific choice
S(·) = ‖·‖1 has grave implications for existing PP-PCA algorithms. The algo-
rithms available in the literature for PP-PCA [11, 13, 35] are general schemes
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that operate with any choice of scale S. As a result, it is unlikely that these al-
gorithms provide both accurate and efficient solutions to the PP-PCA problem.
This issue is not merely theoretical because these algorithms tend to perform
poorly in practice. We discuss this point further in Section 4.1, and refer the
interested reader to a comparative study of Maronna [39].

2.4. Approximating the ℓ2 → ℓ1 norm using randomized rounding

Although it is NP-hard to compute the ℓ2 → ℓ1 norm, it is possible to approx-
imate its value efficiently. This fact is a consequence of the little Grothendieck
theorem [46, Sec. 5b], but our procedure depends on ideas of Nesterov [44] and
a new factorization step.

2.4.1. The semidefinite relaxation of the ℓ2 → ℓ1 norm

Before describing our algorithm, we show how the computation of ℓ2 → ℓ1
operator norm can be relaxed to a semidefinite program. First, apply Fact 2.1
to change the computation of the ℓ2 → ℓ1 norm to the computation of the
ℓ∞ → ℓ1 norm:

‖X‖22→1 = ‖XX∗‖∞→1 = max
‖y‖

∞
=1

y∗XX∗y. (8)

The second identity above follows from the proof of Fact 2.1; see also [49, Prop.
1]. Interpreting the quadratic form on the right hand side of (8) as a trace

implies that ‖X‖22→1 is the optimal value of the (nonconvex) program

maximize trace(XX∗Z)

subject to Z = yy∗, [Z]ii = 1 for all i.

Relaxing the rank one constraintZ = yy∗ to the positive-semidefinite constraint
Z < 0 leads to the semidefinite program

maximize trace(XX∗Z)

subject to Z < 0, [Z]ii = 1 for all i.
(9)

It follows that ‖X‖2→1 ≤ α⋆, where α2
⋆ is the optimal value of (9). Moreover,

Grothendieck’s inequality for positive-semidefinite matrices implies that

α2
⋆ ≤ π

2
‖XX∗‖∞→1, (10)

where this inequality is asymptotically the best possible [2, Sec. 4.2]. Thus, α⋆

is within a factor of
√
π/2 < 1.26 of the true value of the norm ‖X‖2→1.
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2.5. The MDR algorithm

The fact that equation (9) gives us a good upper bound on the value of ‖X‖2→1

is of secondary importance. Rather, we seek an approximation for vMD defined
in (7), that is, we desire a vector v⋆ with ‖v⋆‖2 = 1 and ‖Xv⋆‖ ≈ ‖X‖2→1.
We accomplish this goal via a randomized procedure that rounds an optimal
solution Z⋆ of (9) back to a vector v⋆. The entire procedure is detailed in
Algorithm 1.

The first step of the algorithm solves the semidefinite relaxation (9), and we
factor the optimal matrix in Step 2. In Step 3(a), we use a Gaussian rounding
procedure determine a random sign vector y ∈ {±1}n such that the equation
E ‖XX∗y‖1 = 2α2

⋆/π holds. This procedure is well understood [44]. The method
in Step 3(b) that we use to compute v from y is novel; the proof of correctness
appears in the appendix. By choosing the best random outcome, Step 4 controls
the probability that our method fails to provide a reasonable approximation.

The following theorem describes the behavior of Algorithm 1.

Theorem 2.2. Suppose that X is an n× p matrix, and let K be the number of
rounding trials. Let (v⋆, α⋆) be the output of Algorithm 1. Then α⋆ ≥ ‖X‖2→1.
Moreover, for θ < 1, the inequality

‖Xv⋆‖1 > θ

√
2

π
α⋆

holds except with probability e−2K(1−θ2)/π.

In Theorem 2.2, it may be more natural to specify a failure probability δ > 0
and approximation loss ε = 1− θ > 0 instead of a repetition number K. In this
case, simple algebra shows that ‖Xv⋆‖1 > (1 − ε)

√
2/π ‖X‖2→1 except with

Algorithm 1: Maximum Mean Absolute Deviation Rounding

Input: An n× p matrix X; repetition count K.
Output: A p× 1 unit Euclidean norm vector v⋆ and an optimal value α⋆.

1. Find Z⋆ that solves the semidefinite program

maximize trace(XX∗Z)

subject to Z < 0, [Z]ii = 1 for i = 1, . . . , n
(11)

Set α⋆ to be the square root of the optimal value: α⋆ =
√

trace(XX∗Z⋆).
2. Factor Z⋆ = R⋆R

∗

⋆.
3. For each k = 1, . . . ,K, do

(a) Set y(k) = sgn(R⋆g
(k)), where g(k) is an n× 1 standard normal random

vector.

(b) Set v(k) = X∗y(k)/
∥

∥X∗y(k)
∥

∥

2
.

4. Set v⋆ = argmaxk=1,...,K

∥

∥Xv(k)
∥

∥

1
.
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probability δ, so long as

K ≥ π

2
· log(1/δ)
ε(2− ε)

= O
(
ε−1 log(δ−1)

)
.

In particular, we achieve ‖Xv⋆‖1 > 0.75‖X‖2→1 with probability at least 0.999
by the choice K = 94.

2.5.1. Implications of approximation guarantees

The approximation guarantee of Theorem 2.2 shows that, with high probability,
the unit vector v⋆ nearly maximizes the MD scale over the unit sphere. It does
not, however, guarantee2 that the vector v⋆ is close (in, say, the Euclidean norm)
to a unit vector that achieves ‖X‖22→1. Put another way, Theorem 2.2 ensures
that our component v⋆ achieves a near-optimal direction for the MD scale, but
it says nothing about the orientation of this near-optimal direction with respect
to some truly optimal direction.

This distinction should not be unnerving: our original motivation was the
identification of a direction with large spread in the MD scale, and this is pre-
cisely the assurance Theorem 2.2 provides.

Our algorithm can provide even stronger approximation bounds in some in-
stances. By virtue of the relaxation, the constant α⋆ generated by an instance
of Algorithm 1 is an upper bound on the norm ‖X‖2→1. Therefore, we use the
approximation ratio

ρ :=
1

α⋆
‖Xv⋆‖1 ≤ ‖Xv⋆‖1

‖XvMD‖1
to measure the quality of the optimal solution in Section 5.

We clearly must have ρ ≤ 1, but Theorem 2.2 only guarantees that we achieve
ρ ≈ 0.79 with high probability. In practice, however, we typically see ρ > 0.95,
which certifies that v⋆ is a very good proxy for the direction of maximum devia-
tion in the observations. This empirical result does not indicate that the analysis
of Algorithm 1 is loose: it follows directly from [2, Sec. 4.2] that this bound is
asymptotically tight for a class of examples as n → ∞.

2.6. Implementation of Algorithm 1

For a fixed iteration count K, the complexity of Algorithm 1 is typically domi-
nated by Step 1. Modern interior-point methods applied to (11) are guaranteed
to compute the optimal objective value α⋆ and optimal point Z⋆ accurately in
polynomial time. The factor R⋆ may then be determined using a Cholesky fac-
torization of Z⋆. In practice, interior-point methods are very slow for large-scale
problems, so we prefer an algorithm of Burer and Monteiro [6, 7].

