
Two Remarks on Monge-Ampere Equations (*). 

P. I~. I~Io~s 

S u m m a r y .  - We consider real Mouge.Amp$re equations and we present two new properties o] 
these equations. ~irst, we show the existence o] the <~ ]irst eigenvalue o] Monge.A~p~re equa- 
tion >> i.e. we show the existence o] a positive constant possessing all the properties o/ the ]irst 
eigenvalue o/ a 2-nd order elliptic operator (positivity, uniqueness o] the eigen/unction, maxi. 
mum principle, bi]ureation ...). The second property concerns variational characterizations 
o] solutions. Both properties are closely related to similar properties o] the general class o] 
Hamilton-Jacobi-Bellman equations. 

1 .  - I n t r o d u c t i o n .  

In  this paper, we make two remarks on solutions of real  Monge-Ampgre equa- 
tions. Le t  ~Q be a smooth,  bounded s t rongly Convex domain in R ~ (~V>2) i.e. 

(1) 3wEC~(t~),  w = O  on 2[2, ( D ~ w ) > O  in ~ .  

We consider solutions of 

(2) det  (D~u) = ~V(x, u, Du)  in Q ,  u convex on t~, u - - 9  on @t9 

where _~, ~ ~re smooth and F > 0 .  Exis tence  and regular i ty  results may  be found 
in A .V .  POGOI~ELOV [18], [19], [20]; S . Y .  C]~E~G nnd S .T .  u [5]; [6]; P. L. 
LIONS [16]; L. CAFFAI%ELLI, L. NIBE~BEBG and  J.  SPBvCI~ [4]; N: V. KRYLO~ [1i]. 

Our first observat ion concerns the existence of a positive constan~ (depending 
only on tg) denoted  by  ~, satisfying the  following proper t ies :  

i) there  exists F ie  C~,I(D) 5~ C| such tha t  % <  0 in 9 and 

(3) det  (D2~1) = (-- 2~y~,) ~ , ~ convex on ~ ,  ~ ~ 0 on 8~Q; 

if) if ( % # ) e  (C1,1(~)(~ C'(~9))~]0,  oo[ satisfies (3) with (~1, 11) replaced by  
(V, #) then  # =),~ , y~ = 0~f~ for some positive constant  0; 

(*) Entrata in Redazione il 17 dicembre 1 9 8 4 .  
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iii) 21 is give~l by:  21= In f  (2~: a~V)  where 

V = a =- (a,(x))  = (a ,(x))  e C(~), a~ > 0 in .Q, det  a >  ~-~ 

and  2~ is the first eigenvalue of the linear second-order elliptic operator ~ a ,  ~ 
with Diriehlet bom!dary  conditions. 

Fur thermore ,  iii) yields easily uniqueness (and existence) results for equations 
of the  following form 

(4) det(D2u) ~ / N = H ( x , u )  in D ,  u = ~ o  on ~ ,  u convex on ~ 

provided 3H/~t > -  21 on ~ •  Notice t ha t  the s tandard  uniqueness results for 
(4) assume ~H/~t>0.  

Final ly ,  2~ acts as a bifurcat ion point  for equations like (4). 
All these features of 2~ suggest the well-known proloerties of first eigenvalnes 

of l inear second-order elliptic opera, tots or more general ly of positive operators as 
given by K~EI~--I~w~A~'S theorem [10]. This is why, we will call 2~ the first eigen- 
value of the  IVfonge-Amp6re operator.  

The proof of the above properties is given in section I I .  In  f~et, the above could 
be seen a.s some application of the genered results in P. L. LIons  [13] concerning 
demi-eigenvalues of Hamil ton-Jacobi-Bel lman equations (recall tha t  ~Ionge-Amp~re 
equations are very  special eases of H~milton-ffacobi-Bellman equations, el. [14], 
[11]). And the proof given in section I I  follows the corresponding one in []3]. At 
this stage, i t  is m~ybe worth ment ionning tha t  these two cases m~y be included in a 
single abst ract  s t a tement  concerning an analogue of Kre in-Rntman ' s  theorem for 
nonlinear operators on a cone (positive or negative functions for instance),  homo- 
geneous of degree 1: in this abst ract  sett ing, the operator with which we deal here 
is det  (D2u)I/C However since we do not  know other applications of such an ab- 
s t ract  result t han  the ones in [13] or in this note, we will skip it. Notice also t ha t  
the oxistenee par t  may  be obtained by applying convenient ly some fixed point  
t'esults due to ~[. A. K~AS~OSELSKII [9] (for insta~nee). However, we will prefer a 
more constructive proof. Final ly ,  we would like to ment ion the  related work by 
C. PuccI  [21] on <~ extremal  ~ eigenvalues of linear elliptic operators. 

