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OT protocol is secure against semi-honest adversaries (in the plain model) then so is our two-round MPC

protocol. Similarly, if the assumed two-round OT protocol is secure against malicious adversaries (in the
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CCS Concepts: • Theory of computation → Computational complexity and cryptography; Crypto-

graphic protocols;

Additional Key Words and Phrases: Round-optimal secure multiparty computation, oblivious transfer, garbled

circuits

ACM Reference format:

Sanjam Garg and Akshayaram Srinivasan. 2022. Two-round Multiparty Secure Computation from Minimal

Assumptions. J. ACM 69, 5, Article 36 (October 2022), 30 pages.

https://doi.org/10.1145/3566048

1 INTRODUCTION

Can a group of n mutually distrusting parties compute a joint function of their private inputs
without revealing anything more than the output to each other? This is the classical problem of
secure computation in cryptography. Yao [57] and Goldreich, Micali, and Wigderson [43] provided
protocols for solving this problem in the two-party computation (2PC) and the multiparty

computation (MPC) cases, respectively.
A remarkable aspect of the 2PC protocol based on Yao’s garbled circuit construction is its sim-

plicity and the fact that it requires only two-rounds of communication. Moreover, this protocol
can be based just on the minimal assumption that two-round 1-out-of-2 oblivious transfer (OT)
exists. Two-round OT can itself be based on a variety of computational assumptions such as the
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Decisional Diffie-Hellman Assumption [1, 16, 52, 54], quadratic residuosity assumption [46, 54], or
the learning-with-errors assumption [54].

In contrast, much less is known about the assumptions that two-round MPC can be based on
(constant-round MPC protocols based on any OT protocol are well-known [14]). In particular,
two-round MPC protocols (for an arbitrary polynomial number of parties) are only known under
assumptions such as indistinguishability obfuscation [36, 37] (or, witness encryption [38, 45]), or
LWE [22, 33, 51, 53].1 In summary, there is a significant gap between assumptions known to be
sufficient for two-round MPC and the assumptions that known to be sufficient for two-round 2PC
(or, two-round OT). This brings us to the following main question:

What are the minimal assumptions under which two-round MPC can be constructed?

1.1 Our Result

In this work, we give two-round MPC protocols assuming only the necessary assumption that
two-round OT exists. This result was first realized based on bilinear pairings in [40] and was later
refined to its current form in [41]. In more detail, our main theorem is

Theorem 1.1 (Main Theorem). Let X ∈ {semi-honest in plain model, malicious in common ran-
dom/reference sting model}. Assuming the existence of a two-round X-OT protocol, there exists a
compiler that transforms any polynomial round, X-MPC protocol into a two-round, X-MPC protocol.

Previously, such compilers [36, 45] were only known under comparatively stronger computa-
tional assumptions such as indistinguishability obfuscation [12, 37] or witness encryption [38].
Additionally, two-round MPC protocols assuming the learning-with-errors assumptions were
known [22, 51, 53] in the CRS model satisfying semi-malicious security.2 We now discuss instan-
tiations of the above compiler with known protocols (with larger round complexity) that yield
two-round MPC protocols in various settings under minimal assumptions.

Semi-Honest Case. Plugging in the semi-honest secure MPC protocol by Goldreich, Micali, and
Wigderson [43], we get the following result:

Corollary 1.2. Assuming the existence of a semi-honest, two-round oblivious transfer in the plain
model, there exists a semi-honest, two-round multiparty computation protocol in the plain model.

Previously, two-round plain model semi-honest MPC protocols were only known assuming in-
distinguishability obfuscation [12, 37], or witness encryption [38]. Thus, using two-round plain
model OT [1, 46, 52] based on standard number theoretic assumptions such as DDH or QR, this
work yields the first two-round semi-honest MPC protocol for a polynomial number of parties in
the plain model under the same assumptions.

Malicious Case. Plugging in the maliciously secure MPC protocol by Kilian [49] or by Ishai,
Prabhakaran, and Sahai [48] based on any oblivious transfer, we get the following corollary:

Corollary 1.3. Assuming the existence of UC secure, two-round oblivious transfer against static,
malicious adversaries, there exists a UC secure, two-round multiparty computation protocol against
static, malicious adversaries.

1The work of Boyle, Gilbova, and Ishai [20] provides a construction of two-round MPC for a constant number of parties

from DDH.
2Semi-malicious security is a strengthening of the semi-honest security wherein the adversary is allowed to choose its

random tape arbitrarily. Ashrov et al. [9] showed that any protocol satisfying semi-malicious security could be upgraded

to one with malicious security additionally using Non-Interactive Zero-Knowledge proofs (NIZKs).
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Previously, all known two-round maliciously secure MPC protocols required additional use of
non-interactive zero-knowledge proofs. As a special case, using a DDH based two-round OT proto-
col (e.g., [54]), this work yields the first two-round malicious MPC protocol in the common random
string model under the DDH assumption.

Concurrent Work to [41]. In a concurrent and independent work to [41], Benhamouda and Lin
[17] also construct two-round secure multiparty computation from two-round oblivious transfer.
Their construction against semi-honest adversaries is proven under the minimal assumption that
two-round, semi-honest oblivious transfer exists. However, their construction against malicious
adversaries additionally requires the existence of non-interactive zero-knowledge proofs. In the
plain model, they also provide a construction of a five-round maliciously secure MPC from five-
round maliciously secure oblivious transfer. In another concurrent work, Boyle et al. [21] obtain a
construction of two-round multiparty computation based on DDH in the public key infrastructure
model.

1.2 Subsequent Works

The idea of “garbled protocols” introduced in this work has been used in the subsequent works
of Ananth et al. [2, 3], Applebaum et al. [5, 6], Garg et al. [39] to give an unconditionally secure
protocol for computing NC1 circuits in the honest majority setting. This problem has been open
for nearly two decades [47]. The two-round semi-honest MPC protocol (which can be shown to
be semi-malicious secure if underlying OT is semi-malicious secure) has been used in the works
by Badrinarayanan et al. [10] and Choudari et al. [32] to construct round-optimal MPC protocol
in the plain model from minimal cryptographic hardness assumptions. The protocol given in this
work makes non-black-box use of a two-round oblivious transfer. This non-black-box access has
been shown to be necessary by Applebaum et al. [4] who gave a black-box separation between
two-round oblivious transfer and two-round secure MPC. The techniques introduced have also
led to the development of two-round MPC protocols (using a strong form of setup) that make
black-box use of a DDH-hard group (or, a QR-hard group) in [39]. In another sequence of works,
Benhamouda and Lin [18] and Bartusek et al. [13] expanded our techniques to construct two-round
MPC protocols where the first message could be reused many times to compute different functions
on the same input.

2 TECHNICAL OVERVIEW

Towards demonstrating the intuition behind our result, in this section, we show how to reduce the
round complexity of a very simple “toy” protocol to two. Additionally, we sketch how these ideas
extend to the general setting and also work in the malicious case. We postpone the details to later
sections.

Background: “Garbled Circuits that talk.” The starting point of this work is the construction of a
two-round MPC by Gordon et al. [45] based on Witness encryption [38]. Building on [36], the key
idea behind [45] is a new method for enabling “garbled circuits to talk.” It is natural to imagine how
“garbled circuits that can talk” might be useful for reducing the round complexity of any protocol.
By employing this technique, a party can avoid multiple rounds of interaction just by sending a
garbled circuit that interacts with the other parties on its behalf. At a technical level, a garbled
circuit can “speak” by just outputting a value. However, the idea of enabling garbled circuits to
“listen” without incurring any additional interaction poses new challenges. A bit more precisely,
“listen” means that a garbled circuit can take as input a bit obtained via a joint computation on its
secret state and the secret states of two or more other parties.
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In [45], this idea was implemented by a witness encryption scheme. The key contribution of
this work is a realization of the intuition of “garbled circuits that talk” using any two-round OT
protocols rather than the heavy hammer of general-purpose witness encryption. At the heart of our
construction is the following novel use of two-round OT protocols: in our MPC protocol multiple
instances of the underlying two-round OT protocol are executed and the secret receiver’s random
coins used in some of these executed OT instances are revealed to the other parties. As we explain
later, this is done carefully so that the security of the MPC protocol is not jeopardized.

A “toy” protocol for successive ANDs. Stripping away the technical details, we highlight our core
new idea in the context of a “toy” example, where a garbled circuit will need to listen to one
bit. Later, we briefly sketch how this core idea can be used to reduce the round complexity of
any arbitrary round MPC protocol to two. Recall that, in one-round, each party sends a message
depending on its secret state and the messages received in prior rounds.

Consider three parties P1, P2, and P3 with inputs α , β, and γ (which are single bits), respectively.
Can we realize a protocol such that the parties learn f (α , β,γ ) = (α ,α ∧ β,α ∧ β ∧γ ) and nothing
more? Can we realize a two-round protocol for the same task? Here is a very simple three-round
information theoretic protocol Φ (in the semi-honest setting) for this task: In the first round, P1

sends its input α to P2 and P3. In the second round, P2 computes δ = α ∧ β and sends it to P1 and
P3. Finally, in the third round, P3 computes γ ∧ δ and sends it to P1 and P2.

Compiling Φ into a two-round protocol. The key challenge that we face is that the third party’s
message depends on the second party’s message, and the second party’s message depends on the
first party’s message. We will now describe our approach to overcome this three-way dependence
using two-round oblivious transfer and thus, transform this protocol Φ into a two-round protocol.

We assume the following notation for a two-round OT protocol. In the first round, the receiver
with choice bit β generates c = OT1 (β ;ω) using ω as the randomness and passes c to the sender.
Then in the second round, the sender responds with its OT response d = OT2 (c, s0, s1) where s0

and s1 are its input strings. Finally, using the OT response d and its randomness ω, the receiver
recovers sβ . In our protocol below, we will use a circuit C[γ ] that has a bit γ hardwired in it and
that on input a bit δ outputsγ ∧δ . At a high level in our protocol, we will have P2 and P3 send extra
messages in the first and the second rounds, respectively, so that the third-round can be avoided.
Here is our protocol:

— Round 1: P1 sends α to P2 and P3. P2 prepares c0 = OT1 (0 ∧ β ;ω0) and c1 = OT1 (1 ∧ β ;ω1)
and sends (c0, c1) to P2 and P3.

— Round 2: P2 sends (α ∧ β,ωα ) to P1 and P3. P3 garbles C[γ ] obtaining C̃ and input labels

lab0 and lab1. It computes d = OT2 (cα , lab0, lab1) and sends (C̃,d ) to P1 and P2.
— Output Evaluation: Every party recovers labδ where δ = α ∧ β from d using ωα . Next, it

evaluates the garbled circuit C̃ using labδ which outputs γ ∧ δ as desired.

