
Two Real-World Case Studies on 3D Web Applications for
Participatory Urban Planning

Toni Alatalo
University of Oulu & Playsign Ltd.

toni.alatalo@oulu.fi

Matti Pouke
University of Oulu

matti.pouke@oulu.fi

Timo Koskela
University of Oulu

timo.koskela@oulu.fi

Tomi Hurskainen
Playsign Ltd.

tomi@playsign.net

Ciprian Florea
Playsign Ltd.

ciprian@playsign.net

Timo Ojala
University of Oulu

timo.ojala@oulu.fi

ABSTRACT

3D Web is a potential platform for publishing and distributing 3D

visualizations that have proven useful in enabling the participation

of the general public in urban planning. However, technical require-

ments imposed by detailed and rich real-world plans and related

functionalities are demanding for 3D web technologies. In this

paper we explore the maturity of modern 3D web technologies in

participatory urban planning through two real-world case studies.

Applications built on Unity-based platform are published on the

web to allow the general public to create, browse and comment on

urban plans. The virtual models of seven urban development sites

of different visual styles are optimized in terms of download sizes

and memory use to be feasible on browsers used by the general

public. We report qualitative feedback from users and present a

technical analysis of the applications in terms of download sizes,

runtime performance and memory use. We summarize the findings

of the case studies into an assessment of the general feasibility of

modern 3D web technologies in web-based urban planning.

CCS CONCEPTS

•Applied computing→Cartography; Computer games;

KEYWORDS

Virtual city model, performance, Unity, Emscripten, case study

ACM Reference format:

Toni Alatalo, Matti Pouke, Timo Koskela, Tomi Hurskainen, Ciprian Florea,

and TimoOjala. 2017. Two Real-World Case Studies on 3DWebApplications

for Participatory Urban Planning. In Proceedings of Web3D ’17, Brisbane,

QLD, Australia, June 05-07, 2017, 9 pages.

DOI: http://dx.doi.org/10.1145/3055624.3075950

1 INTRODUCTION

Participatory urban planning seeks to engage various stakeholders

and community members in urban planning projects. 3D visual-

izations have proven useful in enabling the participation of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Web3D ’17, Brisbane, QLD, Australia

© 2017 ACM. 978-1-4503-4955-0/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3055624.3075950

general public in such projects, since they facilitate efficient com-

munication of plans to non-professionals (Bouchlaghem et al. 2005;

Wu et al. 2010). The scope of such 3D visualizations can range

from individual buildings to entire 3D city models with greatly

varying application requirements in terms of spatial accuracy, se-

mantics, aesthetics and historical accuracy (Carrozzino et al. 2009).

Moreover, different stages of a planning process can benefit from

various abstraction levels in visualizations to keep the participants’

attention on relevant aspects (Lovett et al. 2015). Game engines

and WebGL have become attractive technology choices for gener-

ating visualizations in participatory urban planning projects since

they provide aesthetic and interactive visualizations that can be

published and distributed efficiently on the web. However, despite

recent advancements in 3D Web technology, publishing interactive

3D applications on the web is different from native 3D applications

such as games or 3D modeling software, not only in terms of ren-

dering performance and network bandwidth requirements, but also

in terms of user expectations on usability and response times.

In this paper we explore the maturity of modern 3D web tech-

nologies in participatory urban planning through two real-world

case studies. There, applications built on Unity-based platform are

published on the web to allow the general public to create, browse

and comment on urban plans. The virtual models of seven urban

development sites of different visual styles are optimized to have

feasible download sizes and memory use for browsers used by the

general public. We summarize qualitative feedback from users and

present a technical analysis of the applications in terms of down-

load sizes, runtime performance and memory use. The applications

focus on delivering the end user experience using state of the art

3D Web technology with available basic compressions and opti-

mizations so that the source data coming from the urban planning

systems (BIM, CAD, GIS etc.) is compressed into 3D game engine

assets. For this reason, considerations on back-end databases and

service system integrations are omitted from technical analysis.

The rest of the paper is organized as follows. Section 2 briefly

reviews related work on 3DWeb in urban planning. Section 3 intro-

duces the Unity-based platform and overall software architecture

and web hosting of the applications and data. Sections 4 and 5

report the two case studies, respectively, covering the functional-

ity of the applications, feedback from users and technical analysis.

Section 6 discusses the findings of the case studies with respect to

3D engine choices and selected technical aspects of 3D authoring

on the Web. Section 7 concludes the paper.

2 RELATED WORK

In urban planning tools 3D visualizations can be produced with

many different technologies ranging from videos to interactive

3D applications (Lovett et al. 2015). 3D data for urban planning

applications can exist in multiple forms, for example in form of

CAD models, polygon meshes or point clouds. They can be created

either by scanning, manual modeling or procedural modeling. Im-

ages can be either pre-rendered or real-time rendered. In addition

to visualizations, contemporary urban planning software provide

many analytical tools that exist mostly outside the game engine

realm. These tools can usually produce runtime 3D visualizations

and possibly also export visualizations in 3rd party formats (e.g.

Sketchup, OBJ, FBX), which can then be imported to custom appli-

cations based on game engines such as Unity or Unreal Engine, for

example.

Google Earth has been used as a platform for urban planning

visualizations. Recently, Web based approaches such as X3DOM,

Cesium and three.js have become viable alternatives for many urban

planning, 3D city and landscape visualization applications (Krämer

and Gutbell 2015; Virtanen et al. 2015).

