
Two’s Company, Three’s a Crowd:
A Case Study of Crowdsourcing Software Development

Klaas-Jan Stol
Lero—The Irish Software Engineering

Research Centre, University of Limerick, Ireland
klaas-jan.stol@lero.ie

Brian Fitzgerald
Lero—The Irish Software Engineering

Research Centre, University of Limerick, Ireland
bf@ul.ie

ABSTRACT
Crowdsourcing is an emerging and promising approach which
involves delegating a variety of tasks to an unknown workforce—
the crowd. Crowdsourcing has been applied quite successfully in
various contexts from basic tasks on Amazon Mechanical Turk to
solving complex industry problems, e.g. InnoCentive. Companies
are increasingly using crowdsourcing to accomplish specific soft-
ware development tasks. However, very little research exists on
this specific topic. This paper presents an in-depth industry case
study of crowdsourcing software development at a multinational
corporation. Our case study highlights a number of challenges that
arise when crowdsourcing software development. For example,
the crowdsourcing development process is essentially a waterfall
model and this must eventually be integrated with the agile
approach used by the company. Crowdsourcing works better for
specific software development tasks that are less complex and
stand-alone without interdependencies. The development cost was
much greater than originally expected, overhead in terms of com-
pany effort to prepare specifications and answer crowdsourcing
community queries was much greater, and the time-scale to com-
plete contests, review submissions and resolve quality issues was
significant. Finally, quality issues were pushed later in the lifecy-
cle given the lengthy process necessary to identify and resolve
quality issues. Given the emphasis in software engineering on
identifying bugs as early as possible, this is quite problematic.

Categories and Subject Descriptors
K.6.3 [Software Management]: [Software development,
Software process] D.2 [Software Engineering]: Management—
Programming teams; K.4.3 [Organizational Impacts]:
[Computer-supported collaborative work]

General Terms
Human Factors, Management

Keywords
Crowdsourcing, case study, challenges, software development

1. INTRODUCTION
Software engineering no longer takes place in small, isolated
groups of developers, but increasingly takes place in organizations
and communities involving many people [7, 79]. There is an

increasing trend towards globalization with a focus on
collaborative methods and infrastructure [10]. One emerging
approach to getting work done is crowdsourcing, a sourcing
strategy that emerged in the 1990s [35]. Driven by Web 2.0
technologies [16, 71], organizations can tap into a workforce
consisting of anyone with an Internet connection. Customers, or
requesters, can advertise chunks of work, or tasks, on a
crowdsourcing platform, where suppliers (i.e., individual workers)
select those tasks that match their interests and abilities [39].

Crowdsourcing has been adopted in a wide variety of domains,
such as design and sales of T-shirts [43] and pharmaceutical re-
search and development [56], and there are numerous
crowdsourcing platforms through which customers and suppliers
can find each other [23]. One of the best known crowdsourcing
platforms is Amazon Mechanical Turk (AMT) [44]. On AMT,
chunks of work are referred to as Human Intelligence Tasks (HIT)
or micro-tasks. Typical micro-tasks are characterized as self-con-
tained, simple, repetitive, short, requiring little time, cognitive
effort and specialized skills. Crowdsourcing has worked par-
ticularly well for such tasks [50, 52]. Examples include tagging
images, and translating fragments of text. As a result, remunera-
tion of work is typically in the order of a few cents to a few US
dollars [44].

In contrast to micro-tasks, software development tasks are often
interdependent, complex, heterogeneous, and can require
significant periods of time, cognitive effort and various types of
expertise [51]. Yet, there are cases of crowdsourcing complex
tasks; for instance, InnoCentive deal with problem solving and
innovation projects, which may yield payments of thousands of
US dollars [43].

A number of potential benefits have been linked to the use of
crowdsourcing in general, and these would also be applicable in
the context of software development specifically:

• Cost reduction [47, 50, 70] through lower development costs
for developers in certain regions, and also through the
avoidance of the extra cost overheads typically incurred in
hiring developers;

• Faster time-to-market [50, 55, 69] through accessing a
critical mass of necessary technical talent who can achieve
follow-the-sun development across time zones, as well as
parallel development on decomposed tasks, and who are
typically willing to work at weekends, for example;

• Higher quality through broad participation [12, 70, 82]: the
ability to get access to a broad and deep pool of development
talent who self-select on the basis that they have the
necessary expertise, and who then participate in contests
where the highest quality ‘winning’ solution is chosen.