Intuitively, in the protocol above P2 sends two first OT messages c0 and c1 that are prepared assum-
ing α is 0 and assuming α is 1, respectively. Note that P3 does not know α at the beginning of the
first-round, but P3 does know it at the end of the first-round. Thus, P3 just uses cα while discard-
ing c1−α in preparing its messages for the second-round. This achieves the three-way dependency
while only using two-rounds. Furthermore, P2’s second-round message reveals the randomness
ωα enabling all parties (and not just P2 and P3) to obtain the label labδ which can then be used for

the evaluation of C̃. In summary, via this mechanism, the garbled circuit C̃ was able to “listen” to
the bit δ that P3 did not know when generating the garbled circuit.

The above description highlights our ideas for reducing the round complexity of an incredi-
bly simple toy protocol where only one bit was being “listened to.” Moreover, the garbled circuit
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“speaks” or outputs γ ∧δ , which is obtained by all parties. In the above “toy” example, P3’s garbled
circuit computes a gate that takes only one bit as input. To compute a gate with two bit inputs, P2

will need to send four first OT messages in the first round instead of two.

Squashing arbitrary protocols. Our approach to enable garbled circuits to “listen to” a larger num-
ber of bits with complex dependencies is as follows. We show that any MPC protocol Φ between
parties P1, · · · Pn can be transformed into one satisfying the following format. First, the parties exe-
cute a pre-processing step; namely, each party Pi computes some randomized function of its input
xi obtaining public value zi which is shared with everyone else, and private value vi . zi is roughly
an encryption of xi using randomness fromvi as a one-time pad.vi also contains random bits that
will be used as a one-time pad to encrypt bits sent later by Pi . Second, each party sets its local state
sti = (z1‖ . . . ‖zn ) ⊕ vi . This places us at the beginning of the protocol execution phase. In our
transformed protocol Φ can be written as a sequence of T actions. For each t ∈ [T ], the t th action
ϕt = (i, f ,д,h) involves party Pi computing one NAND gate; it sets sti,h = NAND(sti,f , sti,д ) and
sendsvi,h ⊕ sti,h to all the other parties. Our transformed protocol is such that for any bit sti,h , the
bit vi,h is unique and acts as the one-time pad to hide it from the other parties. (Some of the bits
in vi are set to 0. These bits do not need to be hidden from other parties.) To complete this action,
each party Pj for j � i sets stj,h to be the received bit. After all the actions are completed, each
party Pj outputs a function of its local state stj . In this transformed MPC protocol, in any round,
only one bit is sent based on just one gate (i.e., the gate obtained as vi,h ⊕ NAND(sti,f , sti,д ) with
inputs sti,f and sti,д , where vi,h is hardwired inside it) computation on two bits. Thus, we can use
the above “toy” protocol to achieve this effect.

To squash the round complexity of this transformed protocol, in the first round, we will have
each party follow the pre-processing step from above along with a bunch of carefully crafted first
OT messages as in our “toy” protocol. In the second round, parties will send a garbled circuit that is
expected to “speak” and “listen” to the garbled circuits of the other parties. So whenϕ1 = (i, f ,д,h)
is executed, we have that the garbled circuit sent by party Pi speaks and all the others listen. Each
of these listening garbled circuits uses our “toy” protocol idea from above. After completion of
the first action, all the garbled circuits will have read the transcript of communication (which
is just the one bit communicated in the first action ϕ1). Next, the parties need to execute action
ϕ2 = (i, f ,д,h) and this is done like the first action, and the process continues. This completes
the main idea of our construction. Building on this idea, we obtain a compiler that assuming semi-
honest two-round OT transforms any semi-honest MPC protocol into a two-round semi-honest
MPC protocol. Furthermore, if the assumed semi-honest two-round OT protocol is in the plain
model then so will be the resulting MPC protocol.

Compilation in the Malicious Case. The protocol ideas described above only achieve semi-honest
security and additional use of non-interactive zero-knowledge (NIZK) proofs [19, 35] is re-
quired to upgrade security to malicious [9, 51]. This has been the case for all known two-round
MPC protocol constructions. In a bit more detail, by using NIZKs parties can (without increasing
the round complexity) prove in zero-knowledge that they are following protocol specifications.
The use of NIZKs might seem essential to such protocols. However, we show that this can be
avoided. Our main idea is as follows: instead of proving that the garbled circuits are honestly gen-
erated, we require that the garbled circuits prove to each other that the messages they send are
honestly generated. Since our garbled circuits can “speak” and “listen” over several rounds with-
out increasing the round complexity of the squished protocol, we can instead use an interactive
zero-knowledge proof system and avoid NIZKs. Building on this idea, we obtain two-round MPC
protocols secure against malicious adversaries by instantiating the compiler with a two-round

Journal of the ACM, Vol. 69, No. 5, Article 36. Publication date: October 2022.



36:6 S. Garg and A. Srinivasan

oblivious transfer that is secure against malicious adversaries (which exists in the CRS model).3

Somewhat surprisingly, the security of the protocol is maintained even when the garbled circuits
are generated incorrectly. This is because the first round receiver OT messages generated by the
adversarial parties “commits” to the cheating strategy in the larger round protocol. The garbled
circuits generated in the second round simply executes this cheating strategy and hence, we need
not prove that the garbled circuits are generated correctly. We elaborate on this new idea and other
issues involved in subsequent sections.

3 PRELIMINARIES

We recall some standard cryptographic definitions in this section. Let λ denote the security param-
eter. A function μ (·) : N → R+ is said to be negligible if for any polynomial poly(·) there exists
λ0 such that for all λ > λ0, we have μ (λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified

negligible function and poly(·) to denote an unspecified polynomial function.
For a probabilistic algorithm A, we denote A(x ; r ) to be the output of A on input x with the

content of the random tape being r . When r is omitted, A(x ) denotes a distribution. For a finite
set S , we denote x ← S as the process of sampling x uniformly from the set S . We will use PPT to
denote the Probabilistic Polynomial Time algorithm.

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [57] (see Applebaum et al. [7, 8],
Lindell and Pinkas [50] and Bellare et al. [15] for a detailed proof and further discussion). A gar-
bling scheme for circuits is a tuple of PPT algorithms (Garble, Eval). Garble is the circuit garbling
procedure and Eval is the corresponding evaluation procedure. More formally:

— (C̃, {labw,b }w ∈inp(C ),b ∈{0,1} ) ← Garble(1λ ,C ): Garble takes as input a security parameter 1λ ,

a circuitC , and outputs a garbled circuit C̃ along with labels labw,b wherew ∈ inp(C ) (inp(C )
is the set of input wires of C) and b ∈ {0, 1}. Each label labw,b is assumed to be in {0, 1}λ .

—y ← Eval(C̃, {labw,xw
}w ∈inp(C ) ): Given a garbled circuit C̃ and a sequence of input labels

{labw,xw
}w ∈inp(C ) (referred to as the garbled input), Eval outputs a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1} |inp(C ) | we
have that:

Pr
[
C (x ) = Eval

(
C̃, {labw,xw

}w ∈inp(C )

)]
= 1

where (C̃, {labw,b }w ∈inp(C ),b ∈{0,1} ) ← Garble(1λ ,C ).

Security. For security, we require that there exists a PPT simulator Sim such that for any circuit

C and input x ∈ {0, 1} |inp(C ) | , we have that

(
C̃, {labw,xw

}w ∈inp(C )

) c≈ Sim
(
1 |C |, 1 |x |,C (x )

)
,

where (C̃, {labw,b }w ∈inp(C ),b ∈{0,1} ) ← Garble(1λ ,C ) and
c≈ denotes that the two distributions are

computationally indistinguishable.

3For technical reasons detailed later, we need the two-round OT protocol to satisfy a stronger property called as equivocal

receiver security. We give a transformation (in the CRS model) from any malicious secure OT to one that additionally

satisfies equivocal receiver security.
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Authenticity of Input labels. We require for any circuitC and input x ∈ {0, 1} |inp(C ) | and any PPT
adversary A, the probability that the following game outputs 1 is negligible.

C̃, {labw }w ∈inp(C ) ← Sim
(
1 |C |, 1 |x |,C (x )

)

{lab′w }w ∈inp(C ) ← A (C̃, {labw }w ∈inp(C ) )

y = Eval(C̃, {lab′w }w ∈inp(C ) )

({labw }w ∈inp(C ) � {lab′w }w ∈inp(C ) )
∧

(y � ⊥).

We can add authenticity of input labels property generically to any garbled circuit construction
by digitally signing every input label and including the verification key as part of the garbled

circuit C̃ .

3.2 Universal Composability Framework

We work in the Universal Composition (UC) framework [26] to formalize and analyze the se-
curity of our protocols. (Our protocols can also be analyzed in the stand-alone setting, using the
composability framework of [24], or in other UC-like frameworks, like that of [55].) We refer the
reader to Appendix A for a brief overview of the model and to [25] for details.

3.3 Oblivious Transfer

In this article, we consider a 1-out-of-2 OT protocol , similar to [1, 23, 34, 46, 52] where one party,
the sender, has input composed of two strings (s0, s1) and the input of the second party, the receiver,
is a bit β . The receiver should learn sβ and nothing regarding s1−β while the sender should gain
no information about β .

Security of the OT functionality can be described easily by an ideal functionality FOT as is done
in [31]. However, in our constructions, the receiver needs to reveal the randomness (or a part of the
randomness) it uses in an instance of two-round OT to other parties. Therefore, defining security
as an ideal functionality requires care and raises issues similar to one involved in defining ideal
public-key encryption functionality [28, Page 96] arise. Thus, in our context, it is much easier to
directly work with a two-round OT protocol. We define the syntax and the security guarantees of
a two-round OT protocol below.

Semi-Honest Two-round Oblivious Transfer. A two-round semi-honest OT protocol 〈S,R〉 is de-
fined by three probabilistic algorithms (OT1,OT2,OT3) as follows. The receiver runs the algo-
rithm OT1 which takes the security parameter 1λ , and the receiver’s input β ∈ {0, 1} as input and
outputs ots1 and ω.4 The receiver then sends ots1 to the sender, who obtains ots2 by evaluating
OT2 (ots1, (s0, s1)), where s0, s1 ∈ {0, 1}λ are the sender’s input messages. The sender then sends
ots2 to the receiver who obtains sβ by evaluating OT3 (ots2, (β,ω)).