Section I I I  is devoted to ~pplieations to equations like (4) (uniqueness,bifurca- 
t ion. . . )  and  to various properties ~nd extensions of ~ (stochastic interpretat ion,  
s tabi l i ty  with respect to ~2, extensions to qu~silinear H . . . ) .  

In  the l~st section (section IV) we deM with some variationM properties of (weak) 
solutions of (2): assume tha t  /~ is nondeereasing with respect to u for a.ll (x, p) 

~ •  -v, then  we int roduce the  set 

8 : (v ~ C(~), v = ~ on 3~2, v convex on t~, det  (DSv)>F(x,v, Dv) in ~O} 

here the inequal i ty is understood in Alexandrov sense (cf. [20] and  [5], this only 
means t ha t  the normal  measure i.e. the image measure by the subdifferenti~l 3v 
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of the  Lebesgue measure is more than  the L~o o funct ion ~(x, v, Dr)). 
any convex funct ion on RS, and if J is defined on W~,~(f2) by :  

(5) J(w) =f~(Vw) dx< § o o  

t hen  the  solution u of (2) satisfies: 

Next  if ~b is 

(6) J(u) = Min J(v). 
yes 

This p rope r ty  becomes quite str iking if we take  F_= 0 so t h a t  u is the  convex 

envelope of F and thus  8 becomes the  set of continuous,  convex funct ions on ~ 
equal to ~s on 89. In  this ease (6)�9 yields t h a t  u minimizes all convex  functionals  
of Vw over this set. A similar observat ion for one par t icular  func t iona l  m ay  be 
found in BEDFOI~D and  TAYLOR [2].., 

Let  us finally ment ion  t ha t  using t h e  results of L. CAFFAI~ELLI~ J. J.  KOttN, 
L. NII~EN]3EIIG and J.  SP~VCK: [3], all the  results of this paper  ex t end  (without  any  
changes) to the case of complex Monge-Ampgre equations.  

2. - The first e igenvalue o f  Monge-Amp~re operators. 

Le t  a = (a~j(x)).e C(f2) be such tha t :  

(a~i) = (aj~) > 0 in ~9, 
1 

det (ai~(x)) 

and  let  us denote  by  V the  (convex) set of such mat r ix  valued functions.  I f  a e V, 
the  l inear  o p e r a t o r - -  a~(x) ~j with Diricblet  bounda ry  condit ions admits  a positive 
first eigenvalue ~[ and  the  corresponding eigenfnnet ion is positive in D and  is unique 
up to mult ipl icat ive constants :  if a ~ e  C(D) and (a~j)> 0 in ~ this result  is well- 
known while the slight extension to a general  a e V is given in the  appendix.  We 
then  in t roduce  

(7) 1~ = inf ,~ .  
aeV 

TttEOlgEM 1. -- i) The infimum in (7) is achieved and ,~ > 0. 

if) There  exists io~e C~,~-(~)(3 C| solution of: 

(3) det  (D2~ol) = (--21~,~)~v in f2 ,  ~fl convex on ~ ,  

V I = 0  on ~D, ~pt<0 in O .  



266 P. L. L m ~ s :  Two remarks on Monge-Amp~re equations 

iii) Le t  (#, V~)~ ]0, oo[•  C~,~(~) sat isfy:  

(8) det  (Ds~0) = (--#~o) s a.e. in ~2, ~o convex on ~ ,  

~o-=0 on ~D, 

then  # = 21 and ~? = 0 ~  for some posit ive cons tant  0. 

v ~ O  

RE~AaKS. -- We will see in the  nex t  section fu r the r  propert ies  of 21: le t  us only 
ment ion t ha t  ztl is also given by  the  infimum of 2~ over a sat isfying:  

1 
a~j=aj~eC(~),  a . > 0  i n ~ ,  d e t ( a . ) > ~ -  9 .  It 

P~ooF oF T~_~o~Es~ 1. - We in t roduce ano ther  nonnegat ive  cons tant  (possibly 
infinite) 

# ~ =  sup {~.>0: 3u~e C~(D) solution of (9)} 

where equa t ion  (9) is given b y  

(9) d e t ( D 2 u ~ ) = ( 1 - - 2 u ~ )  ~ in ~ ,  u~ convex on sQ, u z - = 0  on ~D. 