• Creativity and open innovation [13, 25, 26, 55, 70, 77]: there
are many examples of “wisdom of crowds” creativity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’14, May 31 – June 7, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2756-5/14/05... $15.00.

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

whereby the variety of expertise available ensures that more
creative solutions can be explored, which often elude the
fixed mindset that can exist within individual companies, a
phenomenon known as “near-field repurposing of
knowledge” [82].

Given that the first three benefits above (cost, time and quality)
directly address the three central problematic areas of the so-
called “software crisis” [33], it is not surprising that a number of
authors have argued that crowdsourcing may become a common
approach to software development [8, 48]. The fourth benefit, that
of tapping into the creative capacity of a crowd is captured well in
a quote attributed to Sun Microsystems co-founder Bill Joy,
namely that, “No matter who you are, most of the smartest people
work for someone else” [56]. As Lakhani and Panetta [56] pointed
out, completing knowledge-intensive tasks will become increas-
ingly challenging in traditional closed models of proprietary inno-
vation, if most of the knowledge exists outside an organization.
Research on crowdsourcing tends to focus on one of three
perspectives: the worker (supplier) perspective, the system
(crowdsourcing platform, e.g., AMT) perspective, and the
requester (customer) perspective [88]. Studies of crowdsourcing
software development, or what LaToza et al. [57] referred to as
“Crowd Development,” are scarce [59].

Similar to the confusion surrounding the term ‘crowdsourcing’ in
general [16, 28, 67, 74], there is some confusion about what
constitutes crowdsourcing in a software development context. In
particular, crowdsourcing may be positioned as closely related to
other strategies such as outsourcing [37] and opensourcing [1, 63].
For instance, open source is often cited as the ‘genesis’ of
crowdsourcing [43, p.8, 48, 57], but others argue that open source
is not a form of crowdsourcing [16]. Other terms that have been
used as synonyms are ‘peer production’ [30, 40] and ‘commons-
based peer production’ [48], both referring to the idea that
software is developed by a group of peers. While these strategies
are similar in some respects, there are significant differences (see
also Section 2) that set crowdsourcing apart [78].

Furthermore, most studies aim to explain crowdsourcing by
describing successful cases (e.g., [14]); as a result, there has been
little attention to the challenges that may arise. Further research is
needed to better understand the limits of crowdsourcing software
development. This paper presents an in-depth industry case study
of crowdsourcing software development at a multinational
corporation. The goal of this study is to shed light on the key
issues in crowdsourcing that are relevant to software
development. Crowdsourcing is a multi-disciplinary research
topic [15, 46], and to date very few studies exist in the software
engineering domain [57, 59]. Studies to date have focused on
contestants [3] and crowdsourcing platforms/companies [55], but
have not investigated the perspective of a crowdsourcing
customer, that is, an organization that uses a crowdsourcing
platform to get software development work done. The study
reveals a number of challenges that the case study organization
encountered.

The remainder of this paper is structured as follows. Section 2
presents background on crowdsourcing, defines crowdsourcing
for software development and identifies a number of key themes
from the crowdsourcing literature that are of particular importance
in a software development context. These themes provide an
analytical framework for our study. Section 3 outlines our
empirical research approach. Section 4 presents the results of our
study. Section 5 discusses the key findings of our study and
outlines a number of directions for future work.

2. BACKGROUND AND RELATED WORK
There are a number of crowdsourcing platforms specifically
targeting software development (and related tasks such as testing
[62, 83]). The largest is TopCoder [80], which has a community
of over 500,000 developers. Other platforms include AppStori [2],
and uTest [84], though the actual mechanism of matching
customers and suppliers varies. Given the lack of clarity of what
crowdsourcing means in a software development context, in
particular in relation to outsourcing and opensourcing, we present
a definition in Section 2.1. Section 2.2 identifies a set of key
concerns in crowdsourcing that are specific to software
development, and which provide a framework for our empirical
study in Section 4.

