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Quantum computers are expected to break today’s public key cryptography within a few decades. New

cryptosystems are being designed and standardized for the postquantum era, and a significant proportion of

these rely on the hardness of problems like the shortest-vector problem to a quantum adversary. In this paper

we describe two variants of a quantum Ising algorithm to solve this problem. One variant is spatially efficient,

requiring only O(N log2 N ) qubits, where N is the lattice dimension, while the other variant is more robust to

noise. Analysis of the algorithms’ performance on a quantum annealer and in numerical simulations shows that

the more qubit-efficient variant will outperform in the long run, while the other variant is more suitable for

near-term implementation.

DOI: 10.1103/PhysRevA.103.032433

I. INTRODUCTION

The concept of quantum computing (QC) was first con-

ceived of in the early 1980s [1,2] and has slowly grown to

become a major field within modern computer science and

physics. Utilizing intrinsic properties of quantum mechanics

allows some computations to be sped up beyond what is

classically possible. Some offer exponential speedup, such as

integer factorization and the discrete logarithm [3], whereas

others offer polynomial, but still impressive, improvements

like Grover’s algorithm for searching unsorted lists [4].

As the field of quantum computing has blossomed, multi-

ple paradigms and families of algorithms have emerged. The

gate model of quantum computing most closely resembles

classical computers, with directly programmable qubit archi-

tectures, whereas quantum annealer-style algorithms can be

seen as an analog version, in which after system initializa-

tion in some eigenstate of a Hamiltonian, the Hamiltonian is

gradually altered until at completion the system is measured

to be in some eigenstate of a new Hamiltonian which offers a

solution to the problem under consideration.

While some forms of quantum computing, such as the gate

model and adiabatic quantum computing (AQC) [5,6], are

universal, near-term quantum annealing devices are likely to

be more suited to specific problem types. Nonetheless, these

near-term devices have compelling use cases—from simu-

lating quantum chemistry to developing medicines [7,8]—

though some are more practical in the near future than others.

In 2021 the QC community finds itself at a turning point, with

the first credible claim to quantum supremacy [9] having been

made in late 2019, though performing useful computations of

this size is still some way off for quantum computers.

A. Postquantum cryptography

One area subject to much disruption is that of cryptogra-

phy. Classical cryptography will be a victim—once quantum

hardware reaches maturity—of the exponential speedup due

to Shor’s algorithm for integer factorization and discrete log-

arithm computation. This is because the security of public

key cryptography relies upon the existence of a problem that

is intractable without a certain piece of information (known

as a key) but is efficiently computable when in possession

of the key. An example of such a problem is factorization

of a large semiprime number n = pq, which has only two

nontrivial prime factors, p and q. If either factor is known, one

can divide n by that factor to ascertain the other. If, however,

one knows neither factor, then one must resort to a much more

computationally expensive approach, such as attempting to

divide n by every integer up to
√

n (naive) or applying one

of the family of number field sieves [10], which in the best

cases take superpolynomial time.

The security of the Rivest Shamir and Adelman (RSA)

cryptosystem [11] relies on integer factorization, while the

security of Diffie-Hellman key exchange, ElGamal, and more

rely on closely related problems [12,13], all efficiently com-

putable in the QC domain. To preserve the security of

communications and information storage moving forward into

a postquantum world, a new set of cryptographic primi-

tives must be developed and demonstrated to be invulnerable

to quantum attacks. This replacement field is known as

postquantum cryptography.

The search for quantum-safe primitives centers around

five families of problems, as outlined in [12]: lattice-based

cryptography (LBC), code-based cryptography, isogenies, and

multivariate-based and hash-based cryptography. Candidate

systems are being assessed in the NIST Post-Quantum Cryp-

tography Standardization process, and there are 26 systems

being analyzed in round 2 of the process, of which 12 derive

from lattice-based primitives.

LBC has spawned the celebrated learning with errors

(LWE) problem [14], later adapted for efficiency (at the risk of

as yet unknown security trade-offs) into Ring-LWE, in which

computations are performed in algebraic number fields, and

also Module-LWE. LWE has even served as the basis for
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the first fully homomorphic encryption scheme [15]. Other

notable lattice-based cryptosystems include NTRU [16] and

Goldreich–Goldwasser–Halevi (GGH) [17]. The central prob-

lems in LBC tend to revolve around minimization of distances

in high-dimensional spaces.

Two closely related problems are finding the shortest

distance between two points in a lattice, known as the shortest-

vector problem (SVP), and finding the closest lattice point

to any given vector in the ambient space (CVP). Under a

guarantee that said point is at most a certain distance from

the nearest lattice point CVP becomes a bounded distance

decoding problem, upon which the security proof of LWE is

based.

B. Quantum algorithms for LBC

Up to this point most quantum algorithms for lattice prob-

lems have focused on application of a preexisting algorithm

to gain a quantum speedup in a primarily classical approach.

The two main approaches to lattice problems are enumeration

and sieving. Sieving takes as input a selection of vectors from

some distribution over the lattice and iteratively combines

them in order to output short solutions probabilistically [18].

On the other hand, enumeration literally enumerates all vec-

tors within a certain ball around the origin, which if picked

carefully is guaranteed to contain the best possible solu-

tion [19,20], though, recently, significant speedups have been

obtained by moving into the probabilistic domain (using a

technique called extreme pruning), randomizing the input, and

repeating many times [21].