In  view of [4], % exists. We are going to prove  t h a t  /zl is finite, t h a t  as 2 -+#1,  
u~llu~H~J converges to a solution of (3) (with }~a replaced by  #1) and then  t h a t  ~ = / h  
and  i), iii) hold. 

To see t h a t  /~1 is finite, one jus t  remarks  t h a t  b y  the  algebraic formula  (see 

B. GAwAV [7]) 

{ } (10) (det A) ~/N = inf Tr  (AB)/B = B e, det  B~> ~-~, B > 0 

we dednce that if uz solution of (9) exists t hen :  

�9 ~ A u z > l - - 2 u ~ ,  u ~ < 0  on ~D,  u ~ = 0  on 0/2 

and  this implies tha t  g is less t h a n  the  first e igenvalue of ( - - (1 /N)A) .  A similar 

proof shows t h a t  #1~<21. 
Next ,  we claim t h a t  #1 > 0 and t h a t  for  an y  2 e [0, #1[ there  exists a solution u~. 

of (9). Indeed ,  if 4 <  i l % t l ;  1 and  if C = ( 1 - -  ~lluoll~) -1 then  g = Cuo satisfies: 

g S C2(D) and  

de t (D2g)  = C';~>(1--;~g)~ in D ,  g convex in ~ ,  g = 0  on 3Q.  

In  o ther  words ~ is a subsolution for problem (9) and  thus b y  the  results of P. L. 
:LIONS [16], L. CAFFAt~ELLI, L. NII~ENBERG and J. SPI~tyoK [4] there  exists a solu- 
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t ion u~ of (9) for 0 < 2 < llu0I]~ 1. Nex t  if 2 < #1 there  exists 2 ' > 2  such t h a t  (9) 
admits  a solution u~, for 2': clearly u~, is a subsolution for problem (9) and  this 
yields the  exis tence of u~ aS before.  In  fact ,  as w e  will see la ter  on, u~ is unique,  

The nex t  step consists in showing tha t  [[u~ll~ goes to + oo as 2 -~#1. Indeed  

if I[u~.ll~ (which is, by  the  way, increasing in 2) remains: bounded,  t h en  the  a priori  
es t imates  in [4] app ly  and  we obta in :  

Hua]]c~(5)<C (ind * of 2) for an y  k > l .  

Thus, this would yield the  existence of u,~ solution of (9) for 2 = #1. And again, 
choosing ~ < Ilu~]l~ and C = (1 - -  5llu,,ll~) -1 we find t h a t  ~ = Cu~,fi C~(~) satisfies: 

det  (D~g) = ~'v(1 - -  ~lu~,,) :v)  (1 - -  (/-h + ti)u) ~ in /2 ,  

convex on ~ ,  = 0 on 3/2. 

This would in tu rn  yield the  existence of ~ solution of (9) for #1< 2<#1 + 8 and 
this contradicts  the  ve ry  definition of #1. Hence,  llua[]~-> + c~ a,s 2 -+ #1. 

Next ,  we consider v~=  uz]lu~]]~, I for 2 < #1. Clearly v~ solves: 

(11) 'det  (D~vx} = (11  11  1 -  2v~)~ i n / 2 ,  v ~e  C~(~) i 

vz convex on D ,  v z =  0 on ~/2. 

since v~ is bounded,  using the  defining func t ion  w, one shows easily t h a t  

0>v~ .> - -  Cw in f,i, for some C independent  of 2 e [0, #1[ �9 

And vx being convex,  this implies C0,1(~) bounds on vx. Next  one observes t h a t  
CI,~(s~) bounds in [4] do not  use the  s tr ict  posi t ivi ty  of the  r ight -hand side of Monge- 
Ampere  equat ions (see for example  P. L. L ions  [15] for an  explici t  use of this fact) .  
And  we obta in  bounds on vz in C1.1(~) independent  of 2 E [0, #~[. Clearly, b y  the  
normalizat ion,  v~ (or subseqnences) does not  converge uni formly  on ~ to 0 and  thus 
by  t h e  Convexity of vx, we find t h a t  