2.1 Defining Crowdsourcing Software
Development
There are numerous definitions for the term ‘crowdsourcing’ [28,
38]. Howe presented the following definition [42]:

Crowdsourcing is the act of taking a job traditionally performed
by a designated agent (usually an employee) and outsourcing it to
an undefined, generally large group of people in the form of an
open call.
A second definition offered by Howe, referred to as the
‘Soundbyte’ version, defines crowdsourcing as the “application of
Open Source principles to fields outside of software” [41]. Both
definitions are ambiguous in the context of software development.
The phrase “outsourcing [...] to an undefined, generally large
group of people” also applies to the concept of opensourcing [1],
and some authors consider this a form of crowdsourcing [63].
Others argue that crowdsourcing differs from open source (and
thus, opensourcing), in that the latter is a public good, whereas the
former is focused on extracting economic value [3]. Brabham,
however, identified a more significant distinction between open
source and crowdsourcing, in that the locus of control in the
former is essentially with the crowd, and there is no overarching
entity that coordinates the overall effort [16]. Open source
projects tend to be self-organizing, and while a core team can set
out a roadmap, there is no ‘control’ in that roadmap tasks are
assigned to the project’s community. (For the same reason,
Brabham argued that Wikipedia is not an example of
crowdsourcing, since all articles are offered on the initiative of the
articles’ authors.) Even though, many open source projects are
moving more towards formal organization [32], the locus of
control remains largely with the crowd/open source community.
The incentive-based contests in which crowdsourcing typically
takes place is also problematic in the case of crowdsourcing
software development. While TopCoder, the primary platform for
crowdsourcing software development operate on the basis of
competitions, another platform, uTest, performs software testing
using a global community of over 80,000 testers but does not use
competitions. Another characterization is that crowdsourcing is
“outsourcing on steroids” [43, p.46]. This suggests that
crowdsourcing is merely a form of outsourcing. However, the
duplication of work being performed in parallel does not apply to
outsourcing. Overall, the key elements of crowdsourcing software
development appear to be the following:

• Nature of the work, i.e. software development tasks which
are inherently quite complex with many interdependencies,
and not equivalent to the simple HITs performed on AMT,
for example;

• Locus of control, i.e. the customer organization who has to
specify the tasks and integrate the resulting output into the

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

organization’s software development process, and who own
the output;

• Nature of the workforce, i.e. a large and typically undefined
group of external people, but with the requisite ‘wide and
deep’ specialized knowledge to accomplish the task
successfully.

Based on these, our definition of crowdsourced software
development is the following:

The accomplishment of specified software development tasks on
behalf of an organization by a large and typically undefined
group of external people with the requisite specialist knowledge
through an open call.

2.2 Key Concerns in Crowdsourcing Software
Development
Given the nascent state of research on crowdsourcing software
development, there is no commonly agreed upon framework that
captures the key concerns of this topic [27, 74]. A framework can
help to define the boundaries of a research area [72]. Drawing on
the general literature on crowdsourcing, we synthesized a set of
six key concerns which have particular relevance in a software
development context: (1) Task Decomposition, (2) Coordination
and Communication, (3) Planning and Scheduling, (4) Quality
Assurance, (5) Knowledge and Intellectual Property, and (6)
Motivation and Remuneration. The remainder of Section 2.2
presents the six themes in detail.

2.2.1 Task Decomposition
A key issue in crowdsourcing is that work is decomposed into a
set of smaller tasks [45, 52, 54]. This issue is highly relevant in
outsourcing scenarios, and Herbsleb and Grinter [36] reminded us
of Parnas’ definition of a module as “a responsibility assignment
rather than a subprogram” [64]. What is of particular importance,
given the interdependencies in software, is that different
developers working on a project know how their code fits into the
resulting software product, in terms of understanding interfaces
and assumptions made.