3D city models on the web are often not only for visual geom-

etry but require additional hierarchy and semantics. In previous

work, Chaturvedi et. al. (2015) presented a solution for web-based

rich interaction with deeply nested structures of 3D city objects,

using additional JSON data format for semantic information. In ur-

ban planning, CityGML is currently perhaps the most well-known

format for urban 3D visualizations, including not only visual and

spatial, but also semantic properties of objects (Kolbe 2009; Kolbe

et al. 2005). However, CityGML models are usually not utilized

with game engines, web or otherwise.

Although many different technologies for urban planning visual-

izations have been proposed, any particular universal solution does

not seem to exist currently. Instead, technologies as well as design

choices should be chosen according to the task in hand (Lovett et al.

2015). Krämer et al. argued that this also holds true for geospatial

visualizations in 3D Web (Krämer and Gutbell 2015). Bakri et al.

(Bakri and Allison 2016) compared the download sizes and render-

ing performance of a Unity WebGL build and a native version in

visualizing web-based virtual worlds, reporting over three times

larger size for WebGL over native version (129 MB for WebGL vs

40 MB for native). In this article we analyze seven scenes, obtain-

ing nearly equal sizes for WebGL and native builds (16-71 MB for

WebGL vs 13-60 MB for native).

3 THE TOOLKIT

3.1 Scope and Features of The Toolkit

The toolkit aims to provide a set of user-friendly (non-professional)

applications spanning the whole urban planning life cycle. It con-

sists of three applications, Create, Experience and Live, which cover

the building life cycle from early idea gathering to detailed planning

and all the way to deployment.

In the early exploration phase, built-in tools of Create can be

used to sketch ideas, e.g. to draw roads in an area plan. In the

design phase, models made by architects and planners with profes-

sional tools are imported to the plan. Throughout the design phase,

Experience allows different stakeholders and the general public to

explore and even virtually test the plan in action. Finally, when

a building is taken to use, the Live service continues to use the

models to provide maintenance service UIs and IoT visualization

and controls. However, Live was not used in the two case studies

and is thus excluded from this paper.

The applications are relatively simple and focus on providing

a basic set of features while publishing plans created with profes-

sional tools. The applications are made with Unity using both 3rd

party software components from the Unity asset store as well as

in-house components made specifically for the toolkit (Figure 1.

The two applications have distinct technical requirements in that

Create uses user generated content and procedural modeling while

Experience uses large detailed scenes.

In the case studies, the source materials include area models

created with e.g. ArchiCAD, relatively complex polygon models

created with e.g. Rhino, simple building masses (boxes) created

for area models with SketchUp, similar SketchUp models of sur-

rounding already existing areas exported from city database using

Trimble Locus SKP export, and relatively detailed building models

created with 3D Studio Max and exported to FBX. All these models

are imported to Unity for inclusion in the applications and web

publishing, thus they are normalized and optimized with state of

the art mesh compression techniques. The focus of the study is

on the use of light 3D models for interactive 3D applications on

the Web where the models can be explored, configured and even

modified on the fly. The applications also utilize pre-rendered 2D

images, but technical aspects of still image rendering are omitted

from the analysis presented in this paper.

In this paper, data from the first two deployments of Create

and Experience is used to evaluate the usability of 3D Web in (col-

laborative) urban planning. The toolkit is used for the analysis

with the reasoning that by being relatively complete it provides

good technological coverage. The application domain is certainly

demanding, as very high quality visualizations typically obtained

with pre/offline rendering are often the norm in architecture. In city

models, while building models can be lightweight, their amount can

be very large. Nonetheless, useful game-mechanic like interactions

in applications require realtime 3D. Finally, the applications should

achieve sufficiently high FPS on computers used by the general

public while keeping download sizes feasible.

Unity Engine
- 3D graphics, 2D Overlays, Input, Asset system

Playfab

Manager

Assetbundle

Manager

Scene

Loader
Configuration

Loader

Camera

Controls

BASE PLATFORM

Build Menu
Visibility

Controls

DrawArea

AndFill

CreationSaver

AndLoader

ScoreBoard

Calculations

CREATE

PathManager

* Hotspots
Timeline

Simple

Waypoint

System

ImageFade WaterLevel

EXPERIENCE

Figure 1: Applications are composed from re-usable compo-

nents atop the Unity engine

Table 1: The toolkit covers the whole urban planning and building life cycle with three applications

CREATE EXPERIENCE LIVE

Plan areas in 3D and publish online

Build roads, parks and residential blocks

Use several map types as the base for all plans

Citizens can plan their own versions and com-

ment on others.

Showcase plans online

Citizens can visit and experience future areas

Hotspots: What kind of services would the

citizens prefer here?

Open feedback & analytics tools

Simulated traffic and ambience to bring the

plans to life

Monitor existing buildings

Introduction to premises

Build a virtual community

Share on-time information on problems, local

temperatures, free working spaces etc.

Dynamic use of BIM

3.2 Web Usability and Design Considerations

WebGL is used to run the 3D applications in a web browser. Unity3D

utilizes the Emscripten compiler for web builds, by compiling

both the C++ engine and C# written application code via C++ to

Javascript (orWebAssembly starting later in 2017). The applications

are also published as native builds for mobile devices. Unity was

chosen because of good support for importing various 3D assets

such as the built-in SketchUp SKP import, ease of authoring with

the Unity editor as well as good quality mobile application builds.

Unity WebGL builds face three main challenges when publishing

nontrivial 3D scenes for the general public: 1. Large download sizes

can result in too long initial waiting times; 2. Detailed graphics may

lead to unacceptably slow rendering speed (FPS) on low-end hard-

ware; and 3. The application may not exceed the fixed size memory

allocation allowed for applications compiled from Emscripten C++

to Javascript, especially on 32-bit browsers (Trivellato 2016).

