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Abstract

Zipf’s law states that the frequency of a word is a power function of its
rank. The exponent of the power is usually accepted to be close to (—)1. Great
deviations between the predicted and real number of differents words of a text,
disagreements between the predicted and real exponent of the probability density
function and statistics on a big corpus, make evident that word frequency as a
function of the rank follows two different exponents, ~ (—)1 for the first regime
and ~ (—)2 for the second. The implications of the change in exponents for the
metrics of texts and for the origins of complex lexicons are analyzed.
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1 Introduction

The Zipf’s law for words, by G. K. Zipf (Zipf, 1972) , is one of the most fundamental
and popular achievements of quantitative linguistics and the origin of a wide range
of hypothesis about its origin (Li, WWW). Despite its apparent robustness (Naranan
& Balasubrahmanyan, 1998; Balasubrahmanyan & Naranan, 1996), Zipf’s law is an
empirical observation and not a law in a rigourous sense (Casti, 1995; Li, 1998). In
this context, Zipf’s law has been assumed but not explained in recent models for the
evolution of syntactic communication (Nowak, Plotkin, & Jansen, 2000) and is an
obvious ingredient for any theory of language evolution.

Original Zipf’s law? linked i, the rank of a word (in a list of words decreasingly
ordered by frequency) with P(7), its frequency. The relation follows a power law in the

form:
P(i) = p1i™® (1)

where a = 1 (Zipf, 1972; Casti, 1995; Tsonis, Schultz, & Tsonis, 1997) and p; is
the probability of the most frequent word.

The same law can also be presented as probability density function:

Q(j) o< j~” (2)

where Q(7) is the probability that a word is present j times in a text. Although both

the rank distribution and the word frequency spectrum can be modeled in many ways

2@G. K. Zipf discovered many rank-probability relations. Since we will focuse on that of words, we
will simply hereafter refer to it as the Zipf’s law.



(Tuldava, 1996; Balasubrahmanyan & Naranan, 1996; Naranan & Balasubrahmanyan,
1998), we adopt a power law for simplicty reasons.

We can relate the rank with the probability density function. Let us denote by
m, = TQ(n) the number of words having population n, where T is the total number

of word in the sample. Then, the rank is given by

R(n) = /noo My dn' (3)

and the most frequent word has R = 1, the second most frequent word has R = 2, and
so on, for decreasing values of n in the integral. Eq. 3 establishes a general relation
between the rank of an event in the sample and the probability distribution according
to the event frequency. Substituting R oc n~/* (obtained from Eq. 1) and Eq. 2 in

Eq. 3 we immediately get n'=% ~ n=Y* from where

If @ =1 then 3 should be 2.

It can be observed in the plots of (Zipf, 1972; Casti, 1995; Tsonis et al., 1997) that
the law provides a good fit for the smallest ranks (acknowledging some deviations at
the very begining of the ordering discussed in (Tsonis et al., 1997; Li, 1998)) but no
attention has been paid to the deviations in the tail. We will show that such deviations

are much more important than expected.



2 Desagreements

One of the desirable properties of a law (as it happens with common physical laws) is
to allow for accurate predictions.

The predicted number n of differents words of a text formed by T words, can be
obtained by applying the Zipf’s law and solving the following equation

1

T~ pin~ (6)

where 1/T is the lowest probability that can be achieved by a word in a text of size T

From Eq. 6 we obtain

n=[Tp]"* ~ Tp, (7)

We processed ® T~ 9 - 107 words of the British National Corpus (BNC) a corpus
of modern English, both spoken (10%) and written (90%) *. We obtained P(1) =
0.0601046, o = 1 (power law regression). Unfortunately, n = 588,030 was very far
from 72 = 5.6 - 10%. The big deviation observed could be attributed to a poor statistics
or a bad fitting of the parameters intervening in the prediction, p; and a. We will show
that there is a deeper reason.

We computed the probability density function of the frequency (in number of oc-
curences) of the BNC. More precisely, the probability P(k) that a word occurs k times

in the corpus. The left half of the plot, shown in Figure 2, revealed a well-defined

3Words different than proper noun were lowercased. Marks were excluded. Inflected forms of the
same (root) word were treated as different words.