Grover’s algorithm has been applied to sieving and sat-

uration algorithms to achieve speedups of roughly 25% in

the exponent [22]. It seems unlikely that Grover’s algorithm

can be applied to lattice enumeration, but building on de-

velopments for quantum tree algorithms [23,24] a quadratic

speed-up has been obtained [25]. The quantum Fourier trans-

form (QFT) plays a part in many quantum algorithms, such

as those for solving variants of the hidden subgroup problem

(HSP)—Shor’s is an example. The dihedral coset problem

is another type of HSP; a relaxed form, the extrapolated

dihedral coset problem, has been shown to be equivalent to

LWE [26]. Lattice problems in certain algebraic number fields

can be solved using quantum HSP algorithms that compute

unit groups [27] and principal ideals [28]. A recent work [29]

proposed a different approach to finding short vectors, encod-

ing vector norms into a Hamiltonian of a system of ultracold

bosons trapped in a potential landscape. While broadly in the

adiabatic quantum optimization regime, sweeps are performed

subadiabatically to obtain results from a distribution over low-

energy eigenstates (consequently, “short” vectors).

C. Contribution

Section II contains preliminaries; then in Sec. III we detail

a derivative quantum shortest-vector algorithm based on the

quantum Ising model. In particular, two variants are presented

with provable asymptotic space requirements. In Sec. IV these

two algorithms are analyzed in a noiseless setting numer-

ically and are also implemented on the D-Wave quantum

annealer [30], providing a fully quantum analysis of lattice

FIG. 1. An example of a two-dimensional lattice with lattice

points depicted in black. Red arrows represent a bad basis with long

vectors that are far from orthogonal (though still linearly indepen-

dent); green arrows are a good basis for the same lattice, with short

and highly orthogonal vectors. Both bases (by definition) span the

lattice.

problems in up to seven-dimensional instances utilizing 56

logical qubits (and over 1000 physical qubits).

The two variants of the algorithm presented relate to differ-

ent ways of encoding qudits in the quantum Ising model, and

we offer an analysis of both implementations, including the

circumstances in which each is superior. This last contribution

has wider relevance for the QC community, especially when

looking at algorithms to optimize over integral combinations

of more general vectors.

II. PRELIMINARIES

Vectors and matrices are denoted by boldface lowercase

and uppercase letters, respectively, while Hamiltonians are

denoted by H . Throughout the paper two vector norms are of

interest: the l2 (or Euclidean) norm of a d-dimensional vector

x is described by ‖x‖2 = x2
1 + · · · + x2

d , and the infinity norm

is ‖x‖∞ = max{|xi|, 1 � i � d}. The length of the shortest

vector is denoted λ1; there are at least two vectors of this

length in a lattice, as any vector can be reflected about the

origin to produce another of identical length. Where log is

used, it is in base 2.

A. Lattices

Lattices are simply a repeating pattern of points in N-

dimensional space. Figure 1 shows an example of a lattice

in two dimensions. Lattices have two attractive mathematical

properties: they all contain the origin, and adding any two

lattice vectors together with integer coefficients gives a point

that is also in the lattice. The concept can be formalized as

follows:

Definition 1. A lattice L ∈ R
N is the discrete set of all

integer combinations of a set of N linearly independent basis

vectors B = {b0, . . . , bN }:

L =

{

N
∑

i=1

xibi

}

= {B · x : x ∈ Z
N }.
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Every lattice contains the zero vector, denoted 0, and this

is considered a trivial lattice vector, as 0 · B = 0. A set of N

linearly independent basis vectors together are known as a

“basis.” Each lattice has infinitely many bases, and every basis

can be mapped to every other basis by a unimodular transfor-

mation. There is a notion of good and bad bases, where good

means that the basis vectors are quite orthogonal and quite

short, where “quite” varies according to the context but can

be defined in terms of bounds on the angles between basis

vectors or ratios of their lengths. Knowledge of the specifics

of these conditions will not be important to the work, but it

is essential to appreciate the concept that short and close to

orthogonal are good.

Necessarily, there are only a small number of good bases (a

finite number by any definition of good) and infinitely many

bad bases. The subject of turning arbitrary bad lattice bases

into “good enough” bases is a widely studied one and is at the

center of lattice cryptanalysis [31–33].

Definition 2. The fundamental parallelepiped P (L) of a

lattice described by a basis B is the set of points in R
N

P (L) = {x · B | x ∈ [0, 1)N },

and the covolume of L is defined to be the volume of this

N-dimensional polyhedron.

The shape of the fundamental parallelepiped depends on

the geometry of the particular basis, but all fundamental paral-

lelepipeds for a given lattice will have the same covolume and

provide a tiling on the ambient space R
N . One can compute the

covolume of a lattice by taking its determinant, which is ob-

tained by taking the determinant of the basis det(L) = det(B).

One important family of bases for this work is that of

Hermite normal form (HNF) bases. The reasons these are of

interest are as follows:

(1) They can be described (and therefore communicated)

efficiently.

(2) Each lattice has a unique HNF.

(3) The HNF of a lattice can be efficiently computed from

any provided basis.

Definition 3. The Hermite normal form (row-basis version)

of a full-rank lattice L ⊂ Z
N is an upper-triangular matrix H

that satisfies

(1) Hi j = 0 for i > j.

(2) The first nonzero term from the left (the pivot) is pos-

itive and strictly to the right of the first nonzero term of the

row above.

(3) Elements directly below the pivot are zero, and those

directly above are reduced modulo the pivot.

The HNF of a lattice is described as optimal if there exists

only one nonunit pivot. This means (for a row-basis HNF) that

there is only one column of nonzero values. In this work, we

examine only full-rank integer lattices, so we take bi ∈ Z
N

from this point onward. In general, the HNF of a lattice is a

bad basis by any canonical measure, though it is an efficient

means of representing the lattice as it contains fewer nonzero

entries than a general basis.

The lattice problem that is the focus of this work is the

shortest-vector problem.

Definition 4. For the shortest-vector problem, given a ba-

sis B = {b1, . . . , bn} describing a lattice L, find the closest

(nonzero) lattice point to the origin,

λ1(L) = min(||x|| : x ∈ L\{0}).