2There is an exception to this rule. If the optimal matrixZ⋆ generated by (11) has rank one,
it is easy to check that the output v⋆ of Algorithm 1 satisfies ‖Xv⋆‖1 = α⋆ with probability
one—that is, we have solved the PP-PCA problem exactly. This feature is typical of schemes
that involve a semidefinite relaxation of a rank-one constraint.
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The algorithm of Burer and Monteiro never forms the semidefinite matrix Z;
rather it operates directly with the Cholesky factor R. We express the objective
function of (11) in terms of R as trace(XX∗RR∗) = ‖X∗R‖2F. The constraints
[Z]ii = 1 are equivalent to constraints on the rows of R of the form ‖ri‖2 = 1.

We implicitly enforce these row constraints by incorporating them into the
objective function (cf. [6, Sec. 4.2]). The resulting unconstrained, nonconvex
optimization problem takes the form

maximizeR ‖X∗N (R)‖2F, (12)

where N (R) denotes the operator that normalizes the rows of R, that is,
[N (R)]ij = [ri]j/‖ri‖2.

We then apply a conjugate gradient algorithm to maximize the unconstrained
objective in (12). Our particular implementation uses the algorithm of Hager
and Zhang [29], which we have found to work well in our experiments. We
refer to our online code for the choice of parameters in this conjugate gradient
algorithm [41].

This factorization technique for solving (11) is advantageous in part because
it reduces the dimension of the problem. The paper [7] shows that restricting R

to be an n× k matrix for k = O(
√
n) suffices to solve this problem exactly. To

be precise, when k =
⌊
(1 +

√
9 + 8n)/2

⌋
any local minimum R⋆ ∈ R

n×k of (12)
gives a global minimum Z⋆ of (11) via the map Z⋆ = R⋆R

∗
⋆, provided a mild

technical condition3 holds.

2.6.1. Orthogonal restriction

Algorithm 1 approximates only the first principal component in (2). In order
to approximate the kth robust principal component for k > 1, we define a
new matrix Xk by restricting the rows of X to the subspace perpendicular to
the span of v1, . . . ,vk−1. Ignoring numerical stability issues, we can inductively
define

Xk = Xk−1 −Xvk−1v
∗
k−1 = X

(
I−

k−1∑

j=1

vjv
∗
j

)
, (13)

which ensures each row of X is orthogonal to the previous components vj for
j < k. We then apply Algorithm 1 to the restricted matrix Xk to produce the
component vk. Since the output v⋆ of Algorithm 1 is a linear combination of
the rows of the input matrix by Step 3(b), this iterative procedure ensures that
vk is perpendicular to the previous components.

In practice, we implement the orthogonal restriction using Householder re-
flectors as in [13]; see [52] for further background on the implementation of
Householder transformations. Householder reflectors are more numerically sta-
ble than the näıve method (13).

3Specifically, the objective function trace(XX∗Z) must not be constant along a face of
the feasible set.
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2.7. Extending the rounding to multiple components

We have also attempted to extract a collection of robust components simul-
taneously by solving a single semidefinite program. That is, we would like to
simultaneously solve for T components by optimizing

maximize
∑T

i=1 ‖Xvi‖1
subject to 〈vi,vj〉 = δij

, (14)

where δij is the Kronecker delta function. When T = 1, equation (14) is equiv-
alent to equation (2). When T > 1, the restriction 〈vi,vj〉 = δij ensures that
the optimum occurs at an orthogonal set of unit vectors.

We rephrase this optimization problem as the equivalent quadratically con-
strained quadratic program

maximize
∑n

i=1 w
∗
iXvi

subject to diag(wiw
∗
i ) = 1, 〈vi,vj〉 = δij

(15)

The diagonal restrictions on wi ensure that wi ∈ {±1}n for each i = 1, . . . , n.
The nonconvex problem (15) can be approximated via a semidefinite relaxation
and rounding scheme proposed in [43]. The results of [51] imply that the optimal
value of this relaxation is guaranteed to be larger than the optimal value of (14)
by no more than a logarithmic factor. As the rounding procedure in [43] does
not produce orthogonal vectors, we apply an additional orthogonalization step
so that the output is feasible for (14). Empirically, we have found that the
orthogonalization increases the objective value over the standard rounding, so
it appears that there is no loss in applying a näıve orthogonalization procedure.

Unfortunately, this method does not appear to be competitive with the pro-
jection pursuit method. The vectors we find by coupling Algorithm 1 with the
orthogonal pursuit of Section 2.6.1 are feasible for (14) and typically provide a
larger objective value than rounding coupled with post-processing orthogonal-
ization. A better rounding procedure for this type of relaxation may prove more
effective than the projection-pursuit approach; this is a direction for further
research.

3. The low-leverage decomposition

Our second method is derived from the interpretation of principal component
analysis as a matrix approximation problem. When the observations are drawn
from a highly correlated family, the singular values of the data matrix X tend
to decay rapidly. When this is the case, the matrix X is well approximated by
a low-rank matrix P .

It is rare that a large data set is compiled without error, but the errors may
only affect a subset of the observations. We can model these errors through a
multi-population model: we assume the bulk of the observations is well explained
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Algorithm 2: Low-Leverage Decomposition

Input: An n×p data matrix X; desired number T of principal components.
Output: A p× T matrix V ⋆ with orthogonal columns.

1. Find (P ⋆,C⋆) that solve

minimize(P ,C) ‖P ‖∗2→2 + γ‖C‖∗2→∞

subject to P +C = X

2. Compute the SVD P ⋆ = UΣV ∗.
3. Set V ⋆ to the first T columns of V , that is, set

[V ⋆]ij = [V ]ij for i = 1, . . . , p, and j = 1, . . . , T.

by a low-rank model while the remainder come from another population or are
corrupted by measurement noise. Under this model, it is prudent to separate
the corrupted data from the uncorrupted data before attempting to recover a
low-rank model. When the corrupted rows are unknown, this task may seem
daunting.

To accomplish this goal, we propose a semidefinite program that decomposes
the input X into two matrices:

minimize(P ,C) ‖P ‖∗2→2 + γ‖C‖∗2→∞

subject to P +C = X.
(16)

The norm ‖P ‖∗2→2 is the sum of the singular values of P and is known to
promote low-rank solutions [20], while ‖C‖∗2→∞ is the sum of the ℓ2 norms of
the rows of C and promotes group sparsity of the rows [47]. The quantity γ is
a positive number that reflects the relative importances of these two priorities.

We call the optimal matrix pair (P ⋆,C⋆) for the problem (16) the low-
leverage decomposition (LLD) of X; we can interpret C⋆ as an identified cor-
ruption and P ⋆ as a surrogate for the uncorrupted observations. We define our
robust components as the right singular vectors of the surrogate matrix P ⋆. The
detailed procedure appears in Algorithm 2. We show in Section 3.1 that our re-
covered data matrix P ⋆ has the additional property of being a low-leverage set
of observations.

The LLD formulation is related to recent proposals [8, 9], and we discuss this
point more in Section 4.2.

As we were preparing this manuscript, we became aware of independent
work [56, 57] that also proposes (16) for the robust PCA problem. This work
shows that, under certain hypotheses, the recovered low-rank data P ⋆ has the
same row-space as the true data and the corrupted rows are correctly identi-
fied. While this paper was under review, we were further made aware of another
similar proposal (under the name low-rank representation) used for a robust
subspace segmentation problem [37].
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3.1. Leverage scores and properties of the decomposition

In this section, we demonstrate that (16) extracts a low-leverage model for the
data. This result follows from duality arguments that characterize the optimum
of the convex program.