Whereas in general-purpose crowdsourcing markets, such as
AMT, tasks are typically small and independent [44], software
development tasks are more complex and interdependent.
Therefore, a key challenge is to find an appropriate decomposition
of the software product into tasks that can be effectively
crowdsourced [57]. Kulkarni et al. [54] termed this challenge the
“workflow design problem.” More efficient decompositions can
lead to an increased parallelism [57].

Furthermore, in decomposing a software project, there is a fine
balance between providing a sufficiently detailed specification for
the task being crowdsourced on the one hand, and stifling
innovation with overly detailed specifications on the other hand
[55]. Tajedin and Nevo [78] suggested that projects which can be
decomposed into small modules with clear requirements and
limited interdependencies are more likely to succeed.

2.2.2 Coordination and Communication
When crowdsourcing more complex tasks, as is the case in soft-
ware development, there is a need for coordination [51]. Malone
and Crowston [58] defined coordination as “the process of
managing dependencies among activities.” As such, coordination
is concerned with directing efforts of individuals toward a com-
mon and explicitly recognized goal, and linking different parts of
an organization together to achieve a set of tasks [53]. Although
related to task decomposition discussed above, coordination is

specifically concerned with communication, interdependencies
and integrating various parts into a whole [53, 57].

The above characterization of coordination seems to assume that
activities are conducted within an organization. Clearly, in
crowdsourcing, participants who submit ‘solutions’ are not part of
the crowdsourcing organization. In fact, interdependent tasks may
be performed by different workers, potentially causing
incompatibilities between the solutions provided [57].
In a software engineering context, the need for different
developers to communicate is often related to Brooks’ Law
(“adding manpower to a late software project makes it later”), in
that the more people are involved, the higher the communication
overhead is [17]. Whether or not this applies in a crowdsourcing
context depends on whether the work is done in a collaborative or
competitive fashion [88]. For instance, TopCoder, the largest
crowdsourcing platform for software development, organizes
tasks as competitions; a winner (and runner-up) is selected based
on a peer-review of the submissions by the community [7].

2.2.3 Planning and Scheduling
With crowdsourcing, one or more tasks are given to an unknown
workforce to complete, and as a result an organization is letting go
of control of that particular work. On the one hand, this may result
in a timely delivery of completed work as it can be completed in
parallel and independently of the organization’s in-house work-
force, and in particular if the tasks are competitions where pay-
ment depends on timely delivery. On the other hand, however,
this introduces a level of uncertainty as to whether or not the work
will be completed on time [88]. One of the promises of
crowdsourcing is to shorten the product development cycle [14,
85]. In order to achieve this, it is important that the desired sched-
ule of a crowdsourcing organization can be adhered to by the
crowd. For instance, a core challenge is to ensure that sufficient
workers are available when needed [51]. While there may be
extensive expertise within the crowd, very specific domain
knowledge may not always be available at the moment it is
needed. Furthermore, it is important to ensure that sufficient time
is given to coders, relating the issue of planning to the size and
scope of a task. Lakhani et al. [55] reported that TopCoder “com-
munity members worked best when contests lasted less than two
weeks.” Too large or long-lasting projects could result in de-
creased interest from the community, and thus fewer submissions.

2.2.4 Quality Assurance
Another claim made by crowdsourcing advocates is that the
quality of submissions is high [12, 70, 82]. At the same time, there
is a risk of ‘noise’ in submissions, where solutions are of a low
quality [24, 45]. In a software development context, the idea that
input from a wide variety of developers helps in finding and
fixing defects is better known as Linus’s Law, or, “given enough
eyeballs, all bugs are shallow” [66]. Closely related to this is the
idea that there is a wide variety of expertise within a developer
community. The challenge lies in attracting sufficient contestants,
under the assumption that given enough contestants, the required
expertise will be present. Whereas AMT is non-transparent, in
that contestants do not know how many ‘competitors’ there are for
a certain competition, a platform such as TopCoder is fully
transparent. Prior to participating, contestants must register for a
certain competition. Findings from a recent study suggest,
however, that the greater the number of contest participants, the
lower the quality of the work [49]. One characteristic sometimes
ascribed to the crowd is that it consists mostly of amateurs [71],
thus suggesting that the resulting quality of output may not be on

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

par with professional work. However, Brabham points out that
this is a myth [15].