This can alternatively be stated as finding the shortest dis-

tance between any two distinct points in the lattice. A major

stepping-stone in the field was the reduction from GapSVP (a

close relative to SVP) to the LWE cryptosystem [14].

B. Continuous-time quantum computing

Continuous-time quantum computing (CTQC) refers to a

group of quantum computational strategies in which a spe-

cially engineered Hamiltonian H (t ) is applied to a physical

system in order to drive it from an initial state toward a state

from which the solution to a problem can be read. Typically,

the Hamiltonian H (t ) is a linear combination (which may

or may not be time dependent) of a problem-independent

driver Hamiltonian H0 (often referred to as an initial Hamilto-

nian when appropriate) and a problem Hamiltonian HP which

encodes the problem to be solved. The eigenstates of the

problem Hamiltonian HP correspond to solutions to a problem

(often the ground state is desired), and targeting these eigen-

states is where the crux of CTQC lies.

CTQC encompasses a number of quantum algorithmic

families, for example, AQC [5], quantum annealing [34],

continuous-time quantum walk computing [35,36], and oth-

ers. Furthermore, the quantum approximate optimization

algorithm [37] in the discrete-time gate model is inspired by

continuous-time methods.

For the purposes of this work, we will consider systems

which are initialized in the ground state of the initial Hamil-

tonian and are evolved according to a linear time sweep of

length T , leaving the system in a Hamiltonian which at any

time t ∈ [0, T ] can be described as

H (t ) =
(

1 −
t

T

)

H0 +
(

t

T

)

HP. (1)

In the following section, the initial Hamiltonian H0, the prob-

lem Hamiltonian HP, and, consequently, the full Hamiltonian

H (t ) are defined in the context of the quantum Ising model.

The key to constructing the algorithm is in defining the prob-

lem Hamiltonian HP such that low-energy eigenstates relate to

good solutions, which reduces in the Ising model to the setting

of appropriate fields on and coupling between spins.

C. Quantum annealing in the Ising model

The Ising model originated as a tool for modeling ferro-

magnetism in materials. In a given material each magnetic

domain has a dipole, or spin, denoted si. These spins interact

with their neighbors in a manner dependent on the properties

of the material. The system achieves its lowest-energy state

when the spins align so as to minimize the total interaction

energies. The energy of such a system is described by the

Hamiltonian H = −
∑

i, j Ji jsis j −
∑

i hisi, where Ji j are cou-

pling coefficients and hi are field strengths.

The transverse Ising model was introduced to quantum

computing back in 1998 [34]. A transverse magnetic field

can represent temperature, and reducing the strength of this

field brings about “quantum cooling.” The ground state of
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a system modeled by an Ising Hamiltonian can be found if

the system is cooled sufficiently slowly. In a material, the

coefficients Ji j and hi of the Ising model are determined by

the properties of the material. In a quantum computing device

that implements the Ising model, however, the programmer

chooses the coefficients in order to encode their problem. The

programmer sets the coefficients to ensure that the ground

state and other low-energy eigenstates encode good solutions

to the problem they wish to solve.

A classical Ising Hamiltonian

H (s1, . . . , sN ) = −
N

∑

i< j

Ji jsis j −
N

∑

i=1

hisi (2)

can be written as a quadratic function of N spins si = ±1,

which can be mapped to a quantum setting by replacing the

spins si with Pauli Z operators σ z
i ,

HP = H
(

σ z
1 , . . . , σ z

N

)

. (3)

Pauli operators can be expressed as 2 × 2 matrices,

σ0 = 1 =
[

1 0

0 1

]

, σx =
[

0 1

1 0

]

, (4)

σy =
[

0 −i

i 0

]

, σz =
[

1 0

0 −1

]

, (5)

where σ
0,x,y,z

i represents a Pauli operator acting only on the ith

qubit of the system.

As is typical for quantum annealing in the Ising model, for

the algorithms we consider in this work, we choose the initial

Hamiltonian H0 to be a simple transverse-field Hamiltonian

composed of Pauli X operators

H0 = −h0

N
∑

i=1

σ x
i . (6)

The system is initialized in the ground state of the transverse-

field Hamiltonian H0, which is an equal superposition of all

eigenstates of the problem Hamiltonian HP, before evolving

the Hamiltonian toward the problem Hamiltonian HP accord-

ing to Eq. (1).

III. QUANTUM ISING SVP

In this section we describe how the encoding of the SVP

problem into the Ising coefficients Ji j, hi that define the en-

ergy of the system is performed. The coefficients are derived

directly from the input basis, following a process similar to

that for the Bose-Hubbard quantum SVP algorithm [29].

Any lattice point can be written as the vector

v = x · B = x1b1 + · · · + xN bN . (7)

The l2 norm of the vector v can be written as

||v||2 =
∑

i, j

xix jbi · b j . (8)

The aim is to find the integer combination x = (x1, . . . , xN )

that minimizes this sum over i, j = 1, . . . , N , given the fixed

scalar values bi · b j which are determined by the lattice basis

FIG. 2. Representation of qudits as a collection of several qubits.

Each column corresponds to a basis vector, and the qubits in that col-

umn are interpreted as an integer, according to the qudit definitions,

which are set out in Secs. III A and III B. A binary-encoded qudit

in the above can take 1 of 16 values, whereas a Hamming-encoded

qudit can take 1 of 5 values.

with which the algorithm is run. It would be rather straight-

forward to map this minimization into a device consisting

of coupled qudits rather than qubits, that is, if the device

implemented a generalized Ising model Hamiltonian with the

spins si = ±1 generalized to take integer values. Since this

is not the case, it is necessary to construct an ersatz qudit by

combining multiple qubits. This can be visualized, as in Fig. 2,

as a grid of spins, where each column represents a qudit for a

different basis vector.

