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The losses in a photonic crystal waveguide were measured with a near-field microscope in the group

velocity range of c=7 down to c=200. Our measurements show that the losses scale proportional to v�2
g for

group velocities above c=30. Below c=30, the losses are no longer described by the same power-law

dependence on vg and the modal pattern becomes irregular, indicative of multiple scattering. The findings

indicate the existence of two regimes of slow-light losses: one where a perturbative approach describes

propagation with fabrication disorder and one where it breaks down.
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Photonic crystals (PhCs) consist of a periodic arrange-
ment of dielectric materials, usually with a high refractive
index contrast. In a PhC with properly chosen geometry
and materials, light can be strongly influenced by the
periodic structure. Numerous interesting properties have
been reported over the years, like photonic band gaps [1],
negative refraction [2], and superlensing [3]. One of the
intriguing properties of PhCs is that light can be made to
propagate with low group velocities at specific optical
frequencies [4,5]. This ‘‘slow light’’ can enhance nonlinear
effects [6], useful for future on-chip all-optical switching.

In two-dimensional photonic crystal waveguides, light
can in theory propagate without losses [7]. However, un-
avoidable structural imperfections like variations in hole
diameter or shape, roughness of the interfaces of the struc-
ture, and/or slight displacement of the holes will result in
scattering out of the waveguide mode, thus inducing loss.
We will refer to these imperfections as the disorder in the
structure. The major loss channels resulting from the dis-
order are out-of-plane radiation losses and scattering in the
backward direction in the waveguide. Since slow-light
propagation is intrinsically linked to a very strong interac-
tion with the lattice in which the waveguide is embedded,
the losses per unit length increase with decreasing group
velocity [8]. Although the disorder created by the structural
imperfections is disadvantageous for efficient guiding of
light, it can give rise to interesting optical transport phe-
nomena involving multiple scattering [9,10].

There has been significant effort to determine how the
losses in photonic crystal waveguides (PhCWs) scale with
the group velocity (vg). Hughes et al. [8] suggested in a

theoretical study that the total losses scale proportional to
v�2
g . Crucial to this study and alike [8,11], is that the

disorder is considered to be a small perturbation on the
geometry of the waveguide. The disorder therefore hardly
affects the propagation of light apart from the losses scat-
tered out of the mode. There have been a few studies that

attempted to elucidate the scaling of the losses experimen-
tally [12–14]. In these studies several waveguides with
different lengths were fabricated. By comparing the trans-
mission spectra of the structures for the different lengths,
the losses may be determined. For such a study it is crucial
that only the waveguide length differs and the mean optical
properties are exactly equal. The reported results in
Refs. [12–14] range between a proportionality of the losses

with v�1=2
g and v�2

g , corresponding to loss exponents (�) of

0.5 and 2, respectively.
Here we investigate the propagation of light and the

losses directly by monitoring the optical field in a PhCW
en route, with a phase-sensitive near-field microscope. The
waveguide under investigation is a so-called chirped wave-
guide: the hole radius is gradually increased along the
propagation direction. As a result, the light slows down
adiabatically, which leads to a position-dependent group
velocity. By changing the optical frequency, the position in
the waveguide for which a specific group velocity occurs
can be controlled, with each position having its own local
realization of unintentional disorder. We show by visual-
ization of the modal pattern as well as a quantitative
analysis of the losses averaged over many realizations of
the disorder that a perturbative approach to dealing with
disorder breaks down at low group velocities, in our case
below c=30, as in this slow-light regime multiple scattering
becomes important.
Figure 1 shows a schematic of the waveguide under

investigation. A PhCW is created by removing a single
row of holes in the photonic crystal lattice [15,16]. From
left to right the hole radius is linearly increased, resulting
in a chirped PhCW [17]. We used an air-bridge structure
with a 210 nm thick silicon membrane with a hexagonal
lattice of air holes with a 456 nm period (a). The hole
radius increases linearly from 142 to 150 nm over a length
of 300 lattice periods, with typical local fabrication varia-
tions in diameter of approximately 3 nm. A portion of the
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dispersion relation calculated by 3D finite-difference time-
domain (FDTD) calculations is shown in Fig. 1, for differ-
ent sections of the PhCW. In these calculations each sec-
tion is treated as if it were infinitely long, i.e., with a
constant hole radius. In the dispersion relation, the wave-
guide mode flattens as the wave vector approaches the
Brillouin zone boundary at k ¼ 0:5 (in units of 2�=a), at
which the group velocity (vg � d!=dk) is zero.