— Correctness. For every choice bit β ∈ {0, 1} of the receiver and input messages s0 and s1

of the sender we require that, if (ots1,ω) ← OT1 (1λ , β ), ots2 ← OT2 (ots1, (s0, s1)), then
OT3 (ots2, (β,ω)) = sβ with overwhelming probability.

— Receiver’s security. We require that

{
ots1 : (ots1,ω) ← OT1 (1λ , 0)

} c≈
{
ots1 : (ots1,ω) ← OT1 (1λ , 1)

}
.

4We note that ω in the output of OT1 need not contain all the random coins used by OT1. This fact will be useful in the

stronger equivocal security notion of oblivious transfer.
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— Sender’s security. We require that for any choice of β ∈ {0, 1}, overwhelming choices of ω ′

and any strings K0,K1,L0,L1 ∈ {0, 1}λ with Kβ = Lβ , we have that{
β,ω ′,OT2 (1λ , ots1,K0,K1)

} c≈
{
β,ω ′,OT2 (1λ , ots1,L0,L1)

}
,

where (ots1,ω) := OT1 (1λ , β ;ω ′).

Constructions of semi-honest two-round OT are known in the plain model under assumptions
such as DDH [1, 16, 52], quadratic residuosity [46] and LWE [54, 56].

Maliciously Secure Two-round Oblivious Transfer. We consider the stronger notion of oblivious
transfer in the common random/reference string model. In terms of syntax, we supplement the
syntax of semi-honest oblivious transfer with an algorithm KOT that takes the security parame-
ter 1λ as input and outputs the common random/reference string σ . Also, the three algorithms
OT1,OT2, and OT3 additionally take σ as input. Correctness and receiver’s security properties in
the malicious case are the same as the semi-honest case. However, we strengthen the sender’s
security as described below.

— Correctness. For every choice bit β ∈ {0, 1} of the receiver and input messages s0 and
s1 of the sender we require that, if σ ← KOT (1λ ), (ots1,ω) ← OT1 (σ , β ), ots2 ←
OT2 (σ , ots1, (s0, s1)), then OT3 (σ , ots2, (β,ω)) = sβ with overwhelming probability.

— Receiver’s security. We require that{
(σ , ots1) : σ ← KOT (1λ ), (ots1,ω) ← OT1 (σ , 0)

} c≈{
(σ , ots1) : σ ← KOT (1λ ), (ots1,ω) ← OT1 (σ , 1)

}
.

— Sender’s security. We require the existence of PPT algorithm Ext = (Ext1, Ext2) such that
for any choice of K0,K1 ∈ {0, 1}λ and PPT adversary A we have that

���Pr[INDREAL
A (1λ ,K0,K1) = 1] − Pr[INDIDEAL

A (1λ ,K0,K1) = 1]
��� ≤

1

2
+ negl(λ).

Experiment INDREAL
A (1λ ,K0,K1):

σ ← KOT (1λ )
ots1 ← A (σ )

ots2 ← OT1 (σ , ots1, (K0,K1))
Output A (ots2)

Experiment INDIDEAL
A (1λ ,K0,K1):

(σ ,τ ) ← Ext1 (1λ )
ots1 ← A (σ )
β := Ext2 (τ , ots1)
L0 := Kβ and L1 := Kβ

ots2 ← OT2 (σ , ots1, (L0,L1))
Output A (ots2)

Constructions of maliciously secure two-round OT are known in the common random string model
under assumptions such as DDH, quadratic residuosity, and LWE [54].

Equivocal Receiver’s Security. We also consider a strengthened notion of malicious receiver’s
security where we require the existence of a PPT simulator SimEq such that the for any β ∈ {0, 1}:{

(σ , (ots1,ωβ )) : (σ , ots1,ω0,ω1) ← SimEq (1λ )
} c≈

{
(σ ,OT1 (σ , β )) : σ ← KOT (1λ )

}
.

Using standard techniques in the literature (e.g., [31]) it is possible to add equivocal receiver’s
security to any OT protocol. We sketch a construction in Appendix B for completeness. We note
that if an OT protocol has equivocal receiver security then it satisfies standard simulation security
against malicious senders. The transformation given in Appendix B gives a method to bootstrap
indistinguishability based security to standard simulation security.
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4 CONFORMING PROTOCOLS

Our protocol compilers work for protocols satisfying certain syntactic structures. We refer to pro-
tocols satisfying this syntax as conforming protocols. In this subsection, we describe this notion and
prove that any MPC protocol can be transformed into a conforming protocol while preserving its
correctness and security properties.

4.1 Specifications for a Conforming Protocol

Consider an n party deterministic5 MPC protocol Φ between parties P1, . . . , Pn with inputs
x1, . . . ,xn , respectively. For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi . A
conforming protocol Φ is defined by functions pre, post, and computations steps or what we call
actions ϕ1, · · ·ϕT . The protocol Φ proceeds in three stages: the pre-processing stage, the computa-
tion stage and the output stage.

— Pre-processing phase: For each i ∈ [n], party Pi computes

(zi ,vi ) ← pre(1λ , i,xi ),

where pre is a randomized algorithm. The algorithm pre takes as input the index i of the
party, its input xi and outputs zi ∈ {0, 1}�/n and vi ∈ {0, 1}� (where � is a parameter of the
protocol). Finally, Pi retains vi as the secret information and broadcasts zi to every other
party. We require that vi,k = 0 for all k ∈ [�]\ {(i − 1)�/n + 1, . . . , i�/n}.

— Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn ) ⊕ vi .

Next, for each t ∈ {1 · · ·T } parties proceed as follows:
(1) Parse action ϕt as (i, f ,д,h) where i ∈ [n] and f ,д,h ∈ [�].
(2) Party Pi computes one NAND gate as

sti,h = NAND(sti,f , sti,д )

and broadcasts sti,h ⊕ vi,h to every other party.
(3) Every party Pj for j � i updates stj,h to the bit value received from Pi .

We require that for all t , t ′ ∈ [T ] such that t � t ′, we have that if ϕt = (·, ·, ·,h) and ϕt ′ =

(·, ·, ·,h′) then h � h′. Also, we denoteAi ⊂ [T ] to be the set of rounds in with party Pi sends
a bit. Namely, Ai =

{
t ∈ T | ϕt = (i, ·, ·, ·)} .

— Output phase: For each i ∈ [n], party Pi outputs post(sti ).

4.2 Transformation for Making a Protocol Conforming

We show that any MPC protocol can be made conforming by making only some syntactic changes.
Our transformed protocols retain the correctness or security properties of the original protocol.

Lemma 4.1. Any MPC protocol Π can be written as a conforming protocol Φ while inheriting the
correctness and the security of the original protocol.

Proof. Let Π be any given MPC protocol. Without loss of generality we assume that in each
round of Π, one party broadcasts one bit that is obtained by computing a circuit on its initial state
and the messages it has received so far from other parties. Note that this restriction can be easily
enforced by increasing the round complexity of the protocol to the communication complexity of
the protocol. Let the round complexity (and also communication complexity) of Π be p. In every
round r ∈ [p] of Π, a single bit is sent by one of the parties by computing a circuit. Let the circuit

5Randomized protocols can be handled by including the randomness used by a party as part of its input.
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computed in round r be Cr . Without loss of generality, we assume that (i) these exists q such that
for each r ∈ [p], we have that q = |Cr |, (ii) each Cr is composed of just NAND gates with fan-in
two, and (iii) each party sends an equal number of bits in the execution of Π. All three of these
conditions can be met by adding dummy gates and a dummy round of interaction.

We are now ready to describe our transformed conforming protocol Φ. The protocol Φ will have
T = pq rounds. We let � = mn + pq and �′ = pq/n and depending on � the compiled protocol Φ is
as follows:

— pre(i,xi ): Sample ri ← {0, 1}m and si ← ({0, 1}q−1‖0)p/n . (Observe that si is a pq/n bit

random string such that its qth , 2qth · · · locations are set to 0.) Output zi := xi ⊕ ri ‖0�
′

and
vi := 0�/n ‖ . . . ‖ri ‖si ‖ . . . ‖0�/n .

— We are now ready to describe the actions ϕ1, · · ·ϕT . For each r ∈ [p], round r in Π party is
expanded into q actions in Φ — namely, actions {ϕ j }j where j ∈ {(r − 1)q+ 1 · · · rq}. Let Pi be
the party that computes the circuitCr and broadcasts the output bit broadcast in round r of
Π. We now describe theϕ j for j ∈ {(r−1)q+1 · · · rq}. For each j, we setϕ j = (i, f ,д,h) where

f and д are the locations in sti that the jth gate of Cr is computed on (recall that initially
sti is set to zi ⊕ vi ). Moreover, we set h to be the first location in sti among the locations
(i − 1)�/n +m + 1 to i�/n that has previously not been assigned to an action. (Note that this
is �′ locations which is exactly equal to the number of bits computed and broadcast by Pi .)

Recall from before than on the execution of ϕ j , party Pi sets sti,h := NAND(sti,f , sti,д )
and broadcasts sti,h ⊕ vi,h to all parties.

— post(i, sti ): Gather the local state of Pi and the messages sent by the other parties in Π from
sti and output the output of Π.

Now we need to argue that Φ preserves the correctness and security properties of Π. Observe
that Φ is essentially the same as the protocol Π except that in Φ some additional bits are sent.
Specifically, in addition to the messages that were sent in Π, in Φ parties send zi in the preprocess-
ing step and q − 1 additional bit per every bit sent in Π. Note that these additional bits sent are
not used in the computation of Φ. Thus these bits do not affect the functionality of Π if dropped.
This ensures that Φ inherits the correctness properties of Π. Next note that each of these bits is
masked by a uniform independent bit. This ensures that Φ achieves the same security properties
as the underlying properties of Π.

Finally, note that by construction for all t , t ′ ∈ [T ] such that t � t ′, we have that if ϕt = (·, ·, ·,h)
and ϕt ′ = (·, ·, ·,h′) then h � h′ as required. �

5 TWO-ROUND MPC: SEMI-HONEST CASE

In this section, we give our construction of two-round multiparty computation protocol in the
semi-honest case with security against static corruptions based on any two-round semi-honest
oblivious transfer protocol in the plain model. This is achieved by designing a compiler that takes
any conforming arbitrary (polynomial) round MPC protocol Φ and squashes it to two rounds.

5.1 Our Compiler

We give our construction of a two-round MPC in Figure 1 and the circuit that needs to be garbled
(repeatedly) is shown in Figure 2. We start by providing intuition behind this construction.