Assuming such qudits are available, we can write Q̂( j)

to mean the qudit operator acting on qudit j. Then, follow-

ing [29], the problem Hamiltonian can be written as

HP =
N

∑

i, j

Q̂(i)Q̂( j)Gi j, (9)

where Gi j = bi · b j is the (i, j)th element of the Gram matrix

for the lattice basis.

The eigenstates of HP in Eq. (9) all correspond to vectors in

the lattice for which every component x j is expressible within

the range of values taken by the qudits (how big this range

should be is a separate question, which we address later in

this section). The corresponding eigenvalues are simply the

squared Euclidean length of those vectors. Thus, the ground

state of the problem Hamiltonian HP will correspond to the

uninteresting zero vector, while the first excited manifold will

consist of states that correspond to vectors with length λ1(L)

(the shortest vectors); there are usually at least two such short-

est vectors since applying the transformation x j → −x j to

each vector coordinate of v produces −v, which has the same

length. Solving SVP thus becomes equivalent to finding a state

in the first excited manifold of the problem Hamiltonian HP.

In the following, we describe two different ways to encode

the qudits into these column bitstrings, as well as present

bounds describing how big the range of qudit values must be,

and therefore how many physical qubits are needed, to ensure

that the problem Hamiltonian HP actually expresses at least

one shortest vector.

A. Hamming-weight-encoded qudits

This qudit mapping is extremely simple and is not optimal

in terms of space. The reason is because it leads to redun-

dancies, with multiple spin configurations corresponding to

the same qudit value in [−2k, 2k]. The reason for presenting
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this mapping is that it is more robust to noise (explained in

Appendix B) than the more spatially efficient approach we

present subsequently, which is demonstrated in Sec. IV. While

it is not expected that even today’s cryptosystems will be

broken with noisy intermediate-scale quantum (NISQ) [38,39]

computers, for the foreseeable future the quantum computing

community must contend with poor-quality qubits. Conse-

quently, this simple qudit may become a useful tool in the

near term. For the purposes of the analysis in Sec. IV, the

D-Wave 2000Q provides ample qubits to compensate for the

inefficiencies of this mapping, and so what follows is the

quantum Ising SVP algorithm for now.

Here, we define a qudit operator by a simple sum of qubit

operators,

Q̂
( j)
Ham =

2k+1
∑

p=0

Ẑp j

2
. (10)

This qudit operator assigns to each computational basis state

a value by counting the number of qubits in the +1 state,

its Hamming weight, shifted so that the possible values are

symmetric about zero. From here on, when referring to

the quantum Ising SVP algorithm with Hamming-weight-

encoded qudits, we will use the term Ham.

B. Binary-encoded qudits

This qudit mapping assigns values to the states of its qubit

register by combining the constituent qubits into a binary

number. This is maximally efficient in space as each Ising

spin configuration results in a distinct coefficient vector. This

optimal efficiency, however, necessitates high-quality qubits,

as we will show in Sec. IV, and so this is the quantum Ising

SVP algorithm for later.

We define the qudit operator on the jth qudit as

Q̂
( j)
Bin = −

k
∑

p=0

2p−1Ẑp j −
1

2
1, (11)

which maps the operators σ
0, j

Z , . . . , σ
k, j

Z on qubits

(0, j), . . . , (k, j) to integers in the range [−2k, 2k − 1],

which is a roughly symmetric range around the origin.

The values are to be interpreted as a binary number in

[0, 2k+1 − 1] which is then shifted down by 2k to give the

required range. From here on, when referring to the quantum

Ising SVP algorithm with binary-encoded qudits, we will use

the term Bin.

C. Space analysis

Examination of the space requirements for implementation

of this quantum Ising SVP algorithm (Bin) leads to the fol-

lowing theorem, and a similar analysis is conducted for Ham

in Corollary 1:

Theorem 1. For any N-dimensional lattice L with covolume

det(L) = D and optimal Hermite normal form, there exists a

quantum SVP algorithm that can be run on a system of size at

most ( 3N
2

log N + N + log D) qubits.

We point out here that the optimal HNF is particularly

desirable for cryptography applications [40], and lattices with

optimal HNF are common, with approximately 40% of lat-

tices selected at random having optimal HNF [41].

Proof. The point of the proof is to ascertain how many

qubits are required per qudit in order to guarantee that the

shortest vector in L is represented in the Hilbert space ex-

plored by the algorithm. This question can be reduced to

finding a bound on the range in which to search for coeffi-

cients for the basis vectors. That is, the algorithm seeks to

minimize the length of vectors v = x · B, where −2k � xi <

2k for 1 � i � N . The HNF basis of L looks as follows:
⎡

⎢

⎢

⎣

b1

b2
...

bN

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 b1

. . .
...

1 bN−1

D

⎤

⎥

⎥

⎦

. (12)

The covolume of L is D as, for bases of this form, the deter-

minant is just the product of the diagonal entries. The form of

a general lattice vector, written as a linear combination of the

basis vectors, is

[x1 · · · xN ] ·

⎡

⎢

⎢

⎣

1 b1

. . .
...

1 bN−1

D

⎤

⎥

⎥

⎦

= [x1, . . . , xN−1, (x1b1 + · · · + xN D)].

(13)

Minkowski’s theorem [42] provides the bound

λ1(L) �
√

ND1/N (14)

on the length of the shortest vector, and we will use a weaker

version of this to bound the coefficients on the right-hand side

of Eq. (13). Minkowski’s bound prescribes a sphere about the

origin, with radius equal to the bound in Eq. (14), in which to

search for the shortest vector. Relaxing this constraint slightly,

it can be asserted that every coordinate of v must be less than

or equal to
√

ND1/N , which now prescribes a (larger) N cube

around the origin in which to search.