For a seamless user experience on the Web, 3D applications

should minimize waiting times and not be too heavy to run. A

simple strategy using a small initial download followed by larger

downloads for additional data is described for a 3D city model in

(Alatalo et al. 2016). Experience employs a similar strategy by first

displaying a light menu for scene selection and loading larger 3D as-

sets on-demand. This is implemented by using Unity’s asset bundle

system to distribute 3D contents separately from the application.

Create, however, is simply downloaded and initialized at once. The

rationale is that we expect people’s tolerance for download times

to vary according to context and expectations. Experience is for

large audiences to view and explore urban plans, perhaps only for a

short while, and thus should not be too different from typical fluent

web browsing. Create, instead, is intended for working on plans

for extended periods of time. Therefore, we assume that people

accept longer load times, as it is still easier than downloading and

installing a separate desktop application.

3.3 Entity-Component Systems for 3D

Applications

As described earlier, the toolkit aims to serve different stakeholders

through all stages of a planning process. The components of the

toolkit should be independent enough so that they can be mixed

in various combinations. The development strategy was to utilize

re-usable configurable software components which can be selected

to be used in a particular planning project. A common technique

in complex and 3D game software architectures is to create such

composable pieces of functionality as entity-component systems.

Besides games such as MMORPGs, they have been demonstrated

to be useful for extensible general purpose virtual worlds (Alatalo

2011). Here we work with the assumption that entity-component

systems are similarly useful for a configurable toolkit for urban

planning. For example, a commenting system requires particular

kind of data for a 3D object or scene commented upon, as well as

provides a parcitular type of UI. Thus, a general purpose comment-

ing functionality can be implemented as a comment component,

attachable to any entity in the scene, with the accompanying soft-

ware module. Unity uses components both for the built-in core

functionality, own additional subsystems such as physics, and for

application developer created extensions (scripting). Thus it was

deemed appropriate for satisfying the need for extensibility and

configurability of these applications.

4 CASE 1: CREATE IN SKETCHING URBAN

AREA PLANS

In the first case study, Create was used for sketching the area plan

of a new suburb to be developed by the City of Oulu. Sketching

was conducted in two workshops and at home by voluntary partic-

ipants.1

4.1 Application Functionality

Create supports quick sketching of urban area plans for the purpose

of gathering of early ideas. It resembles city management games

such as SimCity and Cities:Skylines but is much simpler. Instead

of detailed 3D modeling, it features quick and rough urban plan

zoning combined with a game-like 3D visualization of the plan.

The application has been developed in collaboration with the City

Planning division of the City of Oulu in 2016.

A Create instance consists of a static 3D model of the existing

surrounding areas, various alternative base maps used as ground

textures and an empty area for the new plan and suitable build-

ing blocks for procedural 3D visualization of the plan. All source

materials were provided by the City Planning division in common

formats: SketchUp SKP exports from Trimble Locus database for

relevant surrounding areas in the city, OBJ files for a new nearby

area that has been planned in 3D in more detail, and FBX files for

the city block models used in the sketched plan visualization.

Create enables drawing of 2D polygons that can contain different

types of buildings or green areas, which is typical for zoning in

urban planning. It also allows drawing of streets and walkways

as simple polylines. Additionally, Create features automatic cal-

culation of several attributes for the current plan including the

number of inhabitants, amount of office space and green areas, and

estimated CO2 emissions (see Figure 2). For example, when the

plan reaches a target of 2000 new inhabitants, a game-like star icon

for that target is lit. These calculations and visualizations are done

by Create without any external services or data.

Figure 2: A star is lit when a design target is met

Each user is providedwith a personal account for storing sketched

plans that can also be published on the web for anyone to see. Fi-

nally, Create is integrated with Facebook for authentication, com-

menting and liking features. Comments and likes can be added

both to a whole plan and to individual freely geopositioned pins

(Figure 3).

4.2 Feedback fromWorkshops and Home Use

Before publishing on the web, Create was first tested in two work-

shops. First, the City Planning division organized a workshop for

1The Create instance is publicly available at http://hiukkavaara3d.ouka.fi

Figure 3: Geopositioned URLs for Facebook commenting

professionals working in different divisions within the city organi-

zation, e.g. infrastructure, economics, culture etc. Second, a public

workshop was arranged for property owners, developers and peo-

ple living in the area. In both workshops, participants worked in

groups, 5 groups in the first workshop and 3 groups in the second

workshop. They were given the choice of sketching an area plan

using either traditional pen and paper method with a map or using

Create - all groups in both workshops elected to use Create. Create

was also used for presenting the results at the end of the workshops,

which proved to be quick and practical approach.

After the workshops, we published Create on the web and so-

licited home use by voluntary participants who immediately re-

ported practical problems. First, the download size of 80 MB was

considered large. In response, the download size of Create was

optimized down to 36 MB. Second, rendering performance was

found to be borderline usable on machines with weaker GPUs –

this was mainly due to the inability to use precalculated baked

lighting with the 3D scene that the users are creating on the fly.

Solving this problem is still an open issue. Third, individuals who

were not urban planning professionals reported being at loss about

what they were supposed to do. In the workshops, planning pro-

fessionals facilitated discussion, presented alternatives, asked for

possible solutions and refined ideas further. After the first home

use test period, the score board with the goals for the plan was

added (Figure 2). We have not yet studied how helpful it has been

for home users thus it provides an interesting question for future

research.