As the hole size increases, the waveguide mode in the
dispersion relation shifts to higher frequencies. For light
with a certain optical frequency (dashed line in Fig. 1), this
leads to a reduction of the group velocity along the propa-
gation direction until the waveguide no longer allows
propagation (section III). We will refer to the region where
light is propagating with vg < c=30 as the cutoff region.

This region corresponds to group indices (defined as ng ¼
c=vg) above 30. After this region, the light must either have

been reflected back towards the input or have been scat-
tered out of plane.

The optical field inside the waveguide was measured
using a phase-sensitive near-field microscope [18]. In this
microscope, we scan a near-field probe over the sample at
approximately 10 nm height. A small portion of the optical
field in the sample couples to the probe [19]. Variations in
height during scanning (� 3 nm) will result in variations
in coupling efficiency of at most 5%. By scanning the
probe over the surface we can map the electric (E field)
distribution in the waveguide. Figure 2(a) shows the am-
plitude of the E field picked up in a near-field measurement

at ! ¼ 0:2961. The waveguide is oriented horizontally,
centered around y ¼ 2:8a, and the light is incident from
the left. We observe that the modal pattern does not change
dramatically up to x ¼ 190a. In the cutoff region (190a <
x < 230a), the pattern broadens laterally and becomes
irregular along the propagation direction.
With our near-field microscope we also recovered the

phase of the propagating light. By analyzing the phase
evolution over 9 lattice periods, the dominant or local
wave vector was determined. For the measurement at
! ¼ 0:2961, the local wave vector is plotted versus posi-
tion in Fig. 2(b). The expected local wave vector, based on
the theoretical dispersion relation, is depicted in red in
Fig. 2(b). The results for 25 measurements, each at a
different optical frequency, all show very good correspon-
dence with the results obtained from the calculated disper-
sion relation. By exploiting the correspondence between

FIG. 2 (color). (a) E-field amplitude from a near-field mea-
surement on the chirped waveguide at ! ¼ 0:2961 (in units
2�c=a). (b) Local wave vector as a function of x position,
obtained from the measurement in (a) (solid points) The solid
(red) line depicts the expected wave vector calculated with the
dispersion relations of Fig. 1. (c) Group velocity corresponding
to the calculated data in (b). (d) Summed intensity (jEj2) over all
y points of the image in (a), yielding the total intensity in the
waveguide as a function of position x. (e),(f) Measured E-field
amplitude of the same waveguide and area as in (a), now at ! ¼
0:2973 and 0.2950, respectively. The yellow triangles in (a),(e),
(f) indicate local minima. The blue triangles indicate the ex-
pected cutoff position.

FIG. 1. Schematic representation of the geometry of the
chirped waveguide (top). The radius of the holes in the PhC
lattice is linearly increased from left to right. The waveguide
mode (continuous line) in the dispersion relation shifts up as the
hole size increases. Light with a specific optical frequency
(dotted line) is therefore allowed to propagate in regions I
(with a relatively high vg) and II (lower vg), but not in

region III. The dispersion relations in regions I and III are
calculated by 3D FDTD for hole radii of 0:306a and 0:321a,
respectively. For all other radii, they are obtained by linear
interpolation (with an error of maximally 0.03% in frequency).
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experiment and calculations, we determined the group
velocity vg as a function of position x from the calculated

data. The result is depicted in Fig. 2(c) and shows that the
group velocity is 0:12c at x ¼ 0 and gradually decreases,
until it reaches zero at x ¼ 230.