This means that each coordinate on the right-hand side of

Eq. (13) must be smaller than the bound, so for the first N − 1

entries in the coefficient vector,

|x1|, . . . , |xN−1| �
√

ND1/N . (15)

For the final coordinate xN , we have that

|x1b1 + · · · + xN D| �
√

ND1/N , (16)

and so

|xN D| �
√

ND1/N + |x1b1 + · · · + xN−1bN−1|. (17)

Applying the triangle inequality,

|xN D| � |x1b1| + · · · + |xN−1bN−1| +
√

ND1/N , (18)

and using the HNF property that bi are reduced modulo D,

|xN D| � |x1D| + · · · + |xN−1D| + |
√

ND1/N |. (19)

Then by applying Eq. (15)

|xN D| � (N − 1)
√

ND1/N D +
√

ND1/N
� N3/2D1+1/N .

(20)
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This gives an interval to search for xN bounded in size by

|xN | � 2N3/2D1/N (21)

and an interval to search for xi (1 � i < N) bounded in size

[from Eq. (15)] by (2N1/2D1/N ). The algorithm therefore re-

quires

log(2N3/2D1/N ) = 1 +
3

2
log N +

1

N
log D (22)

qubits per qudit, meaning the total system requires

O(N log N + log D) qubits. �
Based on the above analysis, we can state the space re-

quirements for Ham:

Corollary 1. Ham can be implemented on any N-

dimensional lattice L with covolume det(L) = D and optimal

Hermite normal form, using a system of at most 2N5/2D1/N

qubits. The first excited eigenstate, modulo degeneracies, of

the system at completion solves SVP on L.

Sketch of proof. Recycling working from the proof of

Theorem 1, the number of qubits in the grid is determined

by the dimension of the lattice (N) and the interval over

which to search for coefficients, which is given in Eq. (21)

as 2N3/2D1/N , leaving total qubit scaling as 2N5/2D1/N .

The bounds given in Theorem 1 and Corollary 1 are upper

bounds that guarantee the existence of a vector with length

λ1(L) (a shortest vector) within the Hilbert space explored

by the quantum Ising algorithms described in Secs. III B

and III A. In practice, an attacker may choose to reduce the

complexity of the system by reducing the qubits-per-qudit

parameter in order to give stronger probabilities of finding

short vectors at the expense of the assurance of being able

to find a shortest vector.

It is also the case that Theorem 1 and Corollary 1 give

upper bounds for HNF input bases. Using different, (clas-

sically) better-reduced bases is also likely to require lower

qubit-per-qudit values and so yield better results, but giving

a bound for these is not straightforward, and the HNF has

the advantage that each lattice has a unique HNF that can be

efficiently obtained from any other basis.

IV. RESULTS

To analyze the performance of the two algorithms de-

scribed in Sec. III, Ham and Bin were implemented on the

D-Wave 2000Q quantum annealer to shed light on what is

possible in the NISQ era of quantum computing. We also

performed numerical simulations of ideal, closed-system ver-

sions of these algorithms to give an indication of what may

be possible in the future, though we were limited to smaller

experiment sizes due to the computational constraints of sim-

ulating quantum systems on classical hardware.

In our experiments we generated random full-rank integer

lattices and obtained a “bad” input basis by postmultiplying

with randomly generated unimodular matrices. These bad

bases were not in HNF, and we did not use the upper bounds

given in Theorem 1 and Corollary 1 but instead fixed our

qudits to the ranges [−4, 4] and [−4, 3] for Ham and Bin,

respectively. This choice was made in order to improve overall

results by a range of metrics discussed in this section while

also fixing a degree of freedom to make the analysis easier to

perform.

This means that it is not guaranteed that a shortest vector

[of length λ1(L)] is represented in the Hilbert space for every

instance. In fact, a shortest vector is represented in all of

the three-dimensional lattice instances we used and approx-

imately half of the instances in each of the higher dimensions.

We have not postselected on instances where shortest vectors

are obtainable with coefficients in the specified range.

A. Numerical simulation

We numerically simulated results for both the Ham and Bin

algorithms for three-dimensional lattices for a range of sweep

times to investigate what performance could be expected in

the limit of perfect hardware.

Figure 3 depicts the probabilities of obtaining the zero-

vector (blue circles), the shortest nonzero vector (red di-

amonds), and the second-shortest nonzero vector (green

crosses) as a function of the sweep duration for Ham encoded

qudits [Fig. 3(a)] and Bin encoded qudits [Fig. 3(b)]. For slow

sweeps, there is a high probability of obtaining the zero vector,

as one would expect for adiabatic dynamics. The adiabatic

limit is achieved well for the displayed sweep durations in

Fig. 3(a), but Fig. 3(b) shows only the onset of adiabaticity,

even though the x axis extends to substantially slower sweeps

than in Fig. 3(a).

For fast sweeps, both Figs. 3(a) and 3(b) show comparable

probabilities for each of the three vectors. The three displayed

probabilities do not add up to the value of 1 in the regime

of fast sweeps, which indicates finite probabilities of also

obtaining longer vectors.

Both fast and slow sweeps are thus of little use since slow

sweeps favor returning the zero vector and fast sweeps result

in essentially random results. There is, however, a regime

of intermediate sweep durations in which the probability of

obtaining the desired shortest nonzero vector is enhanced.

In Fig. 3(a), this regime is found for 1 � log T � 2, and in

Fig. 3(b) it is found for 7 � log T � 10. In this “Goldilocks

zone” [29], the sweep is sufficiently fast to excite the system

from its ground state but also sufficiently slow to avoid exci-

tations to highly excited states.