3.1.1. Leverage scores

The leverage score of the observation xi corresponding to the ith row of X is
given by the number [H ]ii, where H = X(X∗X)†X∗ is the orthoprojector
onto the column space of X. In accord with common statistical parlance, we
refer to H as the hat matrix.

A large leverage score tends to indicate that the corresponding observation
lies outside of the bulk of the data, although it does not necessarily indicate that
the point is influential in linear regression. This interpretation follows from the
use of the hat matrix in least-squares regression. The hat matrix gains its name
from the fact that it “puts the hat” on an observation—that is, it projects an
observation onto a least-squares regression surface. A diagonal element [H]ii is
a measure of the influence that the ith observation has on the regression surface.
We refer to [42, Ch. 6] for further discussion of leverage scores.

The following theorem shows that the leverage scores of our decomposition
are bounded above by γ2, justifying the name low-leverage decomposition for
Algorithm 2.

Theorem 3.1. Suppose (P ⋆,C⋆) is an optimal point of the program (16). Then
the diagonal elements of the hat matrix H⋆ = P ⋆(P

∗
⋆P ⋆)

†P ∗
⋆ are bounded above

by γ2.

We establish Theorem 3.1 in Section 3.1.2 below. Theorem 3.1 demonstrates
that our proposal provides a method for decomposing a data matrix X into a
component with a (user-specified!) upper bound on the leverage plus an error
term. Moreover, this result gives a statistical interpretation to the regularization
parameter γ in (16).

We note that, while the program (16) guarantees a low-leverage decomposi-
tion, an assumption of suitably small leverage is a technical hypothesis in other
works, e.g., [8, eq. (1.2)].

The reader should be warned that this method does not necessarily produce
a low-leverage solution if we use our program to identify outlying data and then
“prune” the rows. That is, suppose (P ⋆,C⋆) is an optimal point of (16) and
ci = 0 for row indices i ∈ I. Then the corresponding matrix XI = P I does not
necessarily have leverage scores bounded above by γ2. Rather, we interpret P ⋆

as a set of statistically “nice” observations that we use to build our principal
components.

3.1.2. Proof of Theorem 3.1

We require some background results to prove the theorem.
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Lemma 3.2 (First-order optimality conditions for (16)). A feasible pair (P ,C)
is optimal for (16) if and only if there exists a matrix Q such that

〈Q,P 〉 = ‖P ‖∗2→2, ‖Q‖2→2 ≤ 1 (17a)

−〈Q,C〉 = γ‖C‖∗2→∞, ‖Q‖2→∞ ≤ γ, (17b)

Proof. It follows from standard subgradient conditions that a feasible point
(P ,C) minimizes the functional in (16) if and only if zero is in the subgradi-
ent ∂(‖P ‖∗2→2 + γ‖X − P ‖∗2→∞). By the additivity of subgradients [48, Thm.
23.8], this condition holds if and only if there exists a matrix Q such that the
subgradient conditions Q ∈ ∂‖P ‖∗2→2 and −Q ∈ ∂(γ‖C‖∗2→∞) are in force. We
show that these subgradient conditions are equivalent to (17).

The rest of the proof demonstrates that Q ∈ ∂‖P ‖∗2→2 is equivalent to (17a).
We omit the analogous proof of equivalence between −Q ∈ ∂(γ‖C‖∗2→∞) and
relation (17b).

By definition of the subdifferential, Q ∈ ∂‖P ‖∗2→2 if and only if for every
perturbation ∆ the subgradient inequality

〈Q,∆〉 ≤ ‖P +∆‖∗2→2 − ‖P ‖∗2→2 (18)

holds. Suppose first that (17a) holds. Then, for all ∆, we have

〈Q,∆〉 = 〈Q,P +∆〉 − ‖P ‖∗2→2 ≤ ‖Q‖2→2‖P +∆‖∗2→2 − ‖P ‖∗2→2,

where the inequality follows by the definition of dual norms. Since ‖Q‖ ≤ 1 by
assumption, the subgradient inequality (18) must hold.

To establish the converse, we must show that the subgradient inequality (18)
implies (17a). To this end, assume (18) holds for all perturbations ∆. Taking
the specific choice ∆ = P gives 〈Q,P 〉 ≤ ‖P ‖∗2→2, while ∆ = −P gives the
reverse inequality 〈Q,P 〉 ≥ ‖P ‖∗2→2. Therefore the subgradient inequality (18)
implies 〈Q,P 〉 = ‖P ‖∗2→2, which is the first relation of (17a).

To show the second relation, we take a nonzero perturbation ∆ that sat-
isfies 〈Q,∆〉 = ‖Q‖2→2‖∆‖∗2→2; such a matrix ∆ must always exist in finite
dimensions since suprema are attained in the trace definition of norms. Then
the subgradient inequality (18) implies

‖Q‖2→2‖∆‖∗2→2 ≤ ‖P +∆‖∗2→2 − ‖P ‖∗2→2 ≤ ‖∆‖∗2→2

where the second relation follows by the triangle inequality. Since ∆ 6= 0, we
have shown that the subgradient inequality implies ‖Q‖2→2 ≤ 1. Hence Q ∈
∂‖P ‖∗2→2 is equivalent to (17a), as claimed.

Before continuing, we introduce another fact concerning the subgradient
∂‖P‖∗2→2. Let P = UΣV ∗ be the compact SVD of P . It follows from [54]
that Q ∈ ∂‖P‖∗2→2 implies Q = UV ∗ +W , where, in particular, UV ∗W = 0.
With this background, we now establish 3.1.
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Proof of Theorem 3.1. From the characterization of the subgradient of unitar-
ily invariant norms discussed above [54], we know that Q = UV ∗ + W with
UV ∗W ∗ = 0. Thus,

QQ∗ = UU∗ +WW ∗
< UU∗ = H⋆,

where the last equality can be easily checked using the definition of H⋆ and
the SVD of P ⋆. Since the diagonal entries of a positive-semidefinite matrix are
nonnegative, this relation implies [H⋆]ii ≤ [QQ∗]ii. Recall that the ℓ2 → ℓ∞
operator norm is the maximum ℓ2 row norm of the matrix. Thus relation (17b)
of Lemma 3.2 implies that [QQ∗]ii ≤ γ2, which completes the proof.

3.1.3. The choice of γ

In this section, we study how the value of the regularization parameter γ affects
the properties of the decomposition. We begin by showing that, when γ ≥ 1,
the degenerate solution (P ⋆,C⋆) = (X,0) minimizes (16). This claim follows
by explicit construction of a dual certificate.

Let UΣV ∗ be the compact SVD of X, and define Q = UV ∗. Clearly
〈Q,X〉 = ‖X‖∗2→2, so Q satisfies (17a) with P ⋆ = X. By construction, the
maximum singular value of Q is bounded above by one. Equivalently, QQ∗

4 I.
This inequality implies [QQ∗]ii ≤ 1. Since the diagonal entries of QQ∗ are the
squared Euclidean row norms of Q, we have shown that ‖Q‖2→∞ ≤ 1 ≤ γ.
This bound demonstrates that Q satisfies (17b) with C⋆ = 0, which certifies
optimality of this degenerate solution by Lemma 3.2.