5.1.1 Overview. In the first round of the compiled protocol, each party runs the pre-processing
phase of the conforming protocol to obtain zi andvi . The party sends zi to every party and retains
vi . In addition to this message, each party generates a bunch of receiver OT messages in the first
round and broadcasts it to the other parties. For each round t where the party Pi is sending a
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Fig. 1. Two-round semi-honest MPC.

message in the conforming protocol with ϕt = (i, f ,д,h) being the corresponding action, the party
generates 4 OT messages. Specifically, for each α , β ∈ {0, 1}, Pi computes a receiver OT message
with vi,h ⊕NAND(vi,f ⊕ α ,vi,д ⊕ β ) as its choice bit. zi together with these receiver OT messages
correspond to the first round message of the compiled protocol.

In the second round of the compiled protocol, each party generates a bunch of garbled circuits
and sends these to the other parties. Specifically, for each round of the conforming protocol, there
is one garbled circuit that is generated by each party. The role of these garbled circuits is to emu-
late the computation done in the conforming protocol. Consider some round t of the conforming
protocol with ϕt = (i, f ,д,h) being the action corresponding to this round. The garbled circuit
generated by Pi for this round will perform the computation corresponding to the action and will
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Fig. 2. The program Prog.

output the result of this action. The other garbled circuits will need to “listen” to this output and
update their states to include the message sent by Pi . As mentioned in the introduction, the main
challenge is to enable the other garbled circuits to listen to the message sent by Pi and this is where
the first round OT messages will be helpful. Let us explain how the other garbled circuits listen to
the message sent by Pi .

Let us focus on round t of the protocol and let us assume that the input to the garbled circuits
emulating round t is the correct updated state of the party at the end of round t − 1. We need
to ensure that for each party, the inputs to its garbled circuit corresponding to round t + 1 is the
correct updated state at the end of round t . This task is easy to ensure for Pi . This is because from
its input, Pi ’s garbled circuit can update the hth state bit as sti,h = NAND(sti,f , sti,д ) and output
the labels for the round t + 1 garbled circuit corresponding to this updated state. Now, consider
some party Pj for j � i . The garbled circuit generated by this party must output the labels for
the next garbled circuit that corresponds to the updated state at the end of round t . Since only
the hth bit of the state is updated, let us focus on how this garbled circuit outputs the correct
label corresponding to the hth bit of the state. Note that, if we set α = stj,f and β = stj,д (where
stj corresponds to the updated state at the end of round t − 1), then the choice bit in the (α , β )-th
receiver OT message generated by Pi in the first round corresponds to the bit that is sent by Pi in the
t th round. Thus, given the updated state at the end of round t−1, the garbled circuit generated by Pj

corresponding to round t computes a sender OT message w.r.t. the (α , β )-th receiver OT message
where the input strings correspond to the labels labh,0 and labh,1 for the next garbled circuit. To
enable the decryption of this label, Pi ’s garbled circuit additionally reveals the randomness used
in generating the (α , β )-th OT message. Using the randomness and the sender OT message, each
party can recover the label corresponding to the correct updated state of Pj .

We stress that this process of revealing the randomness of the OT leads to a complete loss of
security for the particular instance OT. Nevertheless, since the randomness of only one of the four
OT messages of Pi is reveled, overall security is ensured. In particular, our construction ensures
that the learned choice bit is in fact the message that is broadcasted in the underlying protocol Φ.
Thus, it follows from the security of the protocol Φ that learning this message does not cause any
vulnerabilities.

Theorem 5.1. Let Φ be a polynomial round, n-party semi-honest MPC protocol computing a func-
tion f : ({0, 1}m )n → {0, 1}∗, (Garble, Eval) be a garbling scheme for circuits, and (OT1,OT2,OT3)
be a semi-honest two-round OT protocol. The protocol described in Figure 1 is a two-round, n-party
semi-honest MPC protocol computing f against static corruptions.

The rest of the section is devoted to proving this theorem.
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5.2 Correctness

In order to prove correctness, it is sufficient to show that the label computed in Step 2. (d).
(ii) of the evaluation procedure corresponds to the bit NAND(sti∗,f , sti∗,д ) ⊕ vi∗,h . Notice that
by the assumption on the structure of vi∗ (recall that vi∗ is such that vi∗,k = 0 for all k ∈
[�]\ {(i∗ − 1)�/n + 1, . . . , i∗�/n}) we deduce that for every i � i∗, sti,f = sti∗,f ⊕ vi∗,f and
sti,д = sti∗,д ⊕ vi∗,д . Thus, the label obtained by OT2 corresponds to the bit NAND(vi∗,f ⊕
sti∗,f ⊕ vi∗,f︸���������︷︷���������︸

α

,vi∗,д ⊕ sti∗,д ⊕ vi∗,д︸���������︷︷���������︸
β

) ⊕vi∗,h = NAND(sti∗,f , sti∗,д ) ⊕vi∗,h and correctness as follows:

Via the same argument as above it is useful to keep in mind that for every i, j ∈ [n] and k ∈ [�],
we have that sti,k ⊕ vi,k = stj,k ⊕ vj,k . Let us denote this shared value by st∗. Also, we denote the
transcript of the interaction in the computation phase by Z ∈ {0, 1}t .

5.3 Simulator

Let A be a semi-honest adversary corrupting a subset of parties and let H ⊆ [n] be the set of
honest/uncorrupted parties. Since we assume that the adversary is static, this set is fixed before
the execution of the protocol. Below we provide the simulator.

Description of the Simulator. We give the description of the ideal world adversary S that simu-
lates the view of the real-world adversaryA.S will internally use the semi-honest simulator SimΦ

for Φ and the simulator SimG for garbling scheme for circuits. Recall that A is static and hence
the set of honest parties H is known before the execution of the protocol.

Simulating the interaction withZ. For every input value for the set of corrupted parties that S
receives fromZ, S writes that value toA’s input tape. Similarly, the output ofA is written as the
output on S’s output tape.

Simulating the interaction with A. For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

— Initialization: S uses the inputs of the corrupted parties {xi }i�H and output y of the func-
tionality f to generate a simulated view of the adversary.6 More formally, for each i ∈ [n]\H
S sends (input, sid, {P1 · · · Pn }, Pi ,xi ) to the ideal functionality implementing f and obtains
the output y. Next, it executes SimΦ(1λ , {xi }i�H ,y) to obtain {zi }i ∈H , the random tapes for
the corrupted parties, the transcript of the computation phase denoted by Z ∈ {0, 1}t where
Zt is the bit sent in the t th round of the computation phase of Φ, and the value st∗ (which
for each i ∈ [n] and k ∈ [�] is equal to sti,k ⊕vi,k ). S starts the real-world adversaryA with
the inputs {zi }i ∈H and random tape generated by SimΦ.

— Round-1 messages from S to A: Next S generates the OT messages on behalf of hon-
est parties as follows. For each i ∈ H , t ∈ Ai ,α , β ∈ {0, 1}, generate ots1,t,α,β ←
OT1 (1λ ,Zt ;ωt,α,β ). For each i ∈ H , S sends (zi , {ots1,t,α,β }t ∈Ai ,α,β ∈{0,1} ) to the adversaryA
on behalf of the honest party Pi .

— Round-1 messages fromA to S: Corresponding to every i ∈ [n] \H , S receives from the
adversary A the value (zi , {ots1,t,α,β }t ∈Ai ,α,β ∈{0,1} ) on behalf of the corrupted party Pi .

— Round-2 messages from S to A: For each i ∈ H , the simulator S generates the second
round message on behalf of party Pi as follows:

6For simplicity of exposition, we only consider the case where every party gets the same output. The proof in the more

general case where parties get different outputs follows analogously.
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(1) For each k ∈ [�] set labi,T+1
k

:= 0λ .
(2) for each t from T down to 1,

(a) Parse ϕt as (i∗, f ,д,h).
(b) Set α∗ := st∗

f
, β∗ := st∗д , and γ ∗ := st∗

h
.

(c) If i = i∗ then compute

(	Prog
i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
(α∗, β∗,γ ∗),ωt,α ∗,β ∗ , {labi,t+1

k
}k ∈[�]

))
.

(d) If i � i∗ then set otsi
2,t,α ∗,β ∗

← OT2 (ots1,t,α ∗,β ∗ , labi,t+1
h
, labi,t+1

h
) and compute

(	Prog
i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
otsi

2,t,α ∗,β ∗ , {labi,t+1
k
}k ∈[�]\{h }

))
.

(3) Send
(
{	Prog

i,t
}t ∈[T ],{labi,1

k
}k ∈[�]

)
to every other party.

— Round-2 messages from A to S: For every, i ∈ [n] \ H , S obtains the second round
message fromA on behalf of the malicious parties. Subsequent to obtaining these messages,
for each i ∈ H , S sends (generateOutput, sid, {P1 · · · Pn }, Pi ) to the ideal functionality.

5.4 Proof of Indistinguishability

We now show that no environmentZ can distinguish whether it is interacting with a real-world
adversaryA or an ideal world adversaryS. We prove this via a hybrid argument withT +1 hybrids.

—HReal : This hybrid is the same as the real-world execution. Note that this hybrid is the same
as hybridHt below with t = 0.

—Ht (where t ∈ {0, . . .T }): HybridHt (for t ∈ {1 · · ·T }) is the same as hybridHt−1 except we
change the distribution of the OT messages (both from the first and the second round of the
protocol) and the garbled circuits (from the second round) that play a role in the execution of
the t th round of the protocol Φ; namely, the action ϕt = (i∗, f ,д,h). We describe the changes
more formally below.

We start by executing the protocol Φ on the inputs and the random coins of the honest and
the corrupted parties. This yields a transcript Z ∈ {0, 1}T of the computation phase. Since
the adversary is assumed to be semi-honest the execution of the protocol Φ with A will be
consistent with Z. Let st∗ be the local state of the end of execution. Finally, let α∗ := st∗

f
,

β∗ := st∗д and γ ∗ := st∗
h

. In hybridHt we make the following changes with respect to hybrid

Ht−1:
– If i∗ � H then skip these changes. S makes two changes in how it generates messages

on behalf of Pi∗ . First, for all α , β ∈ {0, 1}, S generates ots1,t,α,β as OT1 (1λ ,Zt ;ωt,α,β )

(note that only one of these four values is subsequently used) rather than OT1 (1λ ,vi,h ⊕
NAND(vi,f ⊕ α ,vi,д ⊕ β );ωt,α,β ). Second, it generates the garbled circuit

(	Prog
i∗,t
, {labi∗,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
(α∗, β∗,γ ∗),ωt,α ∗,β ∗ , {labi∗,t+1

k,sti,k
}k ∈[�]

))
,

where {labi∗,t+1
k,sti,k

}k ∈[�] are the honestly generates input labels for the garbled circuit

	Prog
i∗,t+1

.
– S makes the following two changes in how it generates messages for other honest parties
Pi (i.e., i ∈ H \ {i∗}). S does not generate four otsi

2,t,α,β
values but just one of them;

namely,S generates the values otsi
2,t,α ∗,β ∗

as OT2 (ots1,t,α ∗,β ∗ , labi,t+1
h,Zt
, labi,t+1

h,Zt
) rather than
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OT2 (ots1,t,α ∗,β ∗ , labi,t+1
h,0
, labi,t+1

h,1
). Second it generates the garbled circuit

(	Prog
i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
otsi

2,t,α ∗,β ∗ , {labi,t+1
k,sti,k

}k ∈[�]\{h }

))
,

where {labi,t+1
k,sti,k

}k ∈[�] are the honestly generated input labels for the garbled circuit

	Prog
i,t+1

.
Indistinguishability betweenHt−1 andHt is proved in Lemma 5.2.