4BNC is a collection of text samples (generaly not longer than 45,000 words). It is syncronic (it
includes imaginative texts from 1960, informative texts from 1975), general (not specifically restricted
to any particular subject field, register or genre), monolingual (it comprises text samples which are
substantially the product of speakers of British English) and mixed (it contains both examples of both
spoken and written English). Additional information is available at http://info.ox.ac.uk/bnc.
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power law relationship between Q(j) and j whose exponent was = 1.5. The value
obtained was 1.6, but removing the two first points, corresponding to the most un-
common words, and thus corresponding to the frequences being the most difficult to
estimate, 1.5 was obtained (linear regression, § = 1.52 4+ 0.008). In contrast, Eq. 5
predicted § = 2. In addition, the plot of the probability density function in Figure 2

was specially clear. A question of bad statistics or fitting again?

FIGURE 1

3 Rethinking the law

A more carefull sight of the rank ordering plot on our data revealed the existence of
two different exponents in the same rank ordering plot (Figure 1). a3 = a ~ 1 and
ap &~ 2 seem appropiate for ranks ¢ < N € (10%,10*) and ¢ > N, respectively. Thus,
the frequency of words becomes a double law, the initial Zipf’s law and a more sloping

decay,

P(i) = { pi ifi< N )

N*2pyni~**  otherwise
where py is a the probability of the n-th most frequent word (it can also be obtained

from Eq. 1 and thus be 1/pyN{* ~ p,/N).
FIGURE 2

Let o = [Tpl(l)]l/ “. According to 8 and being 1/7" the smallest probability, the



number of different words predicted is

P [Tp ] if Tpy <1
N [Tpy]"** otherwise

where p17000 = 1.06292 - 10_4, p5’000 = 1.71864 - 10_5 and p6,000 = 1.34702 - 10_5.
The value of n calculated through Eq. 9 is 213,570, much closer to the real value.
Figure 3 shows the value of n, n, obtained through Eq. 7) and 9; N = 6,000) and

Ebeling/Poschel approximation (Ebeling & Péschel, 1994) as a function of T

FIGURE 3

4 Discussion

A single slope a = 1 can only be attributed to a superficial look on small-sized texts
in which deviations in the tail of the distribution (of the rank-ordering plot) were
attributed to finite size effects instead of a different exponent. Many previous work
on English was performed on relatively small texts, i.e. 260,430 words (Zipf, 1972),
59,498 words (Casti, 1995), 20,000 words (Tsonis et al., 1997), far from the a9 - 107
words of the BNC' we processed.

For long texts, the number of different words is mainly due to the second expression
in BEq. 9. A relation n oc T~/ was previously shown in (Ebeling & Pdschel, 1994)
More precisely, n = 22.8T946,

The two observed exponents divide words in two different sets: a kernel lexicon

formed by &~ N versatile words and an unlimited lexicon for specific communication.



We suggest that the size of the kernel lexicon is related with constrains of capacity
of human brain. As a matter of fact, there is evidence of a relationship between
characteristic size limitations and inflection points of power law exponents (Cancho &
Solé, 2000).

The change of the exponent of the power law decay of the mutual information as a
function of the distance between words agrees with the average length of sentences. We
suggest that here the change in exponents is related with the average amount of words
that human brain is efficiently able to store and use. Words with the highest rank are
very specyfic and obviously not shared by all speakers. According to the intersection
of the lines aproximating the two regimes of P(7) in Figure 1, the kernel lexicon of the
BNC would be formed by 5,000-6,000 words.

The existence of a kernel lexicon raises the question of how small can be a lexicon
without drastically empoverishing communication. Pidgin languages provide examples
of very small lexicons. Estimates of the number of items of a pidgin vary from about
300 — 1500 words, depending on the language (Romaine, 1992, 1988). The number of
lexical items of a speaker of an ordinary language is about 25,000 — 30,000 (clearly
not enough for the more than 500, 000 different words of the BNC) ® while this amount
is 1,500 for a Tok Pisin speaker. It has been argued that these 1,500 words can be

combined into phrases so as to say anything that can be said in English (Hall, 1953). As

5Although lexicon size estimates very often rely on roughly approximated counts, the Waring-
Herdan’s recursive model for frequency spectrum allows to perform more accurate counts. This model
straighforwardly allows for the calculation of the number of words which are known by an author
that do not appear in the sample, mqg. If L is the number of different word in the sample, it has
been shown that A.H. Tammsaare’s lexicon contained (by the time the sample was written) about
L+ mg = 8,228 + 25,147 = 33,000 words. See (Tuldava, 1996) for more details.



expected, words of such small lexicons are very multifunctional and a circumlocution
is often recurred for covering the lexicon gaps. The transition from the exponent a;
to ay takes place in the interval of rank 10° < i < 10%. We suggest that common
languages also have a lexicon of this kind, hidden by an unlimitited specific lexicon.
Notice that although the size of the lexicon of a speaker can be very big, what counts for
a successful communication are the words shared (stored and used) with the maximum
number of speakers, that is, the words in the kernel lexicon.