4.3 Technical Analysis

The total download size of 36 MB for Create is acceptable taking

into account the average download speed in Finland (21 Mbps).

This total download size includes base maps, 3D graphics of the

surrounding areas, and the block models used by Create to fill the

areas (i.e. 2D polygons) that people draw.

The data created by users includes a set of objects with the

shape of a simple polygon, polyline or a single point together with

the type constant. Text descriptions are stored together with the

comment pin’s 3D position data. The whole document is serialized

to a single JSON string and stored on a cloud backend service over

HTTP. Commercial cloud service provider, Playfab.com, further

http://hiukkavaara3d.ouka.fi

uses Amazon’s DynamoDB for storage. After modifications, the

document is saved as a whole for simplicity. The minimum storage

space for a single key/value pair in DynamoDB is 1 KB. Hence, it is

better to combine more data into a single value and not have for

example an individual key/value pair for each comment. Following

this rationale, Playfab’s HTTP API has a fixed limit of max 10

key/value pairs per request when storing data. Create meets this

requirement easily by having a fixed set of data fields per document:

name, userID, areas (including roads), description and comments.

The size limit of a single field is 100 kB so the system works as

long both the area polygon data and the textual comment data stay

within that limit. Due to the small amount of data, it is stored in

human readable unoptimized JSON for convenience. As an example,

a relatively complex area plan is in total 15 KB, with 12 KB of area

data and 3 KB of comments. HTTP ZIP compression is used to

compress data before transmission.

The main finding of this analysis is that simple application spe-

cific data, typical to participatory and co-design tools, can be light-

weight even though it is used in a rich 3D environment. Thus,

common web service backends and technologies such as JSON and

NoSQL key/value storages are suitable for this kind of 3D Web

applications. It can also be emphasized that the simple GeoJSON

standard seems to cover many uses in urban planning with a simple

set of geometric primitives: Point, LineString, Polygon, MultiPoint,

MultiLineString, and MultiPolygon, together with Feature and Fea-

ture collection for extended types.2 For interoperability, Create

could also use GeoJSON instead of its own serialization which

currently uses less inefficient 3rd party Unity Vector3 serialization.

Fixed size heap memory allocation for Unity Emscripten builds

can be difficult for user created content. Originally, the size of heap

memory was set to 384 MB and 512 MB, which were sufficient for

Create and simple urban area plans created in the workshops. How-

ever, in home use people created more complex plans requiring

heap memory up to 768 MB, close to the limit of in 32-bit web

browsers. Later professionally made official plan alternatives were

visualized using Create, with even more detailed and thus heavier

plans. However a major optimization in the plan instantiation re-

duced the memory requirement so that even most complex current

plans can now be loaded with a reasonable 512 MB allocation.

For publishing a plan, Playfab’s group feature is used so that a

reference to the plan data is added to the group data which any-

one participating in the planning project can access. The group

model originally developed for games by Playfab suits Create in

this context very well and the use of 3D graphics does not pose any

problems for this feature.

Playfab’s Unity client side SDK supports Facebook login. To

implement Facebook Like and Comments, a GUID is generated for

each plan and comment pin. The base URL of the application in-

stance is used to form the full URL by adding the GUID. Facebook’s

Open Graph supports the use of Like and Comments features on any

URL.3 We use the browser side UI tools, instead of Unity’s WebGL

context, for the application’s Facebook GUI. When a 3D element

with associated Facebook functionality is activated in the Unity

application, it calls browser side Javascript to open a HTML element

2http://geojson.org/
3https://developers.facebook.com/docs/sharing/opengraph

where the Facebook Like and Comment plugins are embedded and

populated with the associated data.

5 CASE 2: EXPERIENCE TO PUBLISH THE

WINNERS OF THE NORDIC BUILT CITIES

CHALLENGE

In the second case study, Experience was used to publish the six

winners of the Nordic Built Cities Challenge 4. First we describe the

objectives and features of the application, and then briefly discuss

site specific design aspects in all six sites. For user feedback we

have informal anecdotal reports on positive and negative experi-

ences. Technical analysis of web and mobile applications reports

the download sizes of the 3D scenes and runtime memory use and

rendering performance. We also describe our solution for enabling

deep linking into the scenes.

5.1 Application Functionality

Experience is a cloud based application for publishing urban plans on

Web andmobile platforms. It enables game-like exploration of plans

with a simple touch-compatible UI targeted for non-professionals.

Experience’s features include the configuration of hotspots for high-

lighting selected parts of a plan. A hotspot can be, for example, a

location, where users can compare, comment and vote on alterna-

tive designs. Also, pre-rendered architectural visualizations can be

seamlessly integrated as 2D images into the 3D scene, with addi-

tional information and interactions. Currently, Experience does not

include user created content or any special web service integrations.

The comment and like functionalities employed in Create can be

used similarly. Our analysis focuses on how a variety of basic 3D

modeling styles succeed in providing feasible end user performance

in terms of download sizes, memory use and rendering.

5.2 Usage

Experience was used to publish the six winners of the Nordic Built

Cities (NBC) Challenge architecture competition. The competition

was organized by Nordic Innovation and the six regional winners

for each individual challenge were selected in June 2016. In fall

2016, software developers worked together with the six architect

teams on publishing the winning plans on 3D web and mobile. A

generic requirement for Experience was to enable publishing basi-

cally any area plan. Parallel with software development, separate

manuscripts, configurations and 3D scenes were prepared for each

site.

We have not yet conducted in-depth user studies for Experience.