—HT+1: In this hybrid, we just change how the transcript Z, {zi }i ∈H , random coins of malicious
parties, and value st∗ are generated. Instead of generating these using honest party inputs we
generate these values by executing the simulator SimΦ on input {xi }i ∈[n]\H and the output
y obtained from the ideal functionality.

The indistinguishability between hybrids H′T and HT+1 follows directly from the semi-
honest security of the protocol Φ. Finally note thatHT+1 is same as the ideal execution (i.e.,
the simulator described in the previous subsection).

Lemma 5.2. Assuming semi-honest security of the two-round OT protocol and the security of the
garbling scheme, for all t ∈ {1 . . .T } hybridsHt−1 andHt are computationally indistinguishable.

Proof. Using the same notation as before, let ϕt = (i∗, f ,д,h), sti∗ be the state of Pi∗ at the end
of round t , and α∗ := sti∗,f ⊕vi∗,f , β∗ := sti∗,д⊕vi∗,д andγ ∗ := sti∗,h⊕vi∗,h . The indistinguishability
between hybridsHt−1 andHt follows by a sequence of three sub-hybridsHt,1,Ht,2, andHt,3.

—Ht,1: Hybrid Ht,1 is same as hybrid Ht−1 except that S now generates the garbled circuits

	Prog
i,t

for each i ∈ H in a simulated manner (rather than generating them honestly). Specif-

ically, instead of generating each garbled circuit and input labels (	Prog
i,t
, {labi,t

k
}k ∈[�]) hon-

estly, they are generated via the simulator by hard coding the output of the circuit itself. In
a bit more details, parse ϕt as (i∗, f ,д,h).
– If i = i∗ then(	Prog

i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
(α∗, β∗,γ ∗),ωt,α ∗,β ∗ , {labi,t+1

k,sti,k
}k ∈[�]

))
,

where {labi,t+1
k,sti,k

}k ∈[�] are the honestly generates input labels for the garbled circuit

	Prog
i,t+1

.
– If i � i∗ then(	Prog

i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
otsi

2,t,α ∗,β ∗ , {labi,t+1
k,sti,k

}k ∈[�]\{h }

))
,

where {labi,t+1
k,sti,k

}k ∈[�] are the honestly generated input labels for the garbled circuit

	Prog
i,t+1

.

The indistinguishability between hybridsHt,1 andHt−1 follows by |H | invocations of secu-
rity of the garbling scheme. For completeness, we give the proof of indistinguishability in
Appendix C.

—Ht,2: Skip this hybrid if there does not exist i � i∗ such that i ∈ H . In this hybrid, we change
how S generates the otsi

2,t,α,β
on behalf of every honest party Pi such that i ∈ H \ {i∗}

for all choices of α , β ∈ {0, 1}. More specifically, S only generates one of these four values;

namely, otsi
2,t,α ∗,β ∗

which is now generated as OT2 (ots1,t,α ∗,β ∗ , labi,t+1
h,Zt
, labi,t+1

h,Zt
) instead of

OT2 (ots1,t,α ∗,β ∗ , labi,t+1
h,0
, labi,t+1

h,1
).
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Indistinguishability between hybrids Ht,2 and Ht,1 follows directly from the sender’s
security of underlying semi-honest oblivious transfer protocol.

—Ht,3: Skip this hybrid, if i∗ � H . This hybrid is the same asHt,2 except that we change how
S generates the Round-1 message on behalf of Pi∗ . Specifically, the simulator S generates
ots1,t,α,β as is done in theHt . In a bit more detail, for all α , β ∈ {0, 1}, S generates ots1,t,α,β

as OT1 (1λ ,Zt ;ωt,α,β ) rather than OT1 (1λ ,vi,h ⊕ NAND(vi,f ⊕ α ,vi,д ⊕ β );ωt,α,β ).

Indistinguishability between hybrids Ht,2 and Ht,3 follows directly by a sequence of 3
sub-hybrids each one relying on the receiver’s security of underlying semi-honest oblivious
transfer protocol. Observe here that the security reduction crucially relies on the fact that

	Prog
i,t

only contains ωt,α ∗,β ∗ (i.e., does not have ωt,α,β for α � α∗ or β � β∗). For complete-
ness, we give the proof of indistinguishability in Appendix C.

Finally, observe thatHt,3 is the same as hybridHt . �

6 TWO-ROUND MPC: MALICIOUS CASE

In this section, we give our construction of a two-round multiparty computation protocol in
the malicious case with security against static corruptions based on any two-round malicious
oblivious transfer protocol (with equivocal receiver security which as argued earlier can be
added with a need for any additional assumptions). This is achieved by designing a compiler
that takes any conforming arbitrary (polynomial) round MPC protocol Φ and squashes it to two
rounds.

6.1 Our Compiler

We give our construction of two-round MPC in Figure 3 and the circuit that needs to be garbled
(repeatedly) is shown in Figure 2 (same as the semi-honest case). We start by providing intuition
behind this construction. Our compiler is essentially the same as the semi-honest case. In addition
to the minor syntactic changes, the main difference is that we compile malicious secure conforming
protocols instead of semi-honest ones.

Another technical issue arises because the adversary may wait to receive the first round mes-
sages that S sends on the behalf of honest parties before sending the first round messages on
behalf of the corrupted parties. Recall that by sending the receiver OT messages in the first
round, every party “commits” to all its future messages that it will send in the computation
phase of the protocol. Thus, the ideal world simulator S must somehow commit to the mes-
sages generated on behalf of the honest party before extracting the adversary’s effective input.
To get around this issue, we use the equivocability property of the OT using which the simu-
lator can equivocate its first round messages after learning the malicious adversary’s effective
input.

Theorem 6.1. Let Φ be a polynomial round, n-party malicious MPC protocol computing a function
f : ({0, 1}m )n → {0, 1}∗, (Garble, Eval) be a garbling scheme for circuits, and (KOT,OT1,OT2,OT3)
be a maliciously secure (with equivocal receiver security) two-round OT protocol. The protocol
described in Figure 3 is a two-round, n-party malicious MPC protocol computing f against static
corruptions.

We prove the security of our compiler in the rest of the section. The proof of correctness is the
same as for the case of semi-honest security (see Section 5.2).

As in the semi-honest case, it is useful to keep in mind that for every i, j ∈ [n] and k ∈ [�], we
have that sti,k ⊕ vi,k = stj,k ⊕ vj,k . Let us denote this shared value by st∗. Also, we denote the
transcript of the interaction in the computation phase by Z ∈ {0, 1}t .
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Fig. 3. Two-round malicious MPC.

6.2 Simulator

Let A be a malicious adversary corrupting a subset of parties and let H ⊆ [n] be the set of hon-
est/uncorrupted parties. Since we assume that the adversary is static, this set is fixed before the
execution of the protocol. Below we provide the notion of faithful execution and then describe our
simulator.

Faithful Execution. In the first round of our compiled protocol,A provides zi for every i ∈ [n]\H
and ots1,t,α,β for every t ∈ ∪i ∈[n]\h and α , β ∈ {0, 1}. These values act as “binding” commitments
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to all of the adversary’s future choices. All these committed choices can be extracted using the
extractor Ext2. Let bt,α,β be the value extracted from ots1,t,α,β . Intuitively speaking, a faithful
execution is an execution that is consistent with these extracted values.

More formally, we define an interactive procedure Faithful(i, {zi }i ∈[n], {bt,α,β }t ∈Ai ,α,β ) that on
input i ∈ [n], {zi }i ∈[n], {bt,α,β }t ∈Ai ,α,β ∈{0,1} produces protocol Φ message on behalf of party Pi

(acting consistently/faithfully with the extracted values) as follows:

(1) Set st∗ := z1‖ . . . ‖zn .
(2) For t ∈ {1 · · ·T }

(a) Parse ϕt = (i∗, f ,д,h).
(b) If i � i∗ then it waits for a bit from Pi∗ and sets st∗

h
to be the received bit once it is received.

(c) Set st∗
h

:= bt,st∗
f
,st∗д and output it to all the other parties.

We will later argue that any deviation from the faithful execution by the adversary A on behalf
of the corrupted parties (during the second round of our compiled protocol) will be detected. Ad-
ditionally, we prove that such deviations do not hurt the security of the honest parties.

Description of the Simulator. We give the description of the ideal world adversary S that simu-
lates the view of the real-world adversaryA.S will internally use the malicious simulator SimΦ for
Φ , the extractor Ext = (Ext1, Ext2) implied by the sender security of two-round OT, the simulator
SimEq implied by the equivocal receiver’s security and the simulator SimG for garbling scheme for
circuits. Recall thatA is static and hence the set of honest partiesH is known before the execution
of the protocol.

Simulating the interaction withZ. For every input value for the set of corrupted parties that S
receives fromZ, S writes that value toA’s input tape. Similarly, the output ofA is written as the
output on S’s output tape.

Simulating the interaction with A. For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

— Generation of the common random/reference string: S generates the common ran-
dom/reference string as follows:

(1) For each i ∈ H , t ∈ Ai , α , β ∈ {0, 1} set (σt,α,β , (ots1,t,α,β , ω0
t,α,β

, ω1
t,α,β

)) ← SimEq (1λ )

(using equivocal simulator).
(2) For each i ∈ [n] \ H ,α , β ∈ {0, 1} and t ∈ Ai generate (σt,α,β ,τt,α,β ) ← Ext1 (1λ ) (using

the extractor of the OT protocol).
(3) Output the common random/reference string as {σt,α,β }t,α,β .

— Initialization: S executes the simulator (against malicious adversary’s) SimΦ(1λ ) to obtain
{zi }i ∈H . Moreover, S starts the real-world adversary A. We next describe how S provides
its messages to SimΦ and A.