A comparison of Figs. 3(a) and 3(b) also highlights that

the probability of obtaining the first excited state (red dia-

monds) in the Goldilocks zone is substantially higher for Bin

encoded qubits than for Ham encoded qubits. This makes the

Bin encoded qubits clearly the preferable choice under the

conditions simulated.

The superior solution probabilities demonstrated by Bin

can also be explained in terms of the adiabatic theorem. For

Bin, the minimum gap mint (�E ) between the ground state

and first excited state can become extremely small due to the

large range of energy scales present in the qubit coupling coef-

ficients. An example of such a gap for both types of encoding

is shown in Fig. 4. The initial (t/T = 0) and final (t/T = 1)

gaps coincide for both encodings, but the gap for the Bin

encoded qubits (blue solid line) decreases very rapidly in the

early stage of the dynamics. For t/T � 0.2 the gap becomes
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FIG. 3. Numerical experiments carried out on 20 three-dimensional lattices. The lines show mean final probabilities for measuring the

system to be in the ground (blue circles) and first (red diamonds) and second (green crosses) excited eigenstates, grouped by degeneracy, at

completion for sweep lengths T , increasing in powers of 2, for the quantum Ising algorithm implemented with (a) Hamming-weight-encoded

qudits (Ham) and (b) binary-encoded qudits (Bin). The Ham algorithm nears the adiabatic limit at T = 28, after the shortest-vector success

probability peak at around T = 22, which is considerably lower than the peak time for Bin. The Bin algorithm nears the adiabatic limit past

the rightmost data point but not before an encouraging peak in shortest-vector success probability at T = 29. Standard errors across the 20

samples are shown in both plots by vertical error bars.

much smaller than the minimal gap for Ham encoded qudits

(red dashed line) which is obtained for t/T � 0.6. The smaller

minimal gap for the Bin encoded qudits means that to achieve

the same probability of attaining the ground state significantly

slower sweeps are required (which for SVP purposes is advan-

tageous, as we do not seek the ground state). This is because,

as per adiabatic theory, a smaller minimum-energy gap means

that excitations to the first excited state are more common.

An algorithm based on Bin encoded qudits, furthermore, has

lower space requirements. Thus, Bin is certainly the algorithm

for later.

B. D-Wave quantum annealer

The algorithms Bin and Ham, due to their Ising formu-

lation, can be performed on the D-Wave 2000Q quantum

FIG. 4. Energy gap �E , in arbitrary units, between the ground

state and the first excited state at each time t along a linear sweep of

total duration T for the Ham algorithm (red dashed line) and the Bin

algorithm (blue solid line). The minimum gap occurs much earlier

for Bin and is much smaller.

annealer [30]. We examined the performance of the al-

gorithms presented here experimentally using the D-Wave

quantum processor. Interpreting these results requires a sub-

tle understanding of the interplay between features of the

algorithm and the mechanics of the quantum processing unit

(QPU), discussed in Appendix B. In particular, we used the

default embedding provided with the application program in-

terface to map from the fully connected qubit graph specified

by the theoretical model described in Sec. III (the logical

qubits) and the QPU qubit graph (the physical qubits). In

general, this embedding incurs a quadratic cost (logical qubits

to physical qubits), resulting in a maximum system size for

the experiments listed of 56 logical qubits, which maps (non-

deterministically) to over 1000 physical qubits.

1. Representative example

Figure 5 depicts the result obtained for one specific (six-

dimensional) lattice. The x axis depicts the lengths of vectors

on a linear scale in Figs. 5(a) and 5(c) and on a logarithmic

scale in Figs. 5(b) and 5(d). The blue bars represent the num-

ber of occurrences (y axis) of the corresponding lengths after

900 iterations of the algorithms. The green dashed vertical line

indicates the lengths of the shortest nonzero vector, and the red

dotted vertical lines show the length of the six basis vectors

used to define the lattice.

Figures 5(a) and 5(b) show data obtained with Bin encoded

qudits, and Figs. 5(c) and 5(d) show data obtained with Ham

encoded qudits. In fact, Figs. 5(a) and 5(c) show the same

data as Figs. 5(b) and 5(d), but Figs. 5(a) and 5(c) resolve

the results of shorter vectors better, while Figs. 5(b) and 5(d)

show the full distribution including the results for longer

data.
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FIG. 5. Illustrative results from D-Wave for the (a) and (b) Bin and (c) and (d) Ham algorithms showing vector length squared on the x

axis on the left and the natural logarithm of 1 plus vector length squared on the right, with bar height equal to the number of occurrences. The

right-hand plots show the same data as the left-hand plots but allow an easier comparison at a glance. This is a sample experiment comprising

900 runs of each algorithm on the same six-dimensional lattice, all with a sweep length of T = 64 μs. The green dashed verticals represent

the length λ1(L) on the x axis, and the red dotted verticals represent the length of the six input basis vectors (from which G is generated) on

the x axis. The heights of the green dashed and red dotted verticals have no significance.

A comparison of Figs. 5(b) and 5(d) shows that the major-

ity of vector lengths obtained with the algorithm based on Bin

encoded qudits are longer than all of the basis vectors, while

the algorithm based on Ham encoded qudits returns substan-

tially shorter vector lengths. This behavior is also manifest in

Figs. 5(a) and 5(c), which show occurrences of the order of

10 for lengths shorter than the median basis vector, while the

corresponding lengths in Bin are obtained between 1 and 3

times.