We now show that the regularization parameter γ gives an upper bound on
the rank of the optimal P ⋆. It is easy to show using the SVD of P ⋆ that the trace
of the hat matrix H defined above is equal the rank of P ⋆. Since [H]ii ≤ γ2 by
Theorem 3.1, we must have

rank(P ⋆) = trace(H) ≤ nγ2. (19)

The rank is a positive integer, so γ < 1/
√
n implies that the optimal P ⋆ is trivial.

Moreover, in order to get T meaningful components in Step 2 of Algorithm 2,
we require rank(P ⋆) ≥ T . Thus, we can limit ourselves to situations where
γ ∈ [

√
T/n, 1].

Inequality (19) has implications for the numerical solution of (16). As we
discuss in Section 3.2, the bulk of the computation comes from computing an
SVD at each iteration. When the solution of the optimization problem has low
rank, the iterates also tend to have low rank. This allows us to save significant
computational effort by computing partial singular value decompositions at each
step. A judicious choice of γ can increase the performance of our algorithm
immensely. We find that taking nγ2 ≈ T 2 is a useful heuristic for achieving a
rank-T optimal solution, so long as n ≫ T 2.

On the other hand, typical statistical data does not show true low-rank be-
havior even when there are no outliers. Therefore, forcing the optimal decompo-
sition to be low rank typically results in a dense corruption C⋆. This effect may
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be mitigated somewhat by another formulation we discuss briefly in Section 3.3.
In practice we find that setting γ somewhat less than

√
p/n, say γ = 0.8

√
p/n,

provides good principal components, but it does poorly in the context of out-
lier identification. We discuss specific parameter choices for our experiments in
Section 5.

3.2. Computing the low-leverage decomposition

Although general-purpose semidefinite programming software such as CVX [26,
27] can solve small instances of (16) efficiently, the interior-point methods they
utilize may be unable to complete even a single iteration of a large-scale problem.
This observation indicates that we need to use different methods for large-scale
problems.

To solve (16), we recommend an alternating direction augmented Lagrangian
algorithm analogous to the one used in [8]; see also [36]. The generic form of the
method is known as the Augmented Lagrangian Method of Multipliers (ALMM)
that, according to [19], first appears in [23, 24]. The augmented Lagrangian
for (16) with dual variable Q is given by

Lµ(P ,C,Q) = ‖P ‖∗2→2 + γ‖C‖∗2→∞+

〈X − P −C,Q〉+ µ

2
‖X − P −C‖2F.

Given the initial starting point P 0 = 0, we alternately solve

Ck+1 = argmin
C

Lµ(P
k,C,Qk), and

P k+1 = argmin
P

Lµ(P ,Ck+1,Qk)

and then update the multiplier by the feasibility gap Qk+1 = Qk + µ(X −
P k+1 − Ck+1). The minimizations above have an explicit form in terms of
shrinkage operations [10].

Ck+1 = RowShrink

(
X − P k +

1

µ
Qk,

γ

µ

)
(20a)

P k+1 = SpecShrink

(
X −Ck+1 +

1

µ
Qk,

1

µ

)
. (20b)

Here, the operator RowShrink(A, ν) soft-thresholds each row ai of A.

RowShrink(·, ν) : A 7−→ diag([1 − ν/‖ai‖2]+) ·A,

where [x]+ = max{x, 0}. Similarly SpecShrink(A, ν) soft-thresholds the singular
values of A.

SpecShrink(·, ν) : UΣV ∗ 7−→ U [Σ− νI]+ V ∗,
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where the operator [·]+ is applied elementwise. Inspired by the parameter choices
of [36], we initialize the algorithm with P 0 = 0 and set the parameter µ =√
np/‖X‖∗2→∞. We stop the algorithm when the iterates are nearly feasible,

that is,
∥∥X − P k −Ck

∥∥ < 10−7‖X‖F.
The major cost when running this algorithm involves computing the spectral

shrinkage operator in (20b). When the iterates P k have low rank, we can save
significant computational effort by performing only partial singular value de-
compositions as suggested by [36]. We can leverage our analysis in Section 3.1.3
to ensure that the optimal P ⋆ is low rank. Since the algorithmic iterates tend
to have low rank when the optimal point has low rank, we may improve the
performance of our algorithm by choosing γ to limit the rank of the optimal
solution. In practice, we have found that one should set the quantity nγ2 some-
what larger than the desired rank of the solution, e.g., nγ2 ≈ T 2 when we desire
a rank-T iterates.

3.3. Extensions for a noisy model

We note that there is an obvious extension of the LLD when one wants to
account for an additional of noise in the model. Suppose that in addition to
gross corruptions of certain observations, we would also like to account for small
corruptions or noise that may be spread throughout the data.

Instead of enforcing the equality X = P + C, we allow for some additional
slack of the form ‖X − P −C‖F ≤ η, where η is an estimate for the noise level.
That is, we solve the problem

minimize ‖P ‖∗2→2 + γ‖C‖∗2→∞

subject to ‖X − P −C‖F ≤ η
(21)

When η = 0, this is equivalent to our proposal (16) for the gross corruption
model. Loss functions other than the Frobenius norm are also possible, but
the Frobenius norm is invariant to a change of the observation basis, a feature
of (16) that we would like to preserve.

This formulation is also studied in the independent work [56, 57]. It is shown
there that under some restrictive technical conditions, the decomposition in (21)
above results in an optimal P ⋆ that is close to a matrix with the same row
space as the true observations, and an optimal C⋆ that is close to a matrix that
correctly identifies the column support of the corruption.

4. Previous work

This section describes previous work on robust formulations for principal com-
ponent analysis. Convex approaches to robust PCA are unusual, and, as a con-
sequence, many other attempts at robust PCA lack rigorous algorithms. Many
proposals couple a mathematical formulation with a heuristic algorithm; others
introduce an algorithm without any mathematical foundation.



Two proposals for robust PCA 1141

In Sections 4.1 and 4.2, we describe the methods in the literature that are
most closely related to our proposals. We then detail an approach for robust
PCA recommended by Maronna [39]. We conclude this section with a short
overview of other robust PCA proposals that have appeared in the literature.

4.1. Antecedents for MDR: Projection pursuit PCA

Our MDR proposal is a particular instance of an approach that has come to
be known as projection-pursuit PCA (PP-PCA). The theoretical properties of
PP-PCA are well understood; see for instance [14] and [13].

All of the algorithms we have found in the literature for computing PP-
PCA are meant to operate with an arbitrary scale. In view of the fact that the
PP-PCA problem is NP-hard, it is unsurprising that the literature contains no
PP-PCA algorithms with proofs of correctness and tractability. Indeed, we have
been unable to find other work that recognizes that the PP-PCA problem is
intractable in a rigorous sense.

The original study of Li and Chen [35] uses a Monte Carlo approach that
was found to be computationally expensive. In theory, even simple Monte Carlo
methods (e.g., randomly sampling the unit sphere) can produce arbitrarily good
solutions to problem (5) with an arbitrary (continuous) scale. Given the compu-
tational hardness of the problem, however, it is unlikely that näıve Monte Carlo
approaches can provide guarantees of computational efficiency. In contrast, one
may view MDR as a sophisticated Monte Carlo approach for a specific instance
of PP-PCA.