However, we do have convincing anecdotal evidence from various

stakeholders involved in the challenge, especially from the orga-

nizer and the architect teams, demonstrating that the application

and the 3D scenes of all six sites are relevant, useful and actually

work in practice in terms of presenting the plans interactively on

the Web. By February 2017, the organizer had only heard posi-

tive feedback about the application. Several architects involved in

the challenge have explicitly stated how the rich interactive explo-

ration of the 3D scene is a new and useful way for them to present

their plans. They have also been sufficiently satisfied with usability

4Publicly available at http://nbc.playsign.net. Video at https://vimeo.com/199795753

http://geojson.org/
https://developers.facebook.com/docs/sharing/opengraph
http://nbc.playsign.net
https://vimeo.com/199795753

and aesthetics to actually use the 3D Web application. Negative

feedback has centered on some users having experienced too long

download times and not being satisfied with the visual quality of

the 3D scenes. However, based on the feedback received so far,

we believe that the application and its 3D scenes provide enough

relevant data to analyze how current 3D Web technologies succeed

in this domain.

The designs of each six sites had been originally created by

different teams of architects and other designers using various

tools. Besides 3D models, the designs contained additional data

in form of 2D illustrations, diagrams and text to describe various

aspects of the designs. The key role of Experience is to offer fluent

exploration of a design through a coarse overview 3D model and

with the possibility to navigate to specific areas containing more

detailed information. In this analysis we focus on the 3D models

only, providing brief overview of the styles and techniques, and

analyzing resulting runtime 3D assets.

5.2.1 Sketching of building masses in an area plan. A common

use case in the early phase of urban planning is to sketch building

masses for an area model. There, buildings do not have any details

such as colors or windows that would distract people from consid-

ering how the area works (Lovett et al. 2015). Two sites fall clearly

in this category, Kera in Finland (Figure 4) and Karsnes in Iceland

(Figure 5). For Kera, the architects demanded a stripped black and

white style with outlines of the buildings. Modeling tools, such

as SketchUp, can draw such outlines nicely. With Unity, and in

our understanding with similar tools in general, it was problematic

to produce desired effect programmatically in real-time. An edge

detection shader was used, but the results were either unstable

so that lines flickered as the camera moved, or with more exact

calculations too heavy for common devices, especially with WebGL.

Thus, the effect was drawn on the objects beforehand, either by

adding outline textures or with additional bevel geometry with

black face coloring.

Figure 4: Kera has a very abstract style with outlined boxes

For Karsnes, the SketchUp made box model scene was used as

is, just by baking global illumination textures. This kind of lighting

makes the shapes nicely visible without outlines.

5.2.2 Illustrate a plan with identifiable semantics for planned

services but not building designs. Two sites, Trygve Lies plaza in

Oslo, Norway (Figure 6) and Norrebro in Copenhagen, Denmark

Figure 5: Karsnes simple building mass with baked lighting

(Figure 7), involve closer exploration of design features also at

ground level, while surrounding buildings are still white rough

shapes. The designs were modeled in 3D, but with low level of

detail and utilizing an abstract texturing style. In Trygve Lies, a

key part of the design is a small bridge with an entrance to an

underground bike garage; the model provided by the architects was

detailed enough to explore the route at street level.

Figure 6: Trygve Lies has models for key features and trees

Figure 7: Norrebro excess rainfall examination

The Norrebro park is designed so that it can withstand excess

water during heavy rainfalls. For this reason, the 3D scene includes

a terrain with an accurate heightmap so that water levels can be

correctly visualized. Both scenes include trees made using the

SpeedTree component integrated in Unity.

5.2.3 Photorealistic and detailed textured style. The remaining

two sites, Runavik in Faroe Islands (Figure 8) and Sege Park in

Malmö, Sweden feature photorealistic and detailed textured styles.

Photorealism is the default style in architecture visualizations for

presenting detailed designs of individual buildings. This is typically

especially in marketing, where much emphasis is put on stunning

visualizations. Photorealism is challenging for real-time rendering,

but we achieved it by pre-rendering baked light textures. The Un-

real engine is a popular choice for such architecture visualizations,

also targeting VR devices. Unity works similarly when utilizing

carefully crafted light bakes. However, such high quality visualiza-

tions contain too much data forWeb use when covering larger areas.

For interior visualizations, however, they already work. Runavik

and Sege Park are compromises with medium detail models and

limited amount of textures. Runavik features a semi-realistically

textured terrain using texture splatting to cover a large area with lit-

tle texture data. In Sege Park, the scene is a single city block which

is composed of modular parts for apartments and other necessary

spaces, which can be explored individually in more detail.

Figure 8: Runavik with a large detailed terrain

5.3 Technical Analysis

Our analysis focuses on download sizes, rendering performance

and memory use, relative to the different visual styles used in the

3D scenes of the six sites.

The 3D scene of a site is distributed individually on the web as a

Unity asset bundle. A bundle consists of a small text based manifest

file with metadata, including the name of the Unity asset in the

bundle and the hash of the corresponding binary file. The binary

includes all 3D and scene data in Unity’s binary format, either

uncompressed or with additional LZMA or LZ4 block compression.

The bundles are platform specific, so they need to be separately

created for e.g. WebGL, Android, iOS and Windows. In this case,

the bundles are automatically built using Unity Cloud Build services

and uploaded to the CDN used. This automation guarantees that

different bundles are comparable.