Quality assurance is a key concern in software development,
whether the software is developed in-house or by external parties.
Of particular concern in crowdsourcing is that a customer has no
knowledge of the developers that deliver the software, nor of the
process that they might follow, and therefore has no control over
these aspects. Crowd developers may “satisfice, minimizing the
amount of effort they expend” [51]. Also, there can be
disagreement about a solution; Kittur [50] distinguished
‘subjective’ tasks for which there is no single right answer, and
‘objective’ tasks that can be easily verified. While software either
fulfills a set of requirements or not, disagreements may still arise
regarding certain functionality or the scope of a task. Furthermore,
quality attributes of submissions, such as performance and
maintainability of the code may still vary. One approach to quality
control is peer-review. At TopCoder, for instance, members of the
community perform peer-reviews of the submitted software.
Similar to peer-reviews in open source, such reviews are “truly
independent” [31] given that the peer-reviewers would usually not
know the creator of the work, and would therefore be unlikely to
be either positively or negatively biased. A certain level of
‘shepherding’ the crowd has also been suggested to improve
quality [24, 54]. Kulkarni et al. [54] found that letting the crowd
plan amongst themselves without supervision of a requester was
partially successful, but that intervention by a requester during the
workflow could improve quality significantly.

2.2.5 Knowledge and Intellectual Property
Knowledge management has long been recognized to be an
important topic within the software engineering field [4, 9, 21]. A
key difference with traditional outsourcing is that there is no
single supplier that develops an in-depth understanding of the
problem domain of a crowdsourced project; rather, the continuous
turnover of workers is an inherent characteristic of crowdsourcing
[20].

One type of knowledge of particular concern in crowdsourcing
software development tasks is that of knowledge and intellectual
property (IP) [55, 86]. IP ‘leakage’ and the consequent loss of
competitive advantage is a challenge in adopting crowdsourcing
[26]. Organizations may be hesitant to provide too many details
on a certain task (i.e., module or component) that is
crowdsourced, yet sufficient detail in the specification is
necessary for developers in the crowd to understand what the
crowdsourcing organization is requesting. Another issue that may
arise is ownership of inventions [18, 46]. Tasks on general-
purpose platforms such as AMT are arguably relatively simple
(requiring little human intelligence), and thus IP concerns do not
loom large. Software development, however, is a highly creative
process, and organizations will want to ensure they can patent any
potential inventions that emerge with no confusion in relation to
ownership. A third issue can arise when workers submit solutions
that are not theirs [46], for instance, if the solution contains open
source code with the restrictive GNU Public License (GPL)
license. This may be a risk for crowdsourcing customers as it
affects their product.

2.2.6 Motivation and Remuneration
A final consideration in crowdsourcing is that of motivation and
remuneration [19, 22, 29, 40, 45, 59, 60, 65]. Motivation is a topic
that has received considerable attention in the software
engineering research field, given that it is reported to be a major
factor in project success [6, 11]. Motivational factors can be

external or intrinsic. Extrinsic factors are conditions surrounding a
job [5], whereas intrinsic factors relate to the job itself (e.g.,
having fun, gaining recognition and a sense of achievement).
Obviously, the compensation of a certain crowdsourcing task will
depend heavily on the expected duration and the complexity of the
task. Tasks can vary in complexity, from so-called ‘micro-tasks,’
such as tagging an image which takes only seconds, to more time-
consuming tasks such as transcribing audio. Clearly, software
development tasks are complex and time-consuming, and
contestants will expect significant remuneration, as opposed to the
average cost of micro-tasks on AMT, most of which are below
one US dollar [44]. One claimed benefit of crowdsourcing is that
it can greatly reduce cost [55]. Yet, determining an appropriate
price is a key challenge for crowdsourcing in general [29, 75], and
also for software development specifically [55, 59].

3. RESEARCH SETTING AND METHODS
In this section we describe the research approach adopted in this
study. Section 3.1 presents the background of the case study
organization and the TopCoder crowdsourcing platform. Section
3.2 describes the research method and data collection and
analysis.