An ideal scenario (for all plots in Fig. 5) would be a single

blue bar, with height 900, located on the x axis at the same

location as the green dashed vertical. This scenario would

indicate that the output of the algorithm was the shortest

vector with probability 1. The farther to the right (longer) a

blue bar is, the less useful the vectors it represents are. Bars

farther right than all of the red dotted vertical lines are of no

use as they are longer than all of the basis vectors which were

input to the algorithm. Showing these results too, however, is

useful as they help to compare the Ham algorithm with Bin,

and in doing so one can see that Ham produces significantly

shorter vectors on D-Wave hardware than Bin.

While Fig. 5 helps us to understand what the quantum

annealing results look like for a representative example, as

well as to qualitatively compare Ham with Bin, for rigorous

performance analysis other visualizations of results are appro-

priate, which we look at next.

2. Aggregated results

Figure 6 shows a summary of results obtained for 19 lat-

tices in dimensions N = {3, 4, 5, 6, 7}, according to four key

figures of merit (FOM). The experiments took 900 samples

for each lattice instance with sweep times of 1 μs. The x

axis shows the lattice dimension, while the y axis shows

the probability of attaining the figure of merit corresponding

to the particular plot. Probabilities for each lattice dimen-

sion are averaged over 19 lattices with standard error bars

shown.

The red lines with circles show the results from Ham,

and the green lines with crosses are for Bin in all plots.

In Figs. 6(c) and 6(d) baseline probabilities from uniform

random sampling of the Hilbert spaces are shown by black

solid and dotted lines (Ham and Bin have different, but

asymptotically close, baselines due to the slight difference in

coefficients searched over).

Both algorithms suffer decreasing probabilities of success

for all FOMs as lattice dimension increases, which is to be

expected due to the increased complexity and larger Hilbert

spaces to search over. One can see from Fig. 6 that the red

lines with circles sit above the green lines with crosses in all

plots. This indicates higher probabilities of success for Ham

on the quantum annealing hardware for all FOMs and over all

lattice dimensions.

Figure 6(a) shows the probability of the annealer returning

the zero vector 0. While Ham returns zero vectors in 4%–5%

of runs for three-dimensional lattices, decreasing to almost 0%

in higher dimensions, Bin displays much lower probabilities

even in the lowest dimensions. The reason is the smaller min-

imum energy gap mint �E for Bin between the ground state

and first excited state, a typical example of which is depicted

in Fig. 4 and explained in Sec. IV A.
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FIG. 6. T = 1 μs for the Ham (red circles) and Bin (green crosses) algorithms performed on 19 randomly generated “bad” lattice bases in

dimensions 3 to 7 inclusive and for four different figures of merit: (a) ground state (not desired), (b) shortest vector (preferable), (c) shorter than

minimum input basis vector, and (d) shorter than median input basis vector. The black lines are baselines indicating the results from uniform

random sampling from the searched-over Hilbert space (dotted lines for Ham, solid lines for Bin), i.e., what proportion of lattice vectors in the

solution space is shorter than minimum [in (c)] and median [in (d)] input basis vectors.

Zero vector probability may initially seem to be of no

use because the zero vector is of no use computationally. It

is best understood, however, in relation to other FOMs and

the performance of the algorithm overall, as 0 results can be

interpreted as a measure of “adiabaticity.” Through this lens, it

can be seen that Ham is far superior to Bin in returning ground

states on the noisy quantum annealing hardware.

Figure 6(b) shows the probability of obtaining the shortest

vector, which is the most important FOM. In Fig. 6(b), in con-

trast to Fig. 6(a), both algorithms perform similarly, though

again with Ham producing slightly higher probabilities. Here,

while in three dimensions both Ham and Bin return the short-

est vector with 2.5%–5% chance, in dimensions 6 and 7 no

shortest vectors were observed. This FOM is the one for which

high probabilities are most desired, as these probabilities rep-

resent the chances that we can solve exact SVP.

It is easier to analyze ensembles of vectors as opposed to

individual results, as these give probabilities which can be

more easily analyzed within the constraints of 900 repetitions

per lattice sample per algorithm per time sweep. This is where

Figs. 6(c) and 6(d) offer insight.

The FOM in Fig. 6(c) is the probability of returned vectors

having a length shorter than the shortest basis vector, and

Fig. 6(d) gives probabilities of vectors having a length shorter

than the median basis vector. Because the length requirements

to satisfy these criteria are more relaxed than in Figs. 6(a)

and 6(b), higher probabilities are observed for all points. Both

Ham and Bin in Figs. 6(c) and 6(d) begin with an order of 10%

success probability for three-dimensional lattices, followed by

a smooth decay in mean success probabilities as lattice dimen-

sion increases. In Figs. 6(c) and 6(d), the decay in success

probability is encouragingly less drastic than for the results in

Figs. 6(a) and 6(b). The baselines in black show the proportion

of the solutions in the entire Hilbert space that are shorter than

the shortest and median basis vectors for Figs. 6(c) and 6(d),

respectively.

While good results from Figs. 6(c) and 6(d) will not help

us directly to solve SVP, they can be used to find basis vectors

with which to update the input basis, resulting in a “shorter ba-

sis.” This technique is known as “lattice basis reduction” [32]

and iteratively finds shorter vectors by improving the basis and

vice versa.

To understand how the two FOMs in Figs. 6(c) and 6(d)

relate back to the representative example shown in Fig. 5,

the shorter than shortest basis vector probability would be

computed from the results in Fig. 5 by summing the heights

of all the blue bars to the left of the leftmost red vertical,

then dividing by 900 (total number of runs), and the shorter

than median basis vector probability would be computed by

summing the heights of the blue bars to the left of the middle

(or median) red dotted vertical, then dividing by 900.