Some recent algorithms for PP-PCA rely on heuristics. A popular and fast
algorithm for generic projection-pursuit PCA is the finite direction method of
Croux and Ruiz-Gazen [13]. This technique replaces the search over the entire
unit sphere {v | ‖v‖2 = 1} with a finite search over the directions that appear
among the observations: v ∈ {x1/‖xi‖2, . . . ,xn/‖xn‖2}. The hope is that direc-
tions of large scale are likely to be well approximated by directions appearing in
the data. This heuristic may perform poorly when n and p are large because it
takes an extremely large number of points to cover a high-dimensional sphere.4

Another work highlights recent interest in solving (2). Kwak [34] rediscovers
PP-PCA with the MD scale and provides a simple algorithm that is shown to
produce a local maximum for the MD scale. No global performance guarantees
are provided.

4.2. A convex approach

Recently, a method of Chandrasekaran et al. [9] has been adapted for robust
PCA in [8]. This approach attempts to decompose the data matrix into a sum

4It is not difficult to construct a situation where this finite direction method performs quite
poorly—for instance, if the observations are orthonormal, the finite direction method applied
to the MD scale will find a direction with scale no larger than p−1/2‖X‖2→1.
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of a low-rank matrix and a sparse matrix via the semidefinite program

minimize ‖L‖∗2→2 + λ‖S‖∗1→∞

subject to L+ S = X.
(22)

The nuclear norm ‖·‖∗2→2 promotes low rank and the matrix ℓ1 norm ‖·‖∗1→∞

promotes sparsity. We refer to this method as N+L1. The works [8, 9] provide
conditions under which N+L1 succeeds in exactly recovering a low-rank and
sparse component.

This convex approach is principled in the sense that the mathematical formu-
lation is also algorithmically tractable. On the other hand, it lacks an invariance
to a change in the observation basis possessed by all other methods we discuss,
including standard PCA. That is, applying a rotation U∗U = I to the data

X̂ = XU does not result in a similar rotation of the decomposition due to the
fact that the norm ‖·‖∗1→∞ is not invariant under this transformation.

One may argue that this invariance is inconsequential: in real data, the par-
ticular choice of coordinates has a meaning and outliers may occur coordinate-
wise. This is the case in some specific examples, such as image data that contain
specularities [8]. Nevertheless, PCA is intended to locate a coordinate basis that
explains data more effectively than the standard basis [30], and basis invariance
is a feature of all of the other methods for robust PCA that are discussed in
this work. The question of whether N+L1 is appropriate for a given set of data
will likely depend on the types of corruptions present in the data.

4.3. Spherical PCA

Another approach, known as spherical principal components (sphPCA) [38],
rescales the observations to unit (Euclidean) norm and applies standard PCA
to this modified data. To implement the sphPCA method, we first compute a

normalized matrix X̂. Each row of X̂ is the normalized version of the corre-
sponding row of the centered data matrix X, that is x̂i = xi/‖xi‖2. Using the
row-normalization operator from (12), we can express the normalized matrix as

X̂ = N (X).
The robust components are then defined as the standard principal compo-

nents of the rescaled matrix X̂. Since all of the observations from the normalized
matrix X̂ have unit Euclidean norm, there are no large magnitude observations
that exert an undue influence on the principal components.

A study by Maronna [39] shows that sphPCA enjoys good practical perfor-
mance. The ease of implementation and relatively good behavior of sphPCA
leads Maronna et al. [40] to suggest it as the default choice for robust principal
component analysis. As a result, we use sphPCA as a baseline comparison for
the performance of our robust methods in Section 5.
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4.4. Other proposals

Some of the earliest methods for robust PCA compute approximations of cor-
relation or covariance matrices using robust methods. Gnanadesikan and Ket-
tenring propose direct robust estimation of the covariance matrices through
robust estimation of the individual entries [25]. This may lead to counterintu-
itive results such as nonpositive covariance matrices. An alternative approach
explicitly enforces positive matrices as minimizers of a functional such as an
M -estimator [17]; see also the more recent study [12].

A representative example of robust PCA from the machine learning commu-
nity is the work of De La Torre and Black [16]. They define the robust compo-
nents as the minimum of a highly nonconvex energy function and attempt to
minimize this energy function using an iteratively reweighted least-squares algo-
rithm coupled with an annealing step. No theoretical guarantees of correctness
for the algorithm are provided.

Another line of work5 in robust PCA involves iteratively identifying and re-
moving outliers in the data [4, 15, 18]. A recent approach along these lines
appears in the paper [55] of Xu et al.; their algorithm randomly removes obser-
vations that appear to have high influence in the current estimate of the prin-
cipal components. The principal component estimate is then computed from
the trimmed data. There, the authors establish strong theoretical properties
of their algorithm, including a high breakdown point in the high-dimensional
scaling regime where n → ∞ and n/p → c > 0.

5. Experiments

This section provides some experiments comparing our proposals against clas-
sical PCA, sphPCA, and N+L1. Our choice of sphPCA was motivated by its
simple formulation and the study [39] which shows that sphPCA provides good
performance in comparison to other robust PCA methods, including several
types of PP-PCA algorithms. We also compare our methods to N+L1 as the
formulation of this method is closely related to the formulation of LLD.

We begin in Section 5.1 with an experiment involving synthetic data where
we compare the behavior of the methods when observations are drawn from a
mixed model with known covariance structures. In Section 5.2, we look at the
projection of two data sets on the top robust component. Section 5.3 repeats a
multiple-component experiment of Maronna [40, Fig. 6.1] with additional robust
methods.

All of these experiments are conducted using Matlab. Following the prin-
ciple of reproducible research [5], we provide code that reproduces the exact
experiments in this work [41].

5We thank the anonymous reviewers for these references. It was recognized in [15] that
identifying a low dimensional subspace to which a large fraction of the observations belong
is an NP-hard problem. This fact is an LLD analogue to our hardness result for MDR in
Section 2.3, as it shows that determining the robust subspace that LLD seeks is NP-hard even
when a small proportion of the observations are corrupted.
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Parameter Settings. We have endeavored to use the same parameters in
each experiment. A reviewer correctly noted that we could set the LLD param-
eter γ using cross-validation, but most of our experiments do not have a clear
objective for which we seek to optimize the performance of the robust PCA
methods. Rather, our experiments are meant to show the qualitative differences
in performance of these methods over a variety of scenarios. Moreover, the fact
that LLD performs qualitatively well for our fixed choice of γ = 0.8

√
p/n in all

of our experiments indicates that this is a robust parameter choice and a good
starting point for practical implementations.

For MDR, we use K = 94 rounding trials as discussed in Section 2.4. We
take the LLD weight parameter γ = 0.8

√
p/n, and, unless otherwise noted, set

the N+L1 parameter λ = 1/
√
n.

Centering. For each experiment involving real data, we center the obser-
vations about their Euclidean median. The Euclidean median µ̂ is a robust
estimate of the center of the data, and is defined as

µ̂ = argmin
µ

n∑

i=1

‖xi − µ‖2. (23)

Maronna [40, Ch. 9] gives a method to solve this convex problem for µ̂.

5.1. Synthetic data: Identifying the true subspace(s)

Here, we draw observations from a mixture of two centered Gaussian distribu-
tions and apply PCA, LLD, MDR, and sphPCA to the resulting data. We ana-
lyze how closely the derived components align with the subspace corresponding
to the top eigenvalues of the covariance matrices that generate the data. Unlike
our other experiments, we do not use N+L1 in this section, as the observation
model underlying N+L1 (i.e., sparse corruptions) is manifestly violated by our
synthesized data.