All the meshes in the scenes are compressed using Unity’s built-

in compression. Textures are compressed with Crunch with the

default quality setting of 50. Regarding additional compression of

the unity binary file, the default LZMA compression is the most

effective regarding file size. Unfortunately, LZMA is too slow for

decompression by Javascript in the browser (Vinson 2017), and it

would also require additional memory due to the browser sandbox

not having access to a file system where it could store the uncom-

pressed data before loading it to the engine. Therefore, Unity has

added LZ4 block compression with which decompressing is both

fast and easy onmemory. LZ4 is the default compression forWebGL

bundles since Unity 5.5, whereas LZMA remains recommended for

native builds in typical scenarios. On the web, the built-in GZIP

decompression in browsers is used in addition to LZ4 by zipping

the bundles and serving them with the "Content-Enconding: gzip"

HTTP header. Recently, more effective Brotli compression has been

added to some browsers. Unfortunately, the automated publishing

of the NBC bundles relies on Google Cloud Storage tools which

handle the GZIP compression but do not support Brotli yet, so we

could not assess its performance.

The NBC scenes use substantial amounts of 2D imagery in com-

bination with the 3D scenes. However, the 2D data is excluded from

this analysis since it is not wholly optimized yet, and because we

do not consider it to be relevant for evaluating 3D Web usability.

5.4 Result Data

The data of the six NBC sites is shown in Table 2. For each site

we report the style, use of texturing and realtime lighting in the

3D scene. Data download sizes and FPS figures are reported both

for WebGL and native versions. Memory use refers to the usage of

Emscripten heap.

Not surprisingly, the abstract building masses in Karsnes and

Kera are the lightest, even though the areas are the largest. Web

downloads of 16-19.5 MB are still substantial but usable. These

abstract scenes would be much smaller without light bake textures,

but they are necessary for decent visual quality on typical poor

GPUs. Norrebro at 23.2 MB is not too large either, and contains only

a few 3D objects with more detail. However, it includes a fairly large

terrain necessary for water level visualizations. Runavik includes an

even larger terrain with somewhat high quality; a main feature on

the site is visualizing how the proposed new buildings are shaped to

the landscape which is explored by a virtual walk of a few hundred

meters on the ground level. However, Runavik does not include

much additional complex 3D data, so the overall size is balanced

at 33.6 MB. Conversely, Trygve Lies does not have a terrain but

includes more detailed mesh models of the landmark bridge as well

as other objects on the square and bicycles in an underground bike

garage, resulting in similar size of 31.8 MB even though the area is

small. Finally, Sege Park is the only site where the 3D data is fairly

extensive yielding 71.8 MB web download. There, the geometry

includes a whole city block and nine interior models of premises

with details such as water faucets in kitchens. The usability of

Sege Park could be improved by splitting it into several bundles, so

that the overall block model would be loaded and shown first, then

interiors would be loaded in the background. However, the total

size of Sege Park is already similar to the others because unlike the

other sites it does not use any 2D images.

5.5 Runtime Performance

All six scenes are relatively light. Powerful hardware, for example a

gaming laptop, can run them fine also with WebGL. Table 2 shows

FPS measurements for a weaker GPU device, a 2014 Surface Pro

Table 2: Nordic Built Cities scene analysis

Site Style Texturing Realtime

light

Data /

Web

(MB)

Data /

Native

(MB)

Ems.

Heap

(MB)

FPS /

Weak

GPU

FPS /

native

build

Karsnes Abstract building mass None No 16.0 13 323 15-60 60

Kera Abstract building mass Outlines No 19.5 15 333 11-54 35-60

Norrebro Stylized semiabstract, key fea-

tures modeled

Terrain, trees, not

buildings

No 23.2 19.8 423 1-14 46-60

Runavik Semi realistic mid/low detail Terrain, new

buildings

Yes 33.6 29 452 3-15 6-24

Sege Park Detailed city block with interiors Whole block, also

interiors

No 71.8 60 608 2 10-12

Trygve Lies Partly detailed scene, trees Yes, abstract style No 31.8 46 350 4-54 9-60

3 with Intel i7-4650U @ 2.30 GHz, 8 GB, Intel HD Graphics 5000

and Windows 10 Pro 64-bit, where Intel HD 5000 is a common

graphics card in regular (non-gaming) laptops. The application and

all bundles used Unity 5.5.1f1 which uses WebGL 2.0 for rendering

when available. The test runs were made with Chrome 56 which

uses WebGL 2.0. Same device was used for FPS measurements with

a Windows native build of the application for comparison.

The Surface Pro is able to show the very simple abstract 3D

scenes well but becomes sluggish with the more complex scenes,

and can show the most complex Sege Park scene only at 2 FPS.

Although the scene could be optimized further, the data suggests

that for audiences with ordinary devices WebGL content must be

very light. Culling with Unity and baked occlusion data seems to

work well so also the heavier scenes should be usable in most cases.

Native Windows desktop build runs the scenes 2-5 times faster so

relative performance decrease with WebGL is still substantial.

Regarding memory use, the more abstract city scenes use decent

323-452 MB of Emscripten dynamic heap, whereas the much more

complex Sege Park scene uses 608 MB. The heap allocation was

configured for 640 MB. The scenes were static with no user created

or other dynamic content so static allocation is not problematic.

5.6 Client Side URL Parsing for Deep Linking

All NBC scenes are accessed using the generic client application,

Experience, which is accessed at a particular URL providing a menu

for selecting a scene to be explored. The application has the ability

to exit the current scene and select another, which is quick because

the Unity engine is already loaded. Alternatively, each scene could

be hosted as a separate web page, which would require reloading

the Unity engine and initialization of the Emscripten build which

is currently a heavy operation. To enable direct deep linking to the

scenes, Experience supports including the name of the target scene

in the URL as a query parameter. When using the application, it

manipulates the URL so that the address of the current scene can

be shared and reloaded from the browser normally.