3.1 Background of the Case
3.1.1 TechPlatform Inc.
TechPlatform Inc. (TPI - a pseudonym) is a global player offering
services and solutions in the cloud. The company employs several
tens of thousands of people worldwide, with 400 sales offices, and
partners in more than 75 countries. In 2012, TPI sought to
investigate the use of crowdsourcing in its software development
function at the instigation of a senior executive.

3.1.2 TopCoder
The platform through which TPI is crowdsourcing its software
development is TopCoder (TC). TC is the largest software
development crowdsourcing platform and its community has
grown more than ten-fold, from 50,000 to 612,000 members
between 2004 and 2014. However, a recent estimate suggests that
only 0.7% of registered members had participated in development.

TC has an extremely impressive customer list of blue chip
companies. In promoting their services, TC suggests that
customers can “Try more often. Succeed more often. Spend Less.”
TC offers a platform which facilitates what is termed the three
pillars of Digital Creation: (1) front-end innovation; (2) software
development, and (3) algorithms and analytics. For this study, we
focus on the software development pillar.
TC accomplishes software development tasks for customers
through a series of competitions. The TC community breaks down
customer projects into atomized units of work that comprise the
entire build, and these work units are accomplished through
competitive contests, whereby the TC community compete and
submit solutions. The TC community is structured into Program
Managers who oversee customer projects and choose co-pilots
within the TC community to act as an interface between
customers and TC developers, and to help choose winners for the
various contests.
Co-pilots are experienced TC community members who have
proven themselves in the past on the TC platform. They manage
the technical aspects of crafting and running competitions through
to successful delivery. TC suggests that the co-pilots can do the
technical heavy lifting and process management, allowing the
customer to be the “conductor of a world-wide talent pool” [81].

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

The TC software development methodology comprises a number
of different competition types, organized in a number of
categories, as illustrated in Figure 1.

3.2 Methods and Analysis
The goal of our study was to investigate crowdsourcing in a soft-
ware development context from a crowdsourcing customer per-
spective, to better understand this process and the challenges as-
sociated with it. To that end, we conducted an in-depth case study
at the case company. Case study research is particularly suited to
study real-world phenomena that cannot be studied separately
from their context [87]. Case study research has become increas-
ingly popular as a method in software engineering research [68],
as it provides rich insights into contemporary phenomena (e.g.,
distributed development [36], open source software development
[61]). For this study we conducted a number of face-to-face, semi-
structured interviews with key informants who were involved with
the TC crowdsourcing initiative. These included the Divisional
CTO at the visited location, a software architect, a software de-
velopment manager, a program manager and a project manager.
Prior to the study, we developed an interview guide that was
based on the crowdsourcing themes discussed in Section 2. The
face-to-face interviews were conducted during three half-day
workshops on the premises of the company. In addition, we
conducted two teleconference interviews each involving two TPI
staff members who played key roles in the crowdsourcing process.
Interview sessions lasted between one and two hours each. During
the research process, we sent several early drafts of this paper to
key participants of the study—a form of member checking [68],
and this also provided opportunities to seek clarifications when
necessary. Data were analyzed using qualitative methods as
described by Seaman [73]. All interviews were transcribed,
resulting in 112 pages of text. The analysis consisted of coding the
transcripts using the six themes identified in Section 2.2 as seed
categories. The transcripts were analyzed in parallel by both
authors and several analytical memos were written. The memos
established an audit trail of the analysis, and facilitated a process
of peer debriefing for the researchers. Besides drawing from the
interview data, we also drew from a number of internal documents
prepared by the company, which facilitated a process of
triangulation among data sources. Other sources included
documentation on the crowdsourcing schedules, project
documentation that TPI stored on an internal wiki, and contest
information drawn from the TopCoder website. Further details of
the design and execution of our study are described in our study
protocol [76].