5.1.1. Identifying a subspace with isotropic corruptions

Our first experiment draws n = 100 observations, each of dimension p = 20, from
a two-population Gaussian model: with probability (1 − ε), the observation is
drawn from an anisotropic Gaussian distribution Normal(0,Σfast), and with
probability ε, the observation is drawn from the isotropic Gaussian distribution
Normal(0, I).

The covariance matrixΣfast has eigenvalues σi(Σfast) = 22−2i for i = 1, 2, . . . , p.
The eigenvectors of Σfast are random.6 Due to the exponential decay of the
eigenvalues, we call observations from this population the fast-decay subjects.

6By “random eigenvectors”, we mean that the matrix corresponding to the eigenbasis of
Σfast is constructed by orthogonalizing the columns of a p × p matrix whose entries are iid
Gaussian.
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To summarize, a (1− ε)-fraction of subjects come from a low-rank model, while
the remaining ε-fraction are simply white noise. Both of these distributions are
centered by construction, so we apply no further centering to the data.

We apply four principal component methods to this data: PCA, sphPCA,
MDR, and LLD. For each method, we determine the top three components, and
note the angle between the subspace spanned by these three components and
the subspace spanned by the top two eigenvectors of the covariance matrixΣfast.
(See [3, Chapter VII.1] for a discussion of the angle between subspaces, and, in
particular, the discussion of the distance between subspaces on page 202.) Note
that we oversample the subspace slightly by taking three robust components.
This gives each method a bit of extra help, as they only need to capture the
two-dimensional subspace inside a three-dimensional subspace.

We repeat this experiment 1000 times for each of 51 values of ε between zero
and one. Figure 1 shows the angle to the subspaces as a function of ε. The dark
band is the middle 50% of the angles to the subspace, and the line in the center
is the median angle. The edges of the light band mark the 5th and 95 percentile
of the angles.

The results are striking. As expected, every method performs well when ε =
0, and each method performs equally poorly when ε = 1. Between these two
extremes, however, we see clear differences in the behavior of these four methods.
As the proportion of isotropic observations increases, the subspace identified by
PCA rapidly diverges from the dominant subspace of Σfast.

This transition is more gradual for MDR, but it begins immediately as ε
differs from zero. In contrast, the transition between identifying and not identi-
fying the dominant subspace of Σfast occurs much later for sphPCA and LLD.
Indeed, LLD consistently identifies the dominant subspace of Σfast even as the
proportion of isotropically distributed becomes as large as 70%. This clearly
shows that LLD is the dominant method for recovering the top eigenspace of
Σfast in the presence of isotropic corruptions.

5.1.2. Identifying a subspace with anisotropic corruptions

This experiment modifies the experiment in Section 5.1.1 by replacing the
isotropic population with an anisotropic Gaussian population whose covariance
matrix has slowly decaying eigenvalues.

As before, n = 100 and p = 20. With probability (1 − ε), we draw our
observations from the fast-decay population described in Section 5.1.1. With
probability ε, we draw our observations Normal(0,Σslow), where the covari-
ance matrix Σslow has eigenvalues i−2 for i = 1, 2, . . . , p, and the corresponding
eigenspaces are random.

We find the top three components of the data using PCA, LLD, sphPCA,
and MDR, and then compute the angle between the subspace spanned by these
components and the top two-dimensional eigenspace of Σfast and Σslow, over-
sampling the subspace by one component as before. We repeat the experiment
1000 times for each of 51 values of ε between zero and one. The results are
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Fig 1. Subspace identification with isotropic corruptions. The angle between the subspace
spanned by the top two components of a rapidly decaying covariance matrix and the top three
components calculated from the data, as a function of the proportion of isotropic corruption.
The dark band is the middle 50% of the angles, and the edge of the light band denotes the 5th
and 95th percentiles of the angles. The dark line in the center is the median.

shown in Figure 2, where, as in Figure 1, the dark band is the interquartile
range of the angles, the light band extends to the 5th and 95th percentiles, and
the centerline is the median angle.

The difference lies in the way that the methods transition from identifying
the fast-decay subspace to the slow-decay subspace. It appears that PCA and
MDR do not strongly prefer the fast decaying subspace over the slow decaying
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Fig 2. Subspace identification in a mixed population model. The angle between the top three
components and the top two-dimensional eigenspaces of the fast-decay (red) and slow-decay
(blue) populations, displayed as a function of the proportion of data drawn from the slow-
decay population. The dark bands show the middle 50% of the angles, and the light bands
demarcate the 5th and 95th percentiles of the angles. The dark line in the center of the band
is the median angle for each ε.

subspace; rather, the transition region is relatively centered about ε = 0.5. In
comparison, sphPCA and LLD appear to prefer to find the fast-decay subspace
over the slow decay subspace. The transition region is much wider for MDR
than for any of the other methods, which hints at a different behavior in the
transition region.

In order to investigate this transition between the identified subspaces, Fig-
ure 3 shows a scatter plot of the angle to the slow-decay subspace versus the
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Fig 3. Angle to the fast-decay subspace vs. the slow-decay subspace. This scatter plot shows
the angle of the subspace spanned by the principal components to the subspace spanned by the
slow decay subspace versus the fast decay subspace. The color of the scattered points denotes
the proportion ε of points from the slow decay subspace. Five points are used for each of 51
values of ε between zero and one, with a total of 255 points on each plot. The numbers denote
the total number of points in each grid box.

angle to the fast decay subspace. The color of the scatter points indicates the
value of ε. We plot only 5 points for each value of ε for visual clarity.

We are most interested in the extent to which the scatter plot shows bimodal-
ity: do the components split the difference between the subspaces, or do they
choose one subspace over the other? It is clear that LLD is the most strongly
bimodal, with most points clustered tightly in the upper-left and lower right
corners. MDR shows the most spread, while sphPCA and PCA exhibit interme-
diate behavior.

Why might MDR behave this way? Suppose that our observations are or-
thonormal. The variance is then constant in every direction, but the deviation
is larger by a factor of

√
p in the average direction than along any of the di-
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rections expressed in the data. This thought experiment points to a fundamen-
tally different qualitative behavior between directions of maximum deviance and
maximum variance, and may explain in part the behavior of MDR in Figures 1
and 2.

Despite this thought experiment, if the goal of the analysis is the identification
of a subspace that corresponds to the fast-decay group when ε < 0.5 (or the
slow-decay group for ε > 0.75), then LLD is by far the most effective method. If
we seek a method that finds a balance between competing subspaces, perhaps
MDR is a better choice.

5.2. Projection onto the top component

In this section, we study the robust component methods applied to two data
sets. The first set is a selection of environmental factors that may affect the
concentration of nitrogen dioxide around Oslo, Norway. The second example is
constructed from Fisher’s classic iris data. In each case, we examine the spread
of the data in the direction of the top robust component.

5.2.1. Experimental setup

We extract the dominant component from each data set using our methods
(MDR and LLD), other robust methods (sphPCA and N+L1), and standard
PCA. We project the data onto the top component for each method and compare
the performance of the methods by the interquartile range (IQR), that is, the
distance between the 25th and 75th percentile of the projected data.

With the iris data in Section 5.2.3, we find that λ = 1/
√
n gives a trivial

result: no outliers were identified by N+L1. Instead, we use the more favorable
choice λ = 0.3/

√
n.