][uxI]~ 1"- Zvz>6 on K compact  c / 2  

for some posit ive cons tan t  ~ independent  oi 2 e [0, #1[. This yields local bounds 
in Ck(/2) for all k > l  by  s t andard  est imates  on Monge-Amp~re equations.  We m ay  
pass to the  l imit  as 2 goes to #1 (ext rac t ing  subsequences if necessary) and  we find 
t h a t  v~ converges to some ~ole C1.1(~)n C~(/2) solution of: 

det  (D~y~1) = (--~u1~1) N in /2 ,  ~ol convex on ~ ,  ~01 = 0 on e Q ,  ~1< 0 in /2 .  
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And if we set ~ = (1/N)(D~pO -1 det  (D~y1) ~m, ~ e V and  

- - a ,  ~ , Y l =  ~ #iY1 in .Q, ~i~ Ci'l(- C2) , Y l<  0 in .62., ~ i =  0 on ~z9. 

therefore ,  #1 is the  first eigenvalue of - - g .  ~.  i.e. 

~1 = J%~ = M_in 4; = )~. 
a~V 

There  just  remains  to prove  pa r t  iii) of Theorem 1. Le t / t ,  y satisfy (2). Observing 
first t ha t  if # were s t r ic t ly  less t h a n  ~1, the  above a rgument  would yield the  existence 
of some 5 E V such t h a t  

: )'i < ~'i , 

and thus  #>~X1. Next ,  ~1 being convex (and ~ 0) we have:  

> 0 on ~ 2 ,  where n is the  uni t  ou tward  normal  to KQ 
~n 

and  thus  for t >  0 smM1 we have :  0 < t ( - - y ) < - - y 1  in ~ .  And let  t o =  m ax  ( t >  0, 
t ( - - y ) ~ < - - y 1  in ~) .  Using formula  (10), i t  is easy  to find a e V  such t h a t :  

- -  a .  8 . ( toy - -  v A) = #to~v - -  2 ~  ~ 2~(toy - -  y~) ~ X~(to~ - -  Y0 in D 

with toy - -  y ,~  C~,1(t~), toF - -  y~>0  in ~ ,  toy - -  ~vl = 0 on 3~. 
Thus e i ther  t 0 y - - y 1  -~ 0 ~.nd we conclude,  or t o y - - Y ~ I :  091 for some 0 > 0, 

where 91 is the  posit ive eigenfunct ion of the operator  (--  a ,  ~,). In  the  la t te r  case, 
using the  observat ions of the  appendix ,  

~odx) > ~ dist  (x, ~ 9 ) ,  

and  thus  0~l~>e(~y)  on ~ for some e > 0. 

for some ~ > 0  

But ,  this yields 

( - - y 1 ) > ( t o + s ) ( - - ~ )  o n  D 

cont rad ic t ing  the  definition of to. This shows t h a t  ,%~ toy1 and  thus  # = ~1. [] 

l ~E~ i .~ .  - The uniqueness  a rgument  (as in P. L. LIons  [13]) is an adap ta t ion  
of the  me thod  of T. LA~Tsc~ [12] (see also K~AS~OS~LSZlI [9]). [] 

3.  - F u r t h e r  p r o p e r t i e s  a n d  v a r i a n t s .  

The first resul t  we ment ion  concerns equat ions of the  fo rm (4). We will consider 
a smooth  funct ion  H(x, t) sat isfying:  

(12) H(x,t)  > 0  for ( x , t ) ~ Q x R ;  ~H ~--~ > - -  20 > - -  ~1 o n  ~ • R ;  
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and we wish to solve: 

(13) det  (D~u)~/N= H(x, u) in f2 ,  u convex on sQ, u = 0 on 3D.  

COImLLA~Y 2. -- We assume (12). Then  there  exists a unique solution of (13) 
in C~,~(~) (3 C2(D). 

REmArKS. - i) The above resul t  is only an example  of applications of Theorem 1. 
Much more general  results hold for weak solutions (in Alexandrov 's  sense), for general  
nonnegat ive  H and for a rb i t ra ry  Diriehlet  boundary  conditions. 

ii) An analogous resul t  holds for equat ions like: 

det  (D~u 4- g~j(x)) = H(x, u) ~v in Y2, 

u = ~o on OX2 

(~i~u 4- gij)>~O in t9 

where g~j = gr (see [4] for a t r e a t m e n t  of these equations). [] 

P~ooP oF COI~OLLAI~Y 2 .  -- To show the  exis tence par t ,  we just  need to build a 
snbsolution. But ,  choosing 1 e ]to, 2~[, we have for C > 0 

det  (D2Cuz)~/N= r - -  l ug ) )HH(x ,  0)]l~-- s Cu~) in Y2 

provided  C>  IlH(x, 0)H~. 