6 DISCUSSION

6.1 Javascript Libraries vs. WebAssembly

Compiled C++ Engines

A major choice for 3D Web application authors today is whether to

use a typically smaller plain Javascript library or a full C++ game

engine via Emscripten compilation. Upsides of vanilla Javascript

include typically much faster startup and ease of integration with

other web client side code. Unity and Unreal using C++ provide,

however, much more powerful graphics capabilities, especially the

ease of authoring of 3D applications. It should also be noted that

Emscripten engine builds are larger to download and heavier to ini-

tialize, but that can still be small in terms of file size when compared

to 3D scene data. It is yet unclear how much WebAssembly will

help in this respect. Ability to deploy the same 3D application as a

native build, especially for mobile devices, was a large contributing

factor for the choice of technology in the two case studies presented

in this paper – combined with the ease of authoring and familiarity

with Unity. Thanks to Emscripten optimizations and occulusion

management in Unity, it was also assumed that the rendering per-

formance of Unity Emscripten compile is better than that of for

example three.js.

6.2 Styles and Heaviness

It is feasible to publish various kinds of urban plans on WebGL, but

they need to be very lightweight in order to guarantee decent per-

formance also on low-end devices. One optimization strategy is to

choose carefully, where the more detailed 3D graphics are actually

needed, e.g. in terrain or buildings. If the rendering performance

of WebGL continues to catch up with the performance of native

rendering, this problem will become less significant in the future.

6.3 Web Addressability and Linkability

The Web is a hypermedia system, comprising of documents and

media elements with unique URIs, which is woven together by

linking. When one encounters an interesting article or an image

on the web, the link to it – or even to a specific part of it – can be

shared e.g. in a social media post.

By default, the hypermedia capabilities taken for granted on

the Web otherwise are lost in typical WebGL applications today.

For instance, in a three.js or a Unity application there is no way

to refer to a part of the 3D content with a URI. If one encounters

an interesting building in a city model it is not possible to refer to

it specifically nor share it, other than taking a screenshot, which

loses both the 3D model and the information about the origin. Even

worse, 2D content such as images and text in 3D Web applications

are only available embedded in the application and not as individual

elements on the web. This is also the case in the presented appli-

cations, illustrated in Figure 9 with the image and text describing

a part of an urban design. The architectural design presentation

includes hypermedia style icons integrated in the 3D scene, but

corresponding 2D content tis not available on the Web – only as a

part of the 3D application’s data bundle. The data bundles are used

to efficiently download and process a large number of small assets.

Figure 9: Deep linking to the 2D or 3D objects is not possible

For the case studies presented in this paper, two solutions have

been implemented to improve addressability. First, the applications

support including the ID of the scene in the application URL so

that a particular 3D scene can be linked to directly. Also, it is

possible to add at arbitrary locations geopositioned comment pins

that have unique URLs and can hence be referred to. The comment

pin URLs allow the use of the Facebook Like and Comment plugins,

because any valid URL on the Web can participate in Facebook’s

Open Graph. Combined with the approach by Chaturvedi et. al.

(2015), this kind of 3D applications can be further integrated with

the Web infrastructure. Also the existing 3D Web solutions with

DOM integration may well be be relevant for this. For example

X3D supports both link anchors in the 3D scene and URI fragment

identifiers to refer to a viewpoint in the scene.5

7 CONCLUSIONS

Our case studies show that it is possible to publish 3D citymodels for

participatory urban planning on the Web using Unity so that they

are usable with common user devices. WebGL does still however

suffer from a very significant performance slowdown of 2-5 times

compared to running the same content in a Windows native build.

In order to work on weak devices with WebGL the scenes have to

have abstract lightweight style and be optimized. Download and

initialization of the engine and the 3D contents is slower and heavier

than what people are used to on the Web. This can be mitigated by

communicating expectations to the users, by informing that they

need to wait a while to download an application. As an upside,

after download usage is seamless. However, exploiting streaming

and progressive loading, common in web applications and with 3D

5http://www.web3d.org/x3d-resources/content/examples/Vrml2.0Sourcebook/
Chapter28-Anchor/_pages/page01.html

Web, would be interesting solutions for Unity based 3D city models

as well. Overall, the 3D Web, including common backend solutions,

already works in these applications. Still, extra care and work is

needed in creating hyperlinking and 3D application contents so

that we can integrate them with the rest of the web.

8 ACKNOWLEDGEMENTS

This work has been supported by the 6Aika: Open City Model

as Open Innovation Platform (A71143) and the Open Innovation

Platform (A70202) projects funded the ERDF and the City of Oulu

under the Six City Strategy program, and the COMBAT project

(293389) funded by the Strategic Research Council at the Academy

of Finland. Playsign application development has been carried out

in the Collaborative City Co-design PlatfOrm (C3PO) ITEA2 project

from call 8 (reference: 13016) with financing by the Technology

Development center of Finland (TEKES).