4. CROWDSOURCING AT TPI
The application which TPI selected for crowdsourcing was Titan,
a web application to be used by TPI field engineers when
migrating from one platform to another as part of a customer
engagement. Within TPI a technical decision was taken that future
development should use HTML5, and this was the technology
chosen for the front end, which was replacing the desktop
application. The back-end services were based on a similar
technology set used by the previous desktop-based solution. Thus,
TPI were keen to leverage HTML5 expertise from the large global
TC community. Figure 2 illustrates the breakdown of the
development work in terms of what was to be done by TPI, and
what was to be done by TopCoder. It should be noted that the
dimensions of the figure do not reflect the actual amount of work.
Given that a lot of TPI domain-specific knowledge is required for
back-end development, this is retained as part of the TPI
development responsibility.

Similarly in the front-end, topics such as migration planning,
importing and the scripting engine were retained for development
by TPI. The two activities that are part of the TC crowdsourced
development are asset modeling and automation testing. Modeling
refers to the arrays and switches that need to be migrated and thus
have to be modeled (i.e. created and configured) in the Titan
application. Automation testing complements unit and integration
testing which is designed by TPI developers, and refers to the
testing designed by QA to test the front-end GUI interaction with
the back-end. As can be seen in Figure 2, this development
activity will be carried out almost entirely by TC. The small
portion that will be developed by TPI involves a “Gold Standard”
which will be made available subsequently as a template for the
TC community to indicate how TPI would like automation testing
to be done. The following sub-sections draw on the framework in
Section 2.2 to discuss the TC crowdsourcing development for the
TPI web application.

Figure 2. Work decomposition between TPI and TC.

4.1 Task Decomposition
The choice as to what parts of the product were appropriate for
crowdsourcing was not entirely trivial for TPI. Code and
executables which were self-contained would be easier to merge
and hence were more suitable for crowdsourcing. However, if
code from TC had to be directly merged with code being
developed in-house, this would be more problematic. The decision
as to what work to crowdsource was primarily based on internal
resources (or lack thereof) and the amount of domain knowledge
required for a certain task. Tasks that required the least amount of
domain knowledge were deemed most suitable.

!"#$%"&'()%)*+",'

-).$/,'
!  "#$%&''
!  (')*+,#$-.&/-0')1
!  23*4&#+*#$3+1
1

-)0)%"#1),&'
!  ('5,')+)#1

%+6+.',5+)#11
!  277+58.91
!  :+7#1"$&#+71

(3';%1

(-#-.'<1
%-#-8-7+1

231-)0)%"#1),&'
!  =>1?3'#'#9,+1
!  @&*41>)#+3)+#1

2,,.&*-0')1A$&.%1
!  (')#+)#1(3+-0')1

45'6'78$,&),8,*)'
!  :+7#1"*+)-3&'71
!  A$<1@-*+1

!  ",+*&B*-0')1
!  ('5,')+)#1%+7&<)1

!  A$<1C$)#1

Figure 1. TopCoder competition types and phases (adapted
from Mao et al. [59] and TopCoder.com).

�!�������������

����������

�������� ��������� �������

���������

��������� 	��������

�����������
����������$���"�

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

Table 1. Titan development phases and specifications.

Phase Panels Documents Pages
1 Dashboards 40 NA NA
2 Flagship product I 18 15 196
3 Flagship product II 33 19 543
4 Network devices 14 11 161
5 Legacy and third-party 23 17 131

TPI divided the project into five development phases, listed in
Table 1. The first dashboards phase was the front-end which
involved the high-level dashboard interface pages, e.g., for
customer creation, project creation and navigation. The next two
development phases involved configuration of TPI’s flagship
product. Following this, Phase 4 was concerned with the various
network devices which also form part of the migration
configuration. Finally, Phase 5 dealt with the low-end legacy
products and various third party solutions that also need to be
migrated. In order to minimize the modifications that would need
to be made to the TC code after delivery, TPI made the header and
footer browser code available to TC developers. This was to
ensure this standard format would be maintained by all TC
developers. For the Titan application, TPI’s policy was to only use
HTML5 where a feature was supported by all platforms to
increase portability. Initially, there was an expectation that the TC
community would deliver some innovative HTML5 code.
However, the TPI requirement that HTML5 features would have
to be supported by all browser platforms resulted in a very small
proportion of all potential HTML5 features being available for use
by TC developers. The expected innovation from the “crowd” was
thus precluded by the TPI specification.
In order to minimize integration effort later on, the architect had
wanted to let TC developers work against a real back-end core as
opposed to stub services. However, by the time development with
TC started, the core was not ready and stubs were used during
most development contests. Consequently, this integration effort
was pushed back to a later stage in the development process,
which was not ideal.