5.2.2. Norwegian nitrogen dioxide data

Our data for this experiment consists of 500 observations of eight environmental
factors around Oslo, Norway, available on the Statlib archive [1]. The variables
include the log-concentration of nitrogen dioxide (NO2) particles, the number of
cars per hour, the wind speed, and several additional factors useful for predicting
the concentration of NO2 particles. The projection onto the top component may
be interpreted as an air quality index.

We calculate the top component of the data using each method. In Figure 4
we plot the projection of the data onto the direction of these components using
a standard box-and-whisker plot. The whiskers extend either 1.5 times the IQR
beyond the edge of the box or to the extreme data point. We consider points
that lie beyond the whiskers outliers. We give the percentage of outliers and
several order statistics of the data in Table 2.

Every robust method results in a larger IQR than PCA. The MDR component
finds the largest IQR, and the LLD method finds the smallest IQR among the
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Fig 4. Projection of the Oslo NO2 data onto the top principal component. The box surrounds
the middle 50% of the data. The vertical line in the box is the median of the data. Each
whisker extends either 1.5 times the length of the IQR or to the extreme value of the data,
and the red crosses beyond the whiskers are the outlying points. The plots are ordered by
decreasing IQR.

Table 2

Statistics for the projected NO2 data. The second column gives the interquartile range of
the points; the next four columns give some order statistics for projected points. The last

column lists the percentage of points lying outside the whiskers in Figure 4.

Method IQR min 25th 75th max % outliers

MDR 2.57 −9.07 −1.53 1.05 10.82 5.00%

sphPCA 2.53 −9.06 −1.45 1.08 10.71 5.60%

N+L1 2.38 −4.58 −1.34 1.05 2.79 0.00%

LLD 2.27 −9.29 −1.27 1.00 11.24 7.40%

PCA 1.89 −9.51 −1.08 0.81 12.18 11.00%

robust methods. Except for N+L1, every method identifies a direction with a
relatively large number of outliers, which indicates that the data has heavy tails
in the directions identified by LLD, MDR, sphPCA, and PCA.

The N+L1 method is unique because it does not identify a direction of large
spread outside of the middle 50% of the data. While N+L1 does find a direction
with large IQR as compared to standard PCA, this direction does not capture
much spread in the tail of the data. Given the theoretical guarantees in [8], this
fact indicates that the assumptions underlying N+L1, such as corruptions of
individual elements of the measurements, are violated in this data.

We note that the approximation ratio for the top MDR component is nearly
optimal at 0.978, which shows that we have essentially found a direction of
maximum mean deviation.

5.2.3. Iris data

We use Fisher’s iris data [21, 22] in this experiment. The data contains 60
observations from three different species of iris: Iris setosa, Iris virginica, and
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Table 3

Order statistics for the projection of the setosa data onto the top principal component. The
second column gives the IQR in Figure 5. The next four columns give some order statistics
for the setosa points. The last column lists the percentage of setosa points further than 1.5

times the IQR left of the 25th percentile or right of the 75th percentile.

Method IQR min 25th 75th max % outliers

LLD 0.70 −1.21 −0.41 0.29 1.14 0.00%

Setosa-only PCA 0.70 −1.22 −0.41 0.29 1.14 0.00%

sphPCA 0.69 −1.19 −0.41 0.28 1.13 0.00%

N+L1 0.66 −1.16 −0.40 0.26 1.07 0.00%

MDR 0.37 −0.79 −0.24 0.13 0.53 0.00%

PCA 0.19 −0.60 −0.15 0.04 0.37 6.00%

Iris versicolor. Each observation consists of four measurements, namely sepal
length, sepal width, petal length, and petal width.

Fifty of the observations come from the setosa flowers. We corrupt these ob-
servations with five measurements of Iris virginica and five measurements of Iris
versicolor. We hope that the robust principal components identify a direction
of large spread in the bulk of the data, drawn from the setosa population. As
a baseline comparison, we also calculate the dominant principal component of
the setosa population without the outlying flowers.

As in Section 5.2.2, we project the data onto the direction of the dominant
component. These points are plotted in Figure 5; we distinguish the bulk setosa
points from the versicolor and virginica observations, and compute an approxi-
mate density of the setosa observations by convolving the projected data with a
unit volume Gaussian kernel of width σ = 0.2. Table 3 gives some order statistics
of the projections.

The dominant component of LLD, sphPCA, and N+L1 each achieves an IQR
at least three times that of PCA. These components do not clearly distinguish
among the three populations, indicating that these methods are insensitive to
the effect of the outliers. LLD and sphPCA appear the most effective in this
situation: the projection onto the LLD and sphPCA components are nearly
indistinguishable from the projection onto the standard principal component
calculated using only the setosa data (for this reason, we do not plot this pro-
jection).

Although MDR results in the most modest IQR in the setosa among the
robust methods, the IQR associated with the MDR component is 1.95 times the
IQR of the setosa family along the dominant PCA component. Unlike the other
robust methods, the MDR component discriminates among the three distinct
populations. While it is clear that MDR does not reject the influence of the
outliers, MDR balances the influence of outliers and the bulk of the data better
than PCA.

In this experiment the optimality ratio for MDR is 0.9975, certifying that
the MDR component is essentially the direction of maximum mean deviation
in the data. Of course, the mean deviation is not insensitive to outliers, merely
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Fig 5. The projections of the iris data onto the top components. The points are randomly
jittered above the zero line for readability. The blue curve represents the approximate local
point density of setosa. Note that the LLD projection is visually indistinguishable from the
classical principal component computed using only the setosa population. We sort the plots
by decreasing IQR.

less sensitive than the variance. The rather large distance of the versicolor and
virginica populations to zero means that mean deviation is certainly influenced
by these points—yet the IQR of the setosa bulk in the direction of the MDR
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component demonstrates that the balance the influence of the outlying points
is very much damped in comparison to classical PCA.

5.3. Regression surface for bus data

In this experiment, we construct a regression surface using multiple principal
components. A point is well-described by a surface if its Euclidean distance
from the surface is small. The dominant T classical principal components span
a T -dimensional regression surface such that the sum of the squared distances
of the observations to the plane is minimized. We would hope that robust com-
ponents describe the bulk of the points better than standard components when
outliers contaminate the data. We illustrate this behavior with an experiment of
Maronna et al. [40, p. 214], which we augment with additional robust methods.

5.3.1. Experimental setup

Our data consists of p = 18 geometric features collected from n = 218 bus
silhouettes [50] that we arrange into an n × p matrix X. Following Maronna
et al., we remove the ninth variable from the data and divide the columns of X
by their median absolute deviation (MADN), a robust measure of scale defined
as

MADN(x) = median(|x−median(x)|).
We then center the observations by their Euclidean median and compute the
top three components using PCA, MDR, LLD, and sphPCA.

For each method, we determine the Euclidean distance from each observation
to the orthogonal regression plane spanned by the dominant three components.
Figure 6 is a QQ-plot of the ordered distances to the robust hyperplanes against
the ordered distances to the PCA hyperplane.

Since the PCA regression surface minimizes the sum of squared distances to
the observations, not all of the observations can lie below the one-to-one line.
However, a large number of points below the one-to-one line indicates that a
robust regression surface explains the bulk of the data better than the classical
surface.