The uniqueness is also s t ra ightforward since if u, v are two solutions one m a y  
find a e V such t ha t  

--  aij 3i~(u --  v) 4- H(x, u) - -  H(x, v) = 0 in /2 ,  u - -  v E r  

u - - v = 0  on ~ D .  
Since 

1 

f 3 H  3H 
H(x,  u) - -  H(x,  v) = ~ (x, v + s(u - -  ~)) & ( u  - -  v) and -g-i >--  ~~ 

0 

we easily reach a contradict ion by  compar ing eigenvalues. [] 

At  this stage, let  us menti[on wi thout  proof a few propert ies  of 21, V1. Fi rs t  of 
all, the  uniqueness character izat ions imply easy s tabi l i ty  results of i l ,  V1 (normaliz- 
ing V1 if necessary) with respect  to variat ions of the  domain (preserving convexi ty  
of com~se). Next ,  we approximate  3Ionge-Ampgre equat ions by  I tamil ton-Jacobi-  
Bel lman equat ions as in [16] t h a t  is we consider the  operators 

A"~o = inf --ai j  G~/(a~) = (aji) > 0, det  (ai~)> ~ ,  Tr  a <  . 
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The results of P. L. LIONS [13] show the existence of two demi-eigenvalues of A ~ 
namely  ~ ,  ;~ corresponding, respectively, to negative and_ positive eigenfunctions 
~o~, q)~. Then, one can prove tha t  .~s e goes to 0, _X~ goes to )0~, X~ goes to + co and  ~o~ 
(normalized so t ha t  I1~#11,~ = 1) converges to ~ot the  solntion of (3) with Ily~tll~ = 1. 

Finally,  21 has an  interest ing stochastic interpretat ion:  let B, be a standa.rd 
Brownian motion on some given pIobabil i ty  space and let 

55 = {a, bounded  progressively measurable, at is a IV )<IV matr ix,  

Idet 
J 

For  a te  55, we denote  by X,  = x +fa~ dB, (x ~ ~).  
o 

Then we have for a n y  fixed x0 

s.p{x >o: iniE[exp +oo} 

(15) 

where z~ = inf ( t>0,  X, r  ~) .  
The last  property  of 21 tha t  we wish to ment ion concerns bifurcation properties: 

to this end, we will just  give a arery part icular  example of nonlinearities.  Le t  
] ~ C~ sat isfy : 

f ( 0 ) = 0 ,  t ' ( 0 ) = l ,  t ( t ) > 0  for t > 0 ,  0 < J ( s - - ) < ~ s  if o<~t<s  

and 

lim ] ( t ) / t  = O .  
t - ~  + o~ 

We will consider solutions of: 

(16) d e t  (D~u) 11~ = 24(-- u ) ,  u c o n v e x ,  u e Cl,~(t?) n C~(~9), u]0 ~ = 0 .  

We have the  

PI~OPOSITIO~ 3. - I f  2<21, the  unique solution of (16) is u~-O.  For 2 >  21 
there exists a unique solution _u~ ~ O. In  addit ion _u~ is continuous, decreasing with 
respect to 2~ and  _us converges to 0 as 2 goes to ~1. [] 

P~ooF. - The case 2 < 21 m a y  be deduced from Theorem 1 and Corollary 2. The 
properties on _u~ are easy consequences of the uniqueness;  and  uniqueness m a y  be 
proved by  another  application of Laetsch argument .  Therefore, we will only prove 
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the existence of _ux and  we do so by building a nontrivial  supersolution of (16). 
Because of (15), we have for e small enough 

act  (D2(e~))~m= --  e2~yh<2](-- e~l) in /2 

if 2 > 2 ~ .  On the other hand  we have for some Co> 0 

2j(t) < 2 q- Co for all t > 0  

and thus for C>~Co, C large enough the solution of 

d e t ( D  ~_~)= C--~s in /2,  u e C ~ ( ~ ) ,  u convex in ~Q, _u----0 on 3/2 

satisfies ~ < e %  in ~ and  

det  (D2u)xm>2](-- u_) in /2. 