— Round-1 messages from S to A: For each i ∈ H , S sends (zi , {ots1,t,α,β }t ∈Ai ,α,β ∈{0,1} ) to
the adversary A on behalf of the honest party Pi .

— Round-1 messages from A to S: Corresponding to every i ∈ [n] \ H , S receives from
the adversary A the value (zi , {ots1,t,α,β }t ∈Ai ,α,β ∈{0,1} ) on behalf of the corrupted party Pi .
Next, for each i ∈ [n] \ H , t ∈ Ai ,α , β ∈ {0, 1} extract bt,α,β := Ext2 (τt,α,β , ots1,t,α,β ).

— Completing the execution with SimΦ: For each i ∈ [n] \H , S sends zi to SimΦ on behalf
of the corrupted party Pi . This starts the computation phase of Φ with the simulator SimΦ.
S provides computation phase messages to SimΦ by following a faithful execution. More
formally, for every corrupted party Pi where i ∈ [n] \H , S generates messages on behalf of
Pi for SimΦ using the procedure Faithful(i, {zi }i ∈[n], {bt,α,β }t ∈Ai ,α,β ). At some point during
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the execution, SimΦ will return the extracted inputs {xi }i ∈[n]\H of the corrupted parties. For
each i ∈ [n]\H ,S sends (input, sid, {P1 · · · Pn }, Pi ,xi ) to the ideal functionality implementing
f and obtains the output y which is provided to SimΦ. Finally, at some point the faithful
execution completes.

Let Z ∈ {0, 1}t where Zt is the bit sent in the t th round of the computation phase of Φ be
the output of this execution. And let st∗ be the state value at the end of execution of one of
the corrupted parties (this value is the same for all the parties). Also, set for each t ∈ ∪i ∈HAi

and α , β ∈ {0, 1} set ωt,α,β := ωZt

t,α,β
.

— Round-2 messages from S to A: For each i ∈ H , the simulator S generates the second
round message on behalf of party Pi as follows:

(1) For each k ∈ [�] set labi,T+1
k

:= 0λ .
(2) for each t from T down to 1,

(a) Parse ϕt as (i∗, f ,д,h).
(b) Set α∗ := st∗

f
, β∗ := st∗д , and γ ∗ := st∗

h
.

(c) If i = i∗ then compute(	Prog
i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
(α∗, β∗,γ ∗),ωt,α ∗,β ∗ , {labi,t+1

k
}k ∈[�]

))
.

(d) If i � i∗ then set otsi
2,t,α ∗,β ∗

← OT2 (σt,α ∗,β ∗ , ots1,t,α ∗,β ∗ , labi,t+1
h
, labi,t+1

h
) and compute

(	Prog
i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
otsi

2,t,α ∗,β ∗ , {labi,t+1
k
}k ∈[�]\{h }

))
.

(3) Send ({	Prog
i,t
}t ∈[T ],{labi,1

k
}k ∈[�]) to every other party.

— Round-2 messages from A to S: For every i ∈ [n] \ H , S obtains the second-round
message fromA on behalf of the malicious parties. Subsequent to obtaining these messages,
S executes the garbled circuits provided by A on behalf of the corrupted parties to see the
execution of garbled circuits proceeds consistently with the expected faithful execution. If
the computation succeeds then for each i ∈ H , S sends (generateOutput, sid, {P1 · · · Pn }, Pi )
to the ideal functionality.

6.3 Proof of Indistinguishability

We now show that no environmentZ can distinguish whether it is interacting with a real-world
adversary A or an ideal world adversary S. We prove this via a hybrid argument with T + 3
hybrids.

—HReal : This hybrid is the same as the real-world execution.
—H0: In this hybrid, we start by changing the distribution of the CRS and the distribution

of the sender OT messages of the honest parties generated w.r.t. a receiver OT message
generated by a corrupt party. More formally, S generates the common random/reference
string as follows:

(1) For each i ∈ [n] \ H ,α , β ∈ {0, 1} and t ∈ Ai generate (σt,α,β ,τt,α,β ) ← Ext1 (1λ ) (using
the extractor of the OT protocol).

Corresponding to every i ∈ [n] \ H , A sends (zi , {ots1,t,α,β }t ∈Ai ,α,β ∈{0,1} ) on behalf of
the corrupted party Pi as its first round message. For each i ∈ [n] \ H , t ∈ Ai ,α , β ∈ {0, 1}
in this hybrid we extract bt,α,β := Ext2 (τt,α,β , ots1,t,α,β ).

(2) For each t ∈ [T ] such that ϕt = (i, f ,д,h) where i � H , we change how S generates
the otsi

2,t,α,β
on behalf of every honest party Pi for all choices of α , β ∈ {0, 1}. More

specifically, S generates this message as OT2 (σt,α,β , ots1,t,α,β , labi,t+1
h,bt,α ,β

, labi,t+1
h,bt,α ,β

) in-

stead of OT2 (σt,α,β , ots1,t,α,β , labi,t+1
h,0
, labi,t+1

h,1
).
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Note that, this hybrid is the same as hybridHt below with t = 0.
The indistinguishability between hybrids HReal and H0 follows from a reduction to the
sender’s security of the two-round OT protocol.

—Ht (where t ∈ {0, . . .T }): HybridHt (for t ∈ {1 · · ·T }) is the same as hybridHt−1 except we
change the distribution of the OT messages (both from the first and the second round of the
protocol) and the garbled circuits (from the second round) that play a role in the execution of
the t th round of the protocol Φ; namely, the action ϕt = (i∗, f ,д,h). We describe the changes
more formally below.

For each i ∈ [n] \H , in this hybrid S (in his head) completes execution of Φ using honest
party inputs and randomness. In this execution, the messages on behalf of corrupted parties
are generated via faithful execution. Specifically, S sends {zi }i ∈[n]\H to the honest parties on
behalf of the corrupted party Pi in this mental execution of Φ. This starts the computation
phase of Φ. In this computation phase, S generates honest party messages using the inputs
and random coins of the honest parties and generates the messages of the each malicious
party Pi by executing Faithful(i, {zi }i ∈[n]\H , {bt,α,β }t ∈Ai ,α,β ). Let st∗ be the local state of the
end of execution. Finally, let α∗ := st∗

f
, β∗ := st∗д and γ ∗ := st∗

h
. In hybrid Ht we make the

following changes with respect to hybridHt−1:
– If i∗ � H then skip these changes. S makes two changes in how it generates messages on

behalf of Pi∗ . First, for all α , β ∈ {0, 1}, S computes (σt,α,β , (ots1,t,α,β ,ω
0
t,α,β
,ω1

t,α,β
)) ←

SimEq (1λ ) (using equivocal simulator) and sets ωt,α ∗,β ∗ as ωZt

t,α ∗,β ∗
rather than

ω
vi,h ⊕NAND(vi, f ⊕α ∗,vi,д ⊕β ∗ )

t,α ∗,β ∗
(note that these two values are the same when using the honest

party’s input and randomness). Second, it generates the garbled circuit

(	Prog
i∗,t
, {labi∗,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
(α∗, β∗,γ ∗),ωt,α ∗,β ∗ , {labi∗,t+1

k,sti,k
}k ∈[�]

))
,

where {labi∗,t+1
k,sti,k

}k ∈[�] are the honestly generates input labels for the garbled circuit

	Prog
i∗,t+1

.
– S makes the following two changes in how it generates messages for other honest parties
Pi (i.e., i ∈ H \ {i∗}).S does not generate four otsi

2,t,α,β
values but just one of them; namely,

S generates the values otsi
2,t,α ∗,β ∗

as OT2 (σt,α ∗,β ∗ , ots1,t,α ∗,β ∗ , labi,t+1
h,Zt
, labi,t+1

h,Zt
) rather than

OT2 (σt,α ∗,β ∗ , ots1,t,α ∗,β ∗ , labi,t+1
h,0
, labi,t+1

h,1
). Second it generates the garbled circuit

(	Prog
i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
otsi

2,t,α ∗,β ∗ , {labi,t+1
k,sti,k

}k ∈[�]\{h }

))
,

where {labi,t+1
k,sti,k

}k ∈[�] are the honestly generated input labels for the garbled circuit

	Prog
i,t+1

.
Indistinguishability betweenHt−1 andHt is proved in Lemma 6.2

—H′T : In this hybrid, we modify the output phase of the computation to execute the garbled
circuits provided byA on behalf of the corrupted parties and see if the execution of garbled
circuits proceeds consistently with the transcript Z. If the computation succeeds then for
each i ∈ H ,we instruct the parties inH to outputy (which is the output obtained by all parties
in the execution of Φ); else, we instruct them to output ⊥. This hybrid is computationally
close toHT from the authenticity property of the input labels.

—HT+1: In this hybrid, we just change how the transcript Z, {zi }i ∈H , random coins of malicious
parties, and value st∗ are generated. Instead of generating these using honest party inputs in
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execution with a faithful execution of Φ, we generate it via the simulator SimΦ (of the mali-
ciously secure protocol Φ). In other words, we execute the simulator SimΦ where messages on
behalf of each corrupted party Pi are generated using Faithful(i, {zi }i ∈[n]\H , {bt,α,β }t ∈Ai ,α,β ).
(Note that SimΦ might rewind Faithful. This can be achieved since Faithful is just a polyno-
mial time interactive procedure that can also be rewound.)

The indistinguishability between hybrids H′T and HT+1 follows directly from the mali-
cious security of the protocol Φ. Finally, note that HT+1 is same as the ideal execution (i.e.,
the simulator described in the previous subsection).

Lemma 6.2. Assuming malicious security of the two-round OT protocol and the security of the
garbling scheme, for all t ∈ {1 . . .T } hybridsHt−1 andHt are computationally indistinguishable.

Proof. Using the same notation as before, let ϕt = (i∗, f ,д,h), sti∗ be the state of Pi∗ at the end
of round t , and α∗ := sti∗,f ⊕vi∗,f , β∗ := sti∗,д⊕vi∗,д andγ ∗ := sti∗,h⊕vi∗,h . The indistinguishability
between hybridsHt−1 andHt follows by a sequence of three sub-hybridsHt,1,Ht,2, andHt,3.