In Fig. 6(b) we stress that it is not important that the prob-

ability of obtaining λ1 tends to zero as dimension increases

(this is inevitable), but how fast this occurs is important. A

polynomial decay, for example, would be catastrophic for

LBC, whereas an exponential decay could even match the

current state of the art for lattice algorithms. At this stage, not

enough data points are available to heuristically estimate the

rate of decay—for heuristic estimation, better hardware is re-

quired. The key takeaway from Fig. 6 is that Ham outperforms

Bin at almost every data point across the four FOMs, demon-

strating a significant improvement on Bin for the present

regime (many qubits available but not high quality), cement-

ing it as the choice for now.

V. CONCLUSION

The algorithms described in Sec. III go a way to es-

tablishing the vector optimization framework first proposed

in [29], and the work described in Sec. IV signals emphati-

cally that quantum cryptanalysis is drawing into the empirical

realm and is no longer purely a theoretical endeavor. With

an ever-increasing pace of development in quantum hardware,

coupled with worst-case asymptotic scaling of O(N log N ) for

Bin, it is foreseeable that in the near future much larger exper-

iments could be carried out to put quantum lattice algorithms

to the test, be it on annealers such as D-Wave’s as described

here or gate architectures.
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AQC usually suffers poor time scaling due to its depen-

dence on 1/� (where � is the minimum spectral gap between

the ground and first excited eigenstates along the Hamiltonian

path), which can grow very quickly as system size increases.

The long sweep times of AQC are necessary in order to pre-

serve the system in its ground state throughout the evolution.

The existance of the Goldilocks zone far from the adiabatic

limit raises in this work is encouraging as it hints that al-

gorithms such as the ones described in Sec. III may achieve

much more appealing time scaling.

In fact, this raises the curious question of how to approach

extracting asymptotic time scaling for an algorithm where

success is defined to be measuring the system in its first

excited eigenstate. More generally, the approximate form of

SVP, SVPγ , requires only an attacker to find a vector of length

polynomially [poly(N )] larger than λ1(L). This form of the

problem means that poly(N ) excitations are admissible during

the evolution, which could potentially be traded off against

significant speedups. Answering this question would doubt-

less be of interest well beyond postquantum cryptography,

as the answer would unlock solutions to many approximate

optimization problems in QC.

One key area of progress bearing significance for QC is

that of improving the fidelity of qubits both in the annealer and

gate architectures. In the meantime, as demonstrated above, it

is down to theorists to think carefully about how their math-

ematical constructions might best make use of the hardware

available to them as the significant improvements we extracted

from Ham qudits were nearly dropped from consideration

due to the asymptotic inefficiency in space of O(N2) versus

O(N log N ) for Bin qudits. In this way, it is possible for

experimental and theoretical work to meet in the middle.
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APPENDIX A: SVP INSTANCE GENERATION

Here we talk through the exact procedure for generating

the lattice bases used to perform the quantum SVP algorithms

described in Sec. III on.

For each dimension, we generated 20 random matrices

with coefficients in {0, 1} (ensuring nonzero determinants, so

that corresponding lattices are full rank). These are the good

bases. We then generated 20 random unimodular matrices

with coefficients in [−6, . . . , 6]. The good bases (which are

just a matrix with binary entries, interpreted as a row basis) are

then postmultiplied by a unimodular matrix. The result is the

set of bad bases. These are used as inputs to the algorithm (i.e.,

the bad bases are postmultiplied with their transpose to get the

Gram matrix, which is used to define interqubit interactions).

FIG. 7. Diagram, from [43], showing logical qubits embedded as

qubit chains (of physical qubits) into the CHIMERA topology, where

each qubit with the same color has strong ferromagnetic interactions

with other qubits to which it is connected in the same chain.

The reason we generated good bases with short vectors

before transforming them into bad bases to input into the

algorithms in this paper is to ensure the existence of short

vectors and to make them more closely resemble the SVP

instances one is likely to encounter in the wild, by which we

mean approaching bases for which short vectors are known to

exist.

APPENDIX B: D-WAVE

The quantum Ising model assumes full qubit-qubit con-

nectivity, whereas D-Wave 2000Q is constructed according

to a CHIMERA topology, whereby each qubit is connected to

a handful of nearby qubits that form a sort of cluster and

each cluster is connected to a few others. Each cluster is

represented as the diamond formation of dots in Fig 7. A

model requiring full connectivity can be mapped into D-

Wave’s CHIMERA topology, incurring a quadratic cost in the

number of qubits required. This is done by creating qubit

“chains,” which are illustrated in Fig 7. In a qubit chain, all

qubits are strongly incentivized to return the same value by

assigning qubits in the same chain with stronger qubit-qubit

ferromagnetic interactions than between qubits in different

chains. By way of error correction, when not all qubits in a

chain return the same value (called a chain break), a simple

majority vote is taken to decide on the final value.

Ham qudit advantage

The reason the Ham qudits trump the Bin qudits despite

the larger system size required to search the same solution

space is that they allow for greater utilization of the energy

spectrum available. In the Bin setting, the strength of qubit-

qubit interactions decreases on average by a factor of 2 for

each step away from the most significant qubit. This result

means that despite the instability of SVP solutions (by which

we mean that a small error in the coefficient vector makes a

large difference to the output eigenenergy) the least significant
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qubits have relatively very weak interactions with the rest

of the system, as all J, h interaction values must be scaled

down to the energy spectrum provided. Crucially, this also

means that errors in the interaction energies become much

larger relative to the problem Hamiltonian, in effect mean-

ing that it is much more likely that the QPU is solving the

wrong problem [44], leading to poorer performance relative

to Ham.

In Ham, however, each qubit contributes the same amount

to the output of the qudit, and so small differences (±1 in

the value of a coefficient) are effected by stronger forces, in-

creasing the likelihood of attaining low-energy solutions. We

believe this effect is quite significant but tempered somewhat

by the effects of having a larger system size: longer chains are

required, which leads to higher chain-break probabilities, and

thus, more errors occur.
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