In order to analyze the experimental data, we summed
the intensity (jEj2) of the measurement in Fig. 2(a) along
the y direction in order to suppress the effect of mode
pattern differences so that the energy of the mode can be
determined as a function of position along the propagation
direction. The thus obtained energy as a function of posi-
tion is depicted in Fig. 2(d). The energy has a short-range
oscillation due to two effects: the Bloch wave character of
the guided mode [20] and interference of forward propa-
gating and reflected light. Without out-of-plane losses the
amplitude of the two is equal. Because of out-of-plane
losses, that occur primarily in the cutoff region, the ampli-
tudes may differ. The detected intensity shows dramatic
changes in the cutoff region (190a < x < 230a): the inten-
sity increases and becomes irregular. We have highlighted
local minima in the cutoff region with yellow triangles in
Figs. 2(a), 2(e), and 2(f). At x ¼ 230, highlighted with the
blue triangles, the group velocity is zero.

When we repeat the experiment at different optical
frequencies, we observe qualitatively the same results: a
gradual increase of the energy at larger propagation dis-
tances and an irregular pattern for positions where vg<
c=30. The first, expected difference is a shift in position
with respect to the measurement at ! ¼ 0:2961, as can be
seen in Figs. 2(e) and 2(f) for ! ¼ 0:2973 and ! ¼
0:2950, respectively. Note that these are measurements
on the same waveguide and the same measurement area.
The position where light stops propagating is clearly de-
pendent on frequency. For all 25 optical frequencies used
in this investigation, we observe that the mode pattern
becomes irregular in the cutoff region [19]. The pattern is
different for each frequency, despite the small increments
in frequency (�!< 0:07%) used. The irregularities in
the mode patterns are attributed to disorder. The fact that
the pattern of the irregularity changes dramatically when a
different local realization of the disorder is probed with the
same low group velocity, e.g., compare Figs. 2(a) and 2(f),
is a fingerprint for multiple scattering [21].

In order to properly quantify the relation between group
velocity and losses, one needs to average over the many
realizations of the local disorder underlying the losses.
This necessity becomes particularly clear considering the
large irregularities observed in the cutoff region. We there-
fore averaged our analysis over 25 measurements, with
different optical frequencies, where the relation of group
velocity and position is the same for each frequency, apart
from a shift in position. By averaging over many frequen-
cies, we average over different realizations of the disorder
within a single sample, while the coupling of light into the
waveguide remains unchanged.

Figure 3 depicts the intensity picked up by the probe
(Iprobe) as a function of the group index, averaged over 25

effective realizations. Before averaging, the intensity of
each measurement is normalized to the intensity at a
velocity of c=20, to account for possible differences in
coupling efficiency to the waveguide. Figure 3 shows that
the detected intensity increases sublinearly with group
index between ng ¼ 7 and ng ¼ 30. When the group index

increases further, the probed intensity levels off and re-
mains between Iprobe ¼ 1:0 and 1.5. Despite the averaging

over 25 measurements, the intensity still varies in the cut-
off region (ng > 30) due to the irregular patterns of the

individual measurements.
We attribute the increase of the intensity between ng ¼

7 and 30 in Fig. 3 to an increase of the E-field amplitude in
the waveguide associated with the reduced group velocity.
The intensity (jEj2) of light in photonic crystal waveguides
is expected to be proportional to the group index [6]. To the
best of our knowledge, our measurement is the first direct
observation that the local energy density increases in a
photonic crystal as the group velocity decreases.
From these measurements, we can recover the losses in

the waveguide as a function of group velocity. We can
describe the intensity in the waveguide according to
Lambert-Beer’s law:

Iðxþ dxÞ ¼ IðxÞe�An�g ðxÞdx; (1)

describing that an infinitesimal increase in position is
accompanied by a loss which scales with n�g , with ng a

function of x. We keep the loss exponent � constant for all
ng, in order to compare our quantitative results with that of

others. Using the assumption that jn�g ðxÞdxj � 1, the

FIG. 3 (color). Intensity detected by the near-field probe as a
function of the group index ng, normalized at ng ¼ 20. The data

are averaged over 25 measurements, ranging between ! ¼
0:2936 and ! ¼ 0:2982. The intensity of each individual mea-
surement is normalized to ng ¼ 20. The black line shows the

expected result without losses. The red line represents the best fit
to the measurements for the data points with ng < 30 only

resulting in � ¼ 2. The histogram depicts at what ng local

intensity minima were observed, indicative of multiple scatter-
ing.
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above equation leads to

IðxÞ ¼ Ið0Þ exp
�
�A

Z x

0
n�g ðx0Þdx0

�
; (2)

with A being a loss coefficient, Ið0Þ the intensity input in
the waveguide. When we want to fit this relation to the
measured results, the integral needs to be evaluated, but
since ngðxÞ cannot be approximated with a low-order poly-

nomial, we have evaluated the integral in Eq. (2)
numerically.

In the fit of Eq. (2) to the measured position-dependent
intensity, the fit parameters were the loss exponent �, the
loss coefficient A, and Ið0Þ. We could not find a satisfactory
fit to the measured data for all ng’s. However, for only ng <

30, we do find a close agreement with the measured results
using � ¼ 2. From the fit result, the loss at ng ¼ 5 would

be 2:4 dB=mm, which is a typical loss figure for these
waveguides [12,13].

The losses cannot be described by a single power of ng,

as is illustrated by the large discrepancy between the red
curve and the measured data for ng > 30. In Fig. 3, we

have also depicted a histogram of the occurrence of am-
plitude minima in the near-field measurements as a func-
tion of group index in an attempt to quantify where the
irregular modal patterns occur. The irregular patterns ap-
pear at group indices above ng ¼ 30 and most minima can

be found around ng ¼ 50. The occurrences decrease for

higher ng as these ng’s are sampled less in the chirped

waveguide. Strikingly, the group velocity at which the
fitted red curve no longer shows agreement with the mea-
sured results coincides with the first appearance of local
minima in the measurements.

The large discrepancy between theoretical predictions
and the experimental observations can be explained as
follows. The theoretical predictions are based on perturba-
tion theory, which does not include multiple scattering
phenomena. The multiple scattering leads to a change in
the propagation properties, for example, by the formation
of highly localized resonances [see around x ¼ 160a in
Fig. 2(f)]. We discriminate two regimes of slow-light
propagation. In the first regime the waveguide modes are
well behaved and can be described with existing theory. In
the second regime, at lower vg, multiple scattering be-

comes important. Characteristic for this region is the pres-
ence of maxima and minima in the local field distribution.
The group velocity for which the transition between the
two regimes occurs will depend on the quality of the
fabrication: the higher the quality, the smaller the group
velocity for which multiple scattering becomes important.
In our investigation, this transition occurs at roughly c=30.

In conclusion, our measurements on a chirped photonic
crystal waveguide show that the detected intensity in-
creases in a near-field microscope as the group velocity
in the waveguide decreases. The increase is due to the

increase of the electromagnetic energy density in the wave-
guide. As the light propagates further, the group velocity
decreases further and the detected intensity levels off. In
the area where the losses increase, the modal pattern breaks
up and becomes irregular. We found that for group veloc-
ities above c=30, the losses scale proportional to v�2

g ,

which is in agreement with perturbation theory. At smaller
group velocities, the losses differ significantly from expec-
tations based on a perturbative treatment of the disorder. At
group velocities where a perturbative treatment of the
losses fails, we observe irregular modal patterns. From
our observations we conclude that two regimes should be
considered when describing the propagation of light in a
photonic crystal waveguide. One regime, for relatively
high group velocities, in which light propagation is well
described by the usual perturbative methods and one re-
gime, for smaller group velocities, where multiple scatter-
ing becomes important and influences the propagation
properties.
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