REFERENCES
Toni Alatalo. 2011. An entity-component model for extensible virtual worlds. Internet

Computing, IEEE 15, 5 (2011), 30–37.
Toni Alatalo, Timo Koskela, Matti Pouke, Paula Alavesa, and Timo Ojala. 2016. Vir-

tualOulu: Collaborative, Immersive and Extensible 3D City Model on the Web. In
Proceedings of the 21st International Conference on Web3D Technology (Web3D ’16).
ACM, New York, NY, USA, 95–103. DOI:http://dx.doi.org/10.1145/2945292.2945305

Hussein Bakri and Colin Allison. 2016. Measuring QoS in Web-based Virtual Worlds:
An Evaluation of Unity 3D Web Builds. In Proceedings of the 8th International
Workshop on Massively Multiuser Virtual Environments (MMVE ’16). ACM, New
York, NY, USA, Article 1, 6 pages. DOI:http://dx.doi.org/10.1145/2910659.2910660

Dino Bouchlaghem, Huiping Shang, Jennifer Whyte, and Abdulkadir Ganah. 2005.
Visualisation in architecture, engineering and construction (AEC). Automation in
Construction 14, 3 (2005), 287 – 295. DOI:http://dx.doi.org/10.1016/j.autcon.2004.08.
012 International Conference for Construction Information Technology 2004.

M. Carrozzino, C. Evangelista, andM. Bergamasco. 2009. The Immersive Time-machine:
A virtual exploration of the history of Livorno. In Proceedings of 3D-Arch Conference.
198–201.

Kanishk Chaturvedi, Zhihang Yao, and Thomas H Kolbe. 2015. Web-based Exploration
of and Interaction with Large and Deeply Structured Semantic 3D City Models
using HTML5 and WebGL. In Wissenschaftlich-Technische Jahrestagung der DGPF
und Workshop on Laser Scanning Applications, Vol. 3.

Thomas H Kolbe. 2009. Representing and exchanging 3D city models with CityGML.
In 3D geo-information sciences. Springer, 15–31.

Thomas H Kolbe, Gerhard Gröger, and Lutz Plümer. 2005. CityGML: Interoperable
access to 3D city models. In Geo-information for disaster management. Springer,
883–899.

Michel Krämer and Ralf Gutbell. 2015. A Case Study on 3D Geospatial Applications
in the Web Using State-of-the-art WebGL Frameworks. In Proceedings of the 20th
International Conference on 3D Web Technology (Web3D ’15). ACM, New York, NY,
USA, 189–197. DOI:http://dx.doi.org/10.1145/2775292.2775303

Andrew Lovett, Katy Appleton, Barty Warren-Kretzschmar, and Christina Von Haaren.
2015. Using 3D visualization methods in landscape planning: An evaluation of
options and practical issues. Landscape and Urban Planning 142 (2015), 85 – 94.
DOI:http://dx.doi.org/10.1016/j.landurbplan.2015.02.021 Special Issue: Critical
Approaches to Landscape Visualization.

Marco Trivellato. 2016. Unity WebGL Memory: The Unity Heap. https://blogs.unity3d.
com/2016/12/05/unity-webgl-memory-the-unity-heap/. (2016).

Ben Vinson. 2017. Unity WebGL Memory and Perfor-
mance Optimization. http://developers.kongregate.com/blog/
unity-webgl-memory-and-performance-optimization. (2017).

Juho-Pekka Virtanen, Hannu Hyyppä, Ali Kämäräinen, Tommi Hollström, Mikko
Vastaranta, and Juha Hyyppä. 2015. Intelligent open data 3Dmaps in a collaborative
virtual world. ISPRS International Journal of Geo-Information 4, 2 (2015), 837–857.

HuayiWu, Zhengwei He, and Jianya Gong. 2010. A virtual globe-based 3D visualization
and interactive framework for public participation in urban planning processes.
Computers, Environment and Urban Systems 34, 4 (2010), 291 – 298. DOI:http:
//dx.doi.org/10.1016/j.compenvurbsys.2009.12.001 Geospatial Cyberinfrastructure.

http://www.web3d.org/x3d-resources/content/examples/Vrml2.0Sourcebook/Chapter28-Anchor/_pages/page01.html
http://www.web3d.org/x3d-resources/content/examples/Vrml2.0Sourcebook/Chapter28-Anchor/_pages/page01.html
http://dx.doi.org/10.1145/2945292.2945305
http://dx.doi.org/10.1145/2910659.2910660
http://dx.doi.org/10.1016/j.autcon.2004.08.012
http://dx.doi.org/10.1016/j.autcon.2004.08.012
http://dx.doi.org/10.1145/2775292.2775303
http://dx.doi.org/10.1016/j.landurbplan.2015.02.021
https://blogs.unity3d.com/2016/12/05/unity-webgl-memory-the-unity-heap/
https://blogs.unity3d.com/2016/12/05/unity-webgl-memory-the-unity-heap/
http://developers.kongregate.com/blog/unity-webgl-memory-and-performance-optimization
http://developers.kongregate.com/blog/unity-webgl-memory-and-performance-optimization
http://dx.doi.org/10.1016/j.compenvurbsys.2009.12.001
http://dx.doi.org/10.1016/j.compenvurbsys.2009.12.001

	Abstract
	1 Introduction
	2 Related Work
	3 The Toolkit
	3.1 Scope and Features of The Toolkit
	3.2 Web Usability and Design Considerations
	3.3 Entity-Component Systems for 3D Applications

	4 Case 1: Create in Sketching Urban Area Plans
	4.1 Application Functionality
	4.2 Feedback from Workshops and Home Use
	4.3 Technical Analysis

	5 Case 2: Experience to Publish The Winners of The Nordic Built Cities Challenge
	5.1 Application Functionality
	5.2 Usage
	5.3 Technical Analysis
	5.4 Result Data
	5.5 Runtime Performance
	5.6 Client Side URL Parsing for Deep Linking

	6 Discussion
	6.1 Javascript Libraries vs. WebAssembly Compiled C++ Engines
	6.2 Styles and Heaviness
	6.3 Web Addressability and Linkability

	7 Conclusions
	8 Acknowledgements
	References