The morpholocical simplicity and semantic generality that characterize pidgin and
other known simplified lexicons (Romaine, 1992) respect to complex lexicons can also
be indentified for the kernel lexicon. Table 1 summarizes them with examples from the
BNC.

Some authors have pointed out the existence of two domains in the frequency of
words (Naranan & Balasubrahmanyan, 1998), whose slopes agree with ours, or even
three (Tuldava, 1996). Tuldava (Tuldava, 1996) determined three slopes for the rank

distribution in the following ranges:

i=1-30 — a1 =07
i=30-1,500 — ay=1.1

i=1,500 — az=1.4

Statistics were performed on A. H. Tammsaare’s novel “Truth and Justics” and only

lexemes were considered. The transition between the 2" and the 37 regime takes place
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in a rank closer to pidgin lexicons size. Inflected forms of the same word were counted
as different words in our statistics, suggesting that the rank at which the change in
exponents takes place could be reduced. The slope of the less frequent words regime
(1.4) is remarkably different than BNC’s (2). Further study is needed for determining
the origin of this disagreement.

We calculated the proportion of words of a text belonging to the kernel lexicon as
a function of N, S(N) = %, P(i), being P(i) the real probability of the i-th word)
in order to illustrate the importance of the kernel. S(1,000) = 0.69, S(4,000) = 0.84,
S(5,000) = 0.86 and S(6,000) = 0.87 show how recurring are such words. An exception
to the universality of the frequency exponents is Shakespeare, in which § = (—)1.6. It
is said that Shakespeare used one half of the words extant at that time. In a sample of
884.647 words, he used more than 30,000 different words, of which at least 8% were of
his own creation (Balasubrahmanyan & Naranan, 1996) 9. We suggest that he broke
the commones of the kernel words in the seek of wide and dazzling vocabulary. The
big amount of words of his own creation supports it. To sum up, the two frequency

domains separate two clearly distinguishable classes of words.

TABLE 1

6 Although only content words were considered, the absence of a domain corresponding to a kernel
lexicon can not be attributed the absence of content words because such domain usually contains
them.
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Figure 1: Probability that a word occurs ¢ times. The first and the second power law
decays have exponent a; = 1.06 & 0.04 and ay = 1.97 £ 0.06, respectively (r > 0.99 in
both cases). Statistics on the BNC (T ~ 9 - 107 words, n ~ 588, 030)
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Figure 2: Probability of a word as a function of its rank i, P(z). The first and the second
power law decays have exponent a; = 1.01 £ 0.02 and ap, = 1.92 4 0.07, respectively
(r > 0.99 in both cases). Statistics on the BNC (7" ~ 9 - 107 words, n = 588, 030)
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Figure 3: Number of different words as a function of the total number of words , T,
of the sample. The real number is accompanied by estimations performed with the
Zipf’s law (Eq. 7), the two regime frequency observation (Eq. 9; N = 6,000) and the
Ebeling/Péschel approximation. .
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‘ H kernel lexicon rest of the lexicon ‘

generalyty | generic terms | larger vocabulary in
of terms rather than specific | a given domain (e.g.
terms (e.g. 189, | biplanesg gos, codays ago,
S€€yp, groupass, | SCarpses,727, myceliumii gsg,
livegsa,  know ass | anticoagulantsiiz s and
and bird, gg1) MICT0SCOPIUM 432 607 )
complexity | monomorphemic compounds (e.g. airbrakesss 1ss.
of words words 7 (e.g. | fingerpritingssoss,
ity, madeigy, | peachtreessy oso,
yeariog, handays | breakdanceigs osa,
and mads 312) fingerlockssg 217 and
spillwaysss e15) and mor-
phologically  complex  words
(eg Ch’ildiShly467541,
literarinessss sss.
thoughtlessnessgs g9,
overindebtednessgr gss,
proletarianizedios o7 and
multiculturatedysy ss0)

Table 1: Comparison between the kernel lexicon and the rest of the lexion. The inter-
vening features were originally devised for comparing simple lexicons (pidgin,creole,. . .)
and complex lexicons. Example words are subindexed by its rank.
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