—Ht,1: Hybrid Ht,1 is same as hybrid Ht−1 except that S now generates the garbled circuits

	Prog
i,t

for each i ∈ H in a simulated manner (rather than generating them honestly). Specif-

ically, instead of generating each garbled circuit and input labels (	Prog
i,t
, {labi,t

k
}k ∈[�]) hon-

estly, they are generated via the simulator by hard coding the output of the circuit itself. In
a bit more details, parse ϕt as (i∗, f ,д,h).
– If i = i∗ then(	Prog

i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
(α∗, β∗,γ ∗),ωt,α ∗,β ∗ , {labi,t+1

k,sti,k
}k ∈[�]

))
,

where {labi,t+1
k,sti,k

}k ∈[�] are the honestly generates input labels for the garbled circuit

	Prog
i,t+1

.
– If i � i∗ then(	Prog

i,t
, {labi,t

k
}k ∈[�]

)
← SimG

(
1λ ,
(
otsi

2,t,α ∗,β ∗ , {labi,t+1
k,sti,k

}k ∈[�]\{h }

))
,

where {labi,t+1
k,sti,k

}k ∈[�] are the honestly generated input labels for the garbled circuit

	Prog
i,t+1

.

The indistinguishability between hybridsHt,1 andHt−1 follows by |H | invocations of secu-
rity of the garbling scheme.

—Ht,2: Skip this hybrid if there does not exist i � i∗ such that i ∈ H . In this hybrid, we change
how S generates the otsi

2,t,α,β
on behalf of every honest party Pi such that i ∈ H \ {i∗} for all

choices of α , β ∈ {0, 1}. More specifically, S only generates one of these four values; namely,

otsi
2,t,α ∗,β ∗

which is now generated as OT2 (σt,α ∗,β ∗ , ots1,t,α ∗,β ∗ , labi,t+1
h,Zt
, labi,t+1

h,Zt
) instead of

OT2 (σt,α ∗,β ∗ , ots1,t,α ∗,β ∗ , labi,t+1
h,0
, labi,t+1

h,1
).

In the case where i∗ � H , this change is syntactic since we have already changed the
distribution of otsi

2,t,α ∗,β ∗
in H0. In the case where i∗ ∈ H , indistinguishability between

hybrids Ht,2 and Ht,1 follow directly from the sender’s security of underlying malicious
oblivious transfer protocol. In fact, we only rely on the semi-honest security of the oblivious
transfer to make this change.

—Ht,3: Skip this hybrid, if i∗ � H . This hybrid is same as Ht,2 except that we change
how S generates the Round-1 message on behalf of Pi∗ . Specifically, the simulator
S generates ots1,t,α,β as is done in the Ht . In a bit more detail, computes (σt,α,β ,
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(ots1,t,α,β ,ω
0
t,α,β
,ω1

t,α,β
)) ← SimEq (1λ ) (using equivocal simulator) and sets ωt,α ∗,β ∗ as

ωZt

t,α ∗,β ∗
rather thanω

vi,h ⊕NAND(vi, f ⊕α ∗,vi,д ⊕β ∗ )

t,α ∗,β ∗
(note that these two values are the same when

using the honest party’s input and randomness).
We now argue indistinguishability between Ht,2 and Ht,3 using the equivocal receiver

security. We interact with the equivocal security challenger four times. For each α , β , we

obtain σt,α,β , ots1,t,α,β and ω
vi,h ⊕NAND(vi, f ⊕α,vi,д ⊕β )

t,α,β
. We use this to generate the first round

message of the protocol and the second round messages of the protocol. Note that if these
values were generated honestly then the distribution produced is identical toHt,2. Else, it is
distributed identically toHt,3.

Finally, observe thatHt,3 is the same as hybridHt . �

APPENDICES

A OUR MODEL

Below we briefly review UC security. For full details see [26]. Most parts of this section are taken
verbatim from [30]. A reader familiar with the notion of UC security can safely skip this section.

A.1 The Basic Model of Execution

Following [42, 44], a protocol is represented as an interactive Turing machine (ITM), which
represents the program to be run within each participant. Specifically, an ITM has three tapes
that can be written to by other ITMs: the input and subroutine output tapes model the inputs
from and the outputs to other programs running within the same “entity” (say, the same physical
computer), and the incoming communication tapes and outgoing communication tapes model
messages received from and to be sent to the network. It also has an identity tape that cannot be
written to by the ITM itself. The identity tape contains the program of the ITM (in some standard
encoding) plus additional identifying information specified below. Adversarial entities are also
modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifier that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the
ITM belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol
instance. Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent
some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in cer-
tain ways (specified in the model). The pair (SID, PID) is a unique identifier of the ITI in the system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial

time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its run,
the overall number of steps taken by M is at most nc , where n is the overall number of bits written
on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol execution
process is bounded by a polynomial, we define n as the total number of bits written to the input
tape of M , minus the overall number of bits written by M to input tapes of other ITMs.; see [26].)

A.2 Security of Protocols

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in an adversarial environment is formalized. Next,
an “ideal process” for carrying out the task at hand is formalized. In the ideal process the parties,
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do not communicate with each other. Instead, they have access to an “ideal functionality,” which is
essentially an incorruptible “trusted party” that is programmed to capture the desired functionality
of the task at hand. A protocol is said to securely realize an ideal functionality if the process of
running the protocol amounts to “emulating” the ideal process for that ideal functionality. Below
we overview the model of protocol execution (called the real-life model), the ideal process, and the
notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversaryA that controls the communication among the parties, and
an environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and
may write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first activation,
the environment invokes the adversary A, providing it with some arbitrary input. In the context
of UC security, the environment can from now on invoke (namely, provide input to) only ITMs
that consist of a single instance of protocol Π. That is, all the ITMs invoked by the environment
must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information toZ by writing this information on
the subroutine output tape ofZ. For simplicity of exposition, in the rest of this article we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [11, 27].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

In this work, we consider the setting of static corruptions. In the static corruption setting, the
set of corrupted parties is determined at the start of the protocol execution and does not change
during the execution.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality, we assume that this output consists
of only a single bit.

Let EXECπ ,A,Z (n, z, r ) denote the output of the environmentZ when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ, rA , r1, r2, . . . as
described above (z and rZ forZ; rA forA, ri for party Pi ). Let EXECπ ,A,Z (n, z) random variable
describing EXECπ ,A,Z (n, z, r ) where r is uniformly chosen. Let EXECπ ,A,Z denote the ensemble
{EXECπ ,A,Z (n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the pro-
tocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the ideal
protocol is the ideal functionality that captures the desired functionality, or the specification, of
that task. The ideal functionality is modeled as another ITM (representing a “trusted party”) that
interacts with the parties and the adversary. More specifically, in the ideal protocol for function-
ality F all parties simply hand their inputs to an ITI running F . (We will simply call this ITI F .
The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is null.))
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Fig. 4. The common reference string functionality.

In addition, F can interact with the adversary according to its code. Whenever F outputs a value
to a party, the party immediately copies this value to its own output tape. We call the parties in
the ideal protocol dummy parties. Let Π(F ) denote the ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol ϕ if for
any adversary A there exists an adversary S such that no environment Z, on any input, can
tell with non-negligible probability whether it is interacting with A and parties running Π, or
it is interacting with S and parties running ϕ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with ϕ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F ). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition A.1. Let Π and ϕ be protocols. We say that Π UC-emulates ϕ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction
for UC security we have EXECF,S,Z ≈ EXECπ ,A,Z .

Definition A.2. Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes

F if Π UC-emulates the ideal process Π(F ).

A.3 The Common Reference/Random String Functionality

In the common reference string (CRS) model [29, 31], all parties in the system obtained from
a trusted party a reference string, which is sampled according to a pre-specified distribution D.
The reference string is referred to as the CRS. In the UC framework, this is modeled by an ideal
functionality F D

CRS that samples a string ρ from a pre-specified distribution D and sets ρ as the

CRS. F D
CRS is described in Figure 4.

When the distributionD in F D
CRS is sent to be the uniform distribution (on a string of appropriate

length) then we obtain the common random string functionality denoted as FCRS .

A.4 General Functionality

We consider the general-UC functionality F , which securely evaluates any polynomial-time (pos-
sibly randomize) function f : ({0, 1}�in )n → ({0, 1}�out )n . The functionality Ff is parameterized
with a function f and is described in Figure 5. In this article, we will only be concerned with the
static corruption model.

B EQUIVOCAL RECEIVER’S SECURITY IN OBLIVIOUS TRANSFER

Using standard techniques for the literature (e.g., [31]) it is possible to add equivocal receiver’s
security to any OT protocol. We sketch a construction in below for the sake of completeness.

Lemma B.1. Assuming two-round maliciously secure OT protocol, there exists a two-round mali-
ciously secure OT protocol with equivocal receiver’s security.

Proof. Given a two-round maliciously secure OT protocol (K ′OT,OT′1,OT′2,OT′3) we give a
two-round maliciously secure OT protocol (KOT,OT1,OT2,OT3) that additionally achieves the
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Fig. 5. General functionality.

equivocal receiver’s security. We also use a pseudorandom generator д : {0, 1}λ → {0, 1}3λ . Our
construction is as follows:

—KOT (1λ ): Output σ := (σ ′, r ) where σ ′ ← K ′OT (1λ ) and r ← {0, 1}3λ .
— OT1 (σ = (σ ′, r ), β ):
(1) Sample x ← {0, 1}λ . If β = 0 then set y := д(x ) and y := r ⊕ д(x ) otherwise.
(2) For each i ∈ [λ], prepare (ots0

1,i ,ω
0
i ) ← OT′1 (σ ′,xi ).

(3) For each i ∈ [λ], prepare (ots1
1,i ,ω

1
i ) ← OT′1 (σ ′,xi ).

(4) Output ots1 := (y, {ots0
1,i , ots1

1,i }i ∈[λ]) and ω :=
(
β, {ω0

i }i ∈[λ]

)
if β = 0 and

ω := (β,
{
ω1

i

}
i ∈[λ]

) otherwise.

— OT2 (σ = (σ ′, r ), ots1 = (y, {ots0
1,i , ots1

1,i }i ∈[λ]), (s0, s1)): Let Cy,s be a circuit with y ∈ {0, 1}3λ

and s hardwired in it which on input x ∈ {0, 1}λ outputs s if y = д(x ) and ⊥ otherwise. OT2

proceeds as follows:

(1) Obtain (C̃0, {lab0
i,b }i ∈[λ],b ∈{0,1} ) ← Garble(1λ ,Cy,s0 ).

(2) Obtain (C̃1, {lab1
i,b }i ∈[λ],b ∈{0,1} ) ← Garble(1λ ,Cr ⊕y,s1 ).

(3) For each i ∈ [λ], obtain ots0
2,i ← OT′2 (σ ′, ots0

1,i , (lab0
i,0, lab0

i,1)).

(4) For each i ∈ [λ], obtain ots1
2,i ← OT′2 (σ ′, ots1

1,i , (lab1
i,0, lab1

i,1)).

(5) Output ots2 := (C̃0, C̃1, {ots0
2,i , ots1

2,i }i ∈[λ]).