5.3.2. Discussion

Figure 6 focuses on the third and fourth quantiles of the data; the first and
second quantiles roughly follow the pattern apparent in the third quantile. For
clarity, we omit the three most outlying points that would appear in the upper
right corner of the figure. Each robust method results in a regression surfaces
that explains the data better than PCA for more than 75% of the points. In
the third quantile, both N+L1 and sphPCA lose their explanatory advantage
over PCA. It is not until the after 95% of the data that MDR and LLD provide
worse explanations than PCA.
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Fig 6. The distance of points to robust regression surfaces as a function of the distance of
points to the standard PCA regression surface. The regression surface is determined by the
top three components from each method. Points to the left of the median follow the same
generic pattern as points in the third quartile and are therefore omitted. Three extreme points
to the right are also omitted.

MDR explains the bulk of the data less effectively than the other robust
methods, yet the final outlying observations are explained better by MDR than
the other methods. This indicates that MDR is more sensitive to outlying points
than the other robust methods, but is less sensitive to outliers than standard
PCA. The optimality ratios for the first three MDR components are, respec-
tively, 0.99999, 0.99992, and 0.97253, implying that MDR essentially succeeds
in PP-PCA with the MD scale for this data.

As a reviewer remarked, this experiment does not address the assumptions
underlying N+L1. If entries of observations are corrupted throughout the bus
data, one would hope that a robust method would determine components that
are not influenced by these corruptions. In this case, a large number of obser-
vations would lie far from the regression surface if the method is successful. If
we view the goal as correcting for entire outlying observations, then consider-
ing the distance of an observation to the regression surface is appropriate. This
experiment leads us to conclude that MDR, LLD, and sphPCA are better at
controlling for entire outlying observations than N+L1, but it does not give us
information about how well the methods handle errors within the observations.
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6. Conclusions

Our experiments, taken together, suggest that LLD is the most stable and re-
liable method for robust PCA. While MDR certainly shows robust behavior
compared to standard PCA, its performance is markedly worse than LLD un-
der many metrics. Spherical PCA, the method recommended by [39], performs
well in most of our experiments. However, LLD performs nearly uniformly better
than sphPCA, the exception being the results of Section 5.2.2.

Our theoretical results give us confidence that MDR is very nearly achiev-
ing the direction of maximum mean deviation in our experiments, so we can
conclude with some confidence that the projection-pursuit approach to robust
PCA with the MD-scale is not as robust as the convex approach taken in LLD
when a subset of the observations lie near a low-dimensional surface. The main
disadvantage of LLD is the computational cost; indeed, both MDR and sphPCA
(though not N+L1) tend to find a few principal components significantly more
quickly than LLD.

If the goal is to damp, but not ignore, the effect of outliers, then MDR is a
good choice: in every experiment, MDR exhibits behavior that is qualitatively
more robust than PCA, but still tends to find directions in which the data
has large tails. Moreover, our theory gives us confidence that the algorithm
essentially achieves the direction of maximum deviation, an easily interpretable
formulation for robust PCA.

Appendix A: Proof of Theorem 2.2

This appendix contains the proof of Theorem 2.2 that we repeat below as The-
orem A.4. We begin with some supporting results. The following result of Alon
and Naor [2, Sec. 4.2] allows us to bound the expectation of ‖Xv⋆‖1 below. The
essence of this result goes back to a 1953 paper of Grothendieck [28]; see also
the little Grothendieck theorem in [46, Sec. 5b].

Lemma A.1. Let α2
⋆ be the value of the optimization problem (11) in Algo-

rithm 1. Then α2
⋆ ≥ ‖XX∗‖∞→1. Moreover, let y(k) be one of the vectors

generated in Step 3. Then E
∥∥X∗y(k)

∥∥2
2
≥ 2

πα
2
⋆.

The claim α2
⋆ ≥ ‖XX∗‖∞→1 also follows from our discussion of the semidef-

inite relaxation in Section 2.4.1. We also need the following proposition.

Proposition A.2. For each matrix X, the identity ‖XX∗‖∞→1 = ‖X‖22→1

holds.

Proof. We can express

‖XX∗‖∞→1 = max
‖w‖

∞
=1

‖y‖
∞

=1

〈X∗w,X∗y〉 .
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By the conditions for equality in the Cauchy–Schwarz inequality, it follows that
we can take w = y above. Hence

‖XX∗‖∞→1 = max
‖y‖∞=1

‖X∗y‖22 = ‖X∗‖2∞→2 = ‖X‖22→1,

where the last equality is a standard fact concerning adjoint operators (see [33,
p. 232]).

We use the following variant of the Paley–Zygmund integral inequality [45]
to bound the probability that ‖Xv⋆‖1 is less than its expectation.

Lemma A.3. Let C be a positive constant and suppose Z is a random variable
that satisfies 0 ≤ Z ≤ C. Then, for any scalar θ ∈ [0, 1], we have

P{Z > θE[Z]} ≥ 1

C
(1− θ)E[Z].

Proof. Split E[Z] into two integrals, the first over the region Z ≤ θE[Z] and the
second over the region Z > θE[Z]. Notice that the former integral is bounded
above by θE[Z], while the latter integral is bounded above by C P{Z > θE[Z]}.
Simple algebraic manipulation then shows the claim.

We now restate and prove the main result of Section 2.

Theorem A.4. Suppose that X is an n×p matrix, and let K be the number of
rounding trials. Let (v⋆, α⋆) be the output of Algorithm 1. Then α⋆ ≥ ‖X‖2→1.
Moreover, for θ ∈ [0, 1], the inequality

‖Xv⋆‖1 > θ

√
2

π
α⋆

holds except with probability e−2K(1−θ2)/π.

Proof. Let y ∈ {±1}n be a sign vector and define v = X∗y/‖X∗y‖2. Then

‖Xv‖1 = ‖X∗y‖−1
2 max

w∈{±1}n
〈w,XX∗y〉 ≥ ‖X∗y‖2

where the inequality follows by taking the specific choice w = y. In particular,
this relation implies that the vectors v(k) = X∗y(k)/

∥∥X∗y(k)
∥∥
2
generated in

Step 3 of Algorithm 1 satisfy

E
∥∥Xv(k)

∥∥2
1
≥ E

∥∥X∗y(k)
∥∥2
2
≥ 2

π
α2
⋆, (24)

where the last inequality follows from the second claim in Lemma A.1.
Since ‖v(k)‖2 = 1, the quantity ‖Xv(k)‖21 is a positive random variable

bounded above by ‖X‖22→1. Therefore, inequality (24) and the Paley-Zygmund
inequality from Lemma A.3 imply that

P

{∥∥Xv(k)
∥∥2
1
> θ2 · 2α

2
⋆

π

}
≥ (1− θ2)

2

π
·
(

α⋆

‖X‖2→1

)2

≥ 2

π
· (1− θ2), (25)
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where we have used the fact that α⋆ ≥ ‖X‖2→1 by Proposition A.2 and the
first claim of Lemma A.1.

In Step 4 of the algorithm we have chosen v⋆ to maximize ‖Xv⋆‖21, so the

inequality ‖Xv⋆‖21 ≤ 2θ2/π holds if and only if ‖Xv(k)‖1 ≤ 2θ2/π for all k.
Therefore, the independence of v(k) for k = 1, . . . ,K implies

P

{
‖Xv⋆‖1 ≤ θ

√
2

π
‖X‖2→1

}
≤
(
1− 2

π
· (1− θ2)

)K

< e−2K(1−θ2)/π,

which completes the claim.
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