This yields the existence of _~x solution of (16) satisfying: _~_uxKe?~ in ~ [] 

We conclude this section by a var iant  of Theorem 1: it  concerns equations of 
the following form: 

(17) (det (D2~)) ~/N = H(x, DyJ~) - -  2~K(x)yh, ~Pl convex , 

~ i < 0  on /2,  ~o~=O on 8/2. 

We will assume tha t  K is smooth, K > 0 in D, H(x, p) is smooth on ~ • (R N --  {0}), 
H is smooth in x (two derivatives bounded for example) uniformly for p bounded 
in R ~v, ~H/Sx is Lipschitz in p uniformly in x and tha t  

(18) [ H ( x , # p ) =  #H(x'p)>O' V#>O i~Hyxe~' YpeRN i[p[=l; 
H is convex i n p  for xe~; ~-~(x,n(x)),n(x) > 0  on~ /2 .  

A typical  example is: K ~ - 1 ,  lt(x, p)= H(x)tp] with H >  0 in ~.  
The same proof as in Theorem 1 gives the:  

C01~OLLAt~Y 4. - -  Assume (18). Then there exists 21> 0 such tha t  there exists 
~ l e  C~'1(~) (~ C~(/2) solution of (17). In  addition, if (/~, yJ) e ]0, co[ • C~,1(~) selves 

det  ( D ~ )  = H(x, Dye) --#K(x)y, in D, ? convex ,  ~ = 0 on ~D, ~ ~ 0 

18 - . A n n a l l  d l  M a t e m a t l e a  
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t h en  # = 2~ and ~o = 0~0~ for some posit ive cons tan t  0. F inal ly ,  if K ~- 1 and if 
we deno te  by  C~ = {q e R s, sup {q .p - -  H(x, p)} < oo}, then we have  

where 

2~ = In f  {)~l(a, b): a ~ V, b ~ W, a e C(~), a > 0 in sg} 

W = {b e L|163 R~), b(x) ~ r a.e. in 17} 

and  2~(a, b) is the  first e igenvalne of the  opera tor  (--  a ~ ;  @ b~hi). [] 

Rm~A~xS. - i) I f  K ~ -  1 and  t t ( x ,p )  = H(x)Ipl t h en  C~= {qeRN:  [ql<H(x)} 
and  W = {b eL |  RN), Ib(x)]<~H(x) a.e.}. 

ii) Of course, the  analogue of Corollary 2 holds in the  above sett ing. This, 
in part icular ,  yields uniqueness results for solutions of 

p rovided  

det  (D2u) ~/N = F(x,  u, Du) in Y2, u c o n v e x ,  u = ~o on ~O 

OF < H ( x ) ,  ~-T > - -  )~,K(x) 

where 2~ corresponds to the choice H(x, p ) =  H(x)lp I. [] 

8. - Variational properties of  solutions of Monge-Amp~re equations. 

Assume u ~ C~ is a weak solution o~ (2) where F(x, t, p) is continuous,  non- 

negative,  nondecreasing in t, convex in (t, p) and  ~0 ~ C~ We th en  denote  b y  $ 

the  set of subsolntions of (2) i.e. 

$ = {v s C(S~), v = ~ on ~.C2, det  (D~v)>F(x,  v, Dr) in D, v convex on D} 

then  (cf. [1], [5], [i6]) u is the  m a x i m u m  e lement  of the  convex set 8. We claim 
that ]or any convex ]unction ~ on R ~, nonnegative, u is the min imum over $ o/ 

J~(v) = . I~(Vv)  d x .  

Indeed,  by  some easy dens i ty  a rgument ,  we m a y  assume wi thout  loss of general i ty  

tha, t ~b sacristies : ~b ~ C~(R ~) ; 

l r  + clpl ;  S ~ > 0 ,  ( ~ ' ( p ) - - C ) ' ( q ) , p - - q ) > ~ , l p - - q l  ~ , Vp, q.  
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Then  by  s tandard  arguments  Jo  admits  a min imum over the  closed convex set $ 

or equivalent ly  over  8 n H~(Q). Le t  us 4enote  by  uo the  min imum point :  u0 is the  
unique solution in 8 (~ H~(~2) of the  following variationa.1 inequal i ty  

(19) f( q~'(Vuo), V v  - -  Vuo) d x > O  , Vv e 8 c~ 1 t ~ ( ~ )  . 