— OT3 (σ = (σ ′, r ), ots2 = (C̃0, C̃1, {ots0
2,i , ots1

2,i }i ∈[λ]),ω = (β, {ωβ
i }i ∈[λ])): Compute

(1) For each i ∈ [λ], recover labi := OT′3 (σ ′, ots
β
2,i ,ω

β
i ).

(2) Output Eval(C̃β , {labi }i ∈[λ]).

The correctness of the above described OT protocol follows directly from the correctness of
the underlying cryptographic primitives. We now prove sender security and equivocal receiver’s
security.

Sender’s Security. The sender’s security of (KOT,OT1,OT2,OT3) follows from the sender’s
security of (K ′OT,OT′1,OT′2,OT′3) and the simulation security of the garbling scheme. We start
by describing the construction of Ext = (Ext1, Ext2) using the extractor Ext′ = (Ext′1, Ext,′2 ) for
(K ′OT,OT′1,OT′2,OT′3).

— Ext1 (1λ ) executes (σ ′,τ ) ← Ext′1 (1λ ) and r ← {0, 1}3λ and outputs σ := (σ ′, r ) and τ .
— Ext2 (τ , ots1 = (y, {ots0

1,i , ots1
1,i }i ∈[λ])) proceeds as follows: For each i ∈ [n], obtain

x0,i := Ext′2 (τ , ots1,i ). If д(x0) = y then output 0 and 1 otherwise.
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Now we argue that using this extractor Ext = (Ext1, Ext2), for any PPT adversary A, the
distributions INDREAL

A (1λ ,K0,K1) and INDIDEAL
A (1λ ,K0,K1) are computationally indistinguishable.

We argue this via the following sequence of hybrids.

—H0: This hybrid is the same as INDREAL
A (1λ ,K0,K1).

—H1: In this hybrid we change how the σ ′ in σ = (σ ′, r ) is generated. Specifically, we use the
extractor Ext′1 above to generate it. Additionally, we use Ext′2 to recover a value of x0 and x1

that the receiver provides in {ots0
1,i }i ∈[λ] and {ots1

1,i }i ∈[λ], respectively.

Indistinguishability between H0 and H1 can be reduced directly to the sender’s security
of the underlying OT protocol. Additionally, by a counting argument, we make the claim
that for any x0,x1 over the random choices of y we have that Pr[д(x0) = y ∧ д(x1) = r ⊕ y]
is negligible. Thus, we set β = 0 if д(x0) = y and 1 otherwise. This is the same as the value
extracted by Ext2 above.

—H2: In this hybrid, we change how the values ots
1−β
2,i are generated for each i ∈ [λ]. More

specifically, for each i ∈ [λ], we generate ots
1−β
2,i ← OT2 (σ ′, ots

1−β
1,i , (lab

1−β
i,x1−β ,i

, lab
1−β
i,x1−β ,i

)).

Indistinguishability between H1 and H2 can be reduced to the receiver’s security of the
underlying OT protocol.

—H3: In this hybrid we change the garbled C̃1−β to the simulate circuit generated via SimG

with the output ⊥ hardwired (i.e., it is generated as SimG (1λ ,⊥)).
Indistinguishability betweenH2 andH3 reduces to the security of the garbling scheme.

Equivocal Receiver’s Security. We start by providing the PPT simulator SimEq (1λ ) which
proceeds as follows:

(1) Generate σ ′ ← K ′OT (1λ ) and r := д(x0) ⊕ д(x1) where x0,x1 ← {0, 1}λ . Set σ := (σ ′, r ).

(2) Sample x ← {0, 1}λ . Set y := д(x0).
(3) For each i ∈ [λ], prepare (ots0

1,i ,ω
0
i ) ← OT′1 (σ ′,x0,i ).

(4) For each i ∈ [λ], prepare (ots1
1,i ,ω

1
i ) ← OT′1 (σ ′,x1,i ).

(5) Output (σ := (σ ′, r ), ots1 := (y, {ots0
1,i , ots1

1,i }i ∈[λ]),ω0 := (β, {ω0
i }i ∈[λ]),ω1 := (β, {ω1

i }i ∈[λ])).

We are left to argue that for each β , the distribution (σ , ots1,ωβ ) is indistinguishable from the
distribution of the honestly generated values. We sketch the argument for the case where β = 0.
The argument for the case where β = 1 is analogous.

—H0: This hybrid corresponds to the real distribution. Namely, we set σ = (σ ′, r ) ← KOT (1λ )
and (ots1 = (y, {ots0

1,i , ots1
1,i }i ∈[λ]),ωβ ) ← OT1 (σ , β ).

—H1: In this hybrid, we change how r in generated. More specifically, we set r as д(x ) ⊕ д(x ′)
where x ,x ′ ← {0, 1}λ and use the same x in the generation of ots1.

Indistinguishability between hybridsH0 andH1 follows directly from the security of the
pseudorandom generator.

—H2: In this hybrid, we change how ots1
1,i values are generated. Specifically, for each i ∈ [λ],

we set (ots1
1,i ,ω

1
i ) ← OT′1 (σ ′,x ′i ) instead of (ots1

1,i ,ω
1
i ) ← OT′1 (σ ′,xi ). Note that H2 is the

same as the distribution generated by SimEq for β = 0 case.
Indistinguishability between hybrids H1 and H2 follows from the receiver’s security of

the underlying OT protocol.

This completes the argument. �

C COMPLETING THE PROOF OF LEMMA 5.2

Claim. Assuming the security of garbling scheme for circuits,Ht−1 ≈c Ht,1.
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Proof. LetA be an adversary corrupting the set of parties [n] \H that can distinguish between
Ht and Ht,1 with non-negligible probability. We construct an adversary B breaking the security
of garbling scheme.
B chooses an uniform random tape for every j � H and interacts with the adversary A. B

computes the first round message zi , {ots1,t,α,β }t ∈Ai ,α,β ∈{0,1} for every i ∈ H as in Ht−1. B runs
in its “head” a faithful execution of the protocol Φ using both honest and corrupted parties inputs.
This yields the protocol transcript Z and the shared local state st∗. For every i ∈ H , it generates
the second round message as follows:

(1) Set lab
i,T+1

:= {labi,T+1
k,0
, labi,T+1

k,1
}k ∈[�] where for each k ∈ [�] and b ∈ {0, 1} labi,T+1

k,b
:= 0λ .

(2) for each w from T down to t + 1,
(a) Parse ϕw as (i∗, f ,д,h).
(b) If i = i∗ then compute (where Prog is described in Figure 2)(	Prog

i,w
, lab

i,w ) ← Garble
(
1λ ,Prog[i,ϕw ,vi , {ωw,α,β }α,β ,⊥, lab

i,w+1
]
)
.

(c) If i � i∗ then for every α , β ∈ {0, 1}, set otsi
2,w,α,β

← OT2 (ots1,w,α,β , labi,w+1
h,0
, labi,w+1

h,1
)

and compute(	Prog
i,w
, lab

i,w ) ← Garble
(
1λ ,Prog[i,ϕw ,vi ,⊥, {otsi

2,w,α,β }α,β , lab
i,w+1

]
)
.

(3) For every i ∈ H , let stt
i be the secret local state of party Pi before the beginning of the t th

round of the computation phase. Interact with the garbled circuits challenger and give stt
i

as the challenge input and Prog[i,ϕt ,vi , {ωt,α,β }α,β ,⊥, lab
i,t+1

] as the challenge circuit if

i = i∗ and Prog[i,ϕt ,vi ,⊥, {otsi
2,t,α,β

}α,β , lab
i,t+1

] as the challenge circuit if i � i∗ where

otsi
2,t,α,β

← OT2 (ots1,t,α,β , labi,t+1
h,0
, labi,t+1

h,1
). Obtain 	Prog

i,t
and {labi,t

k
}k ∈[�].

(4) for each w from t − 1 down to 1:
(a) Parse ϕw as (i∗, f ,д,h).
(b) Set α∗ := st∗

f
, β∗ = st∗д and γ ∗ := st∗

h
.

(c) If i = i∗, compute
(	Prog

i∗,t
, {labi∗,w

k
}k ∈[�]

)
← SimG

(
1λ ,
(
(α∗, β∗,γ ∗),ωw,α ∗,β ∗ , {labi∗,w+1

k
}k ∈[�]

))

(d) Else, compute otsi
2,w,α ∗,β ∗

as OT2 (ots1,t,α ∗,β ∗ , labi,w+1
h
, labi,w+1

h
) and generate

(	Prog
i,w
, {labi,w

k
}k ∈[�]

)
← SimG

(
1λ ,
(
otsi

2,w,α ∗,β ∗ , {labi,w+1
k

}k ∈[�]\{h }
))

(5) Send ({	Prog
i,w
}w ∈[T ],{labi,1

k
}k ∈[�]) to every other party.

Notice that if the garbling 	Prog
i,t

is generated using the honest procedure then the messages
sent to A are distributed identically to Ht−1. Else, they are distributed identically to Ht,1. Thus,
B breaks the security of the garbling scheme for circuits which is a contradiction. �

Claim. Assuming the receiver security of oblivious transfer, we haveHt,2 ≈c Ht,3.

Proof. LetA be an adversary corrupting the set of parties [n] \H that can distinguish between
Ht,2 andHt,3 with non-negligible probability. We construct an adversary B breaking the receiver
security of the oblivious transfer.
B chooses a uniform random tape for every j � H and interacts with the adversary A. For

every i ∈ H , B generates zi and ots1,w,α,β for every w ∈ ∪i ∈HAi \ {t } as in Ht,1. B runs in
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its “head” a faithful execution of the protocol Φ using both honest and corrupted parties inputs.
This yields the protocol transcript Z and the shared local state st∗. Set α∗ := st∗

f
, β∗ = st∗д and

γ ∗ := st∗
h

. Let ϕt = (i∗, f ,д,h). For (α , β ) � (α∗, β∗), we interact with the OT challenger and send
Zt ,vi,h ⊕NAND(vi,f ⊕ α ,vi,д ⊕ β ) as the challenge bits. Obtain ots1,t,α,β as the challenge first OT

message. Sample ωt,α ∗,β ∗ uniformly at random and compute ots1,t,α ∗,β ∗ as OT1 (1λ ,Zt ;ωt,α ∗,β ∗ ).
For each i ∈ H , send zi , {ots1,w,α , β }w ∈Ai ,α,β ∈{0,1} on behalf of the honest party. Generate the
second round message as inHt,1.

Notice that if the challenge bit is Zt then the distribution of messages to A is identical toHt,3.
Else, it is identical toHt,2. Thus, B breaks the receiver security of the oblivious transfer. �
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