Therefore  we just  need to show th a t  u is the solution of (19). Recalling tha t  u is the  
max imum e lement  of 8, we just  have to prove t h a t  if v is convex,  belongs to (say) 
C~ and  if 9 eH~(-0), 9 > 0  

f(q)'(Vv), Vp) ax<o. 

Formal ly  this is obta ined by  in tegrat ing by  par ts  and observing t h a t  

div [q~'(Vv)] --  ~p~ ~p. ~ , v > 0 .  

This is easily justified by  choosing 9 e  ~(f2), 9 > 0  and by  regularizing u: set 
u ~ u ,  ~u~---- u ,  ~ on {x e ~ ,  dist(x, 8f2) > e} where Q~---- (1/e N) ~( ./s),~ e~+(R~),  

Supp ~ c B1, f~ dx = 1. 
Indeed  for s small enough (so tha t  Supp 9 c (x e-o,  dist (x, 8~) > e}) 

f(o'(Vu•), Vp) a x < O  

/2 

since u~ is also convex,  and we conclude passing to the  limit.  [] 

Observing t ha t  if Y ~- 0, 8 -~ {v e C(~), v convex on /2, v ---- 9 on 8-0} and u 
is the  convex enveloppe of 9 on ~ ,  we deduce t h a t  u is the  min imum over  8 of all 
functionals  J ,  for any  convex, nonnegat ive  funct ion q~ on R N. A similar resul t  
holds for  the  convex enveloppe of a given funct ion 9 degined on ~ where 8 is now 
given by  

8 = {v e C(~), v convex on ~ ,  v< 9 on ~} . 

Appendix. Hopf boundary lemma and first eigenvalues. 

Le t  a e V and denote  by  A = - -  a ,  8 , .  By  s t andard  arguments  one proves tha t  
for any  ] e L~(~9), there  exists ~ unique solution u e W~o~(-0 ) n C(~) of 

(A.1) A u = : ]  in zQ, u = 0  on 8.O. 
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F u r t h e r m o r e  using the  defining funct ion  w of ~2, it  is quite clear t ha t  if ] ~ L~(/2) 

t hen  u satisfies: 

(A.2) lu (x ) l~C dist (x, ~9) on sg. 

F u r t h e r m o r e  if ]~>0, t hen  u>~0 and e i ther  u ~ ] ~ 0, or u > 0 in t?. Final ly,  we 

have the: 

PI~OPOSITION A.I. - With the above notations, if f ~ O, f~O, then u satisfies 

for some d > 0 :  

(A.3) u(x) ~> 8 dist (x, 89) . 

This is of course a. formula t ion  of the  well-known Hopf  boundary  lemma which 
is p roved  by  the  standa.r4 me thod  (see [8], [17]). Using this observat ion,  one m ay  

prove the 

P~oPosITIO~ A.2. - There  exists ~ cons tan t  ).~> 0 such tha t :  

i) I f  2 ~ ]0, ).~[, the re  exists :~ unique solution of 

2,N A u - - ~ . u = f  in f2,  u = 0  on ~D, u ~ W l o  o(D) 53C(t?) 

where f~LN(D), i n  addi t ion if ]~>0, u~>0. 

W2,~tg) ii) I f  u ~  Io~ (hC(t~) satisfies: u~>0, u ~  0 ~nd 

Au--2u>~O (resp. d 0 )  a.e. in d2, u = 0 on 8s 

tihen A<21 (resp. 2>)~) .  And if 2 = At, Au ~ ).u in f2. 

iii) There  exists ~,~e W~xg(~2)(3 C(t)) (Vp < o o )  solution of: 

A ~ 1 = 2 1 %  in zg, ~o1>0 in /2, ~ 1 = 0  on 8~O. 

iv) I f  v~ ~ g~o~(Y2) ~ C(.Q), 2 c R sat isfy:  

A p - ~ 2 p  i~ ~ ,  v~>0 iu D ,  ~5 ~0 ,  VS~0  on ~9 

then  A = 2t a.nd ~ = 0~ot for some posit ive cons tant  0 > 0. [] 

Similar results  hold if we replace A by 

where a ~ V ,  b~L~(tg;R~),  b is continuous near  3D ~nd 

(A.4) (b(x), n(x)) > 0 on ~ 9 .  
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