For traditional in-house development, TPI developers had
internalized a great deal of information in relation to coding
standards and templates, and technical specifications. However,
many of the coding standards and templates were documented
informally and not stored centrally on the internal wiki
installation. This scattering of information and URLs prevented it
from being packaged as a deliverable for TC developers. A great
deal of extra work was necessary to ensure that this information
was made explicit in the requirements specification for the
external TC developers. Most of the effort was related to the
technical specifications. Table 2 lists the number of documents
and the total number of pages of specifications written for each of
the five phases defined by TPI. The architect liaising with TC
described the situation as follows:

“It feels like we’ve produced a million specification documents,
but obviously we haven’t. The way we do specifications for
TopCoder is entirely different to how we do them internally.”

4.2 Coordination and Communication
From the TC perspective, the software development process
consists of a number of interrelated phases (see Figure 1 above).
While the TC process is essentially a waterfall one, an agile
development process, based on Scrum, was in use at TPI.
Synthesizing these different development processes was
problematic. TC development had to be assigned to a Scrum team

within TPI, and TC contributions needed to be subsequently
injected into the appropriate sprints. The architect summarized the
central problem as follows:

“We are an agile shop and we are used to changing our minds.
This can be a problem with TC when we tell them one thing in one
contest, but have changed our mind in the next contest.”
There were also quite a number of layers in the engagement
model between TC and TPI. Firstly at the TC end, a co-pilot
liaised between the TC developer community on the one hand,
and TPI personnel on the other hand. Furthermore, a platform
specialist and the TPI account manager were involved, effectively
overseeing the co-pilot and recommending changes at that level.
In this case, following some problems, a new co-pilot was
selected with a tendency to be more proactive than his prede-
cessor.

Within TPI, the choice of personnel to interact with the TC co-
pilot was a difficult decision. While TC would prefer a single
point of contact within the customer organization, there were
significant management and technical issues involved, thus
requiring senior people from TPI on both the management and
technical end. A senior TC program manager was appointed
specifically for all programs being developed with TC. This
manager ensured that management were aware of any scheduling
issues that could arise, for example, and also ensured that training
was provided. However, there was also a specific Titan program
manager, and thus there was inevitably some overlap between
both roles. On the technical side, a senior architect was allocated
to coordinate the TC development for the Titan project. This role
of TC liaison which had daily contact with the TC community
was considered to be problematic within TPI, given the
considerable pressure to answer questions which was also very
time consuming. There was some concern within TPI about
allocating such a senior resource to this liaison role given the
significant cost. The Software Development Manager described
the situation from a resource allocation perspective:

“To have a single point of contact for the project on our side, the
contact needs to have both technical skills and project
management skills to be able to manage the requirements,
competitions and questions from TopCoder technical community
members. It used a very valuable resource and in this project they
had to use up some time from other developers to address all the
questions coming back from TopCoder.”
At the initial stage, this liaison role involved answering questions
on the TC Forums. There was significant time pressure involved
since a time penalty applied if forum questions were not answered
in a timely fashion by TPI, which would mean that the original
committed delivery date for TC development would be pushed
out. Also, the architect estimated the time answering questions on
the TC Forums to be at least twice as long as would be the case
with internal development:

“There are a lot more questions than with internal development.
However, there is no informal communication mechanism. You
cannot yell at the person in the next cubicle and get the answer
very quickly.”

In contrast to distributed development which typically involves
other developers from the same organization, the only relationship
which tended to build over time was that with the TC co-pilot.
There was no real opportunity to build up a relationship with any
of the TC developers, as interaction was filtered through a number
of layers. Another structural coordination issue arose in that TPI
allocate architects to products, and the desire to get the TC project

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

completed resulted in two additional architects working on the
project. This was seen as a sub-optimal resource allocation, given
that the architect role was a somewhat scarce and extremely
valuable resource.

TPI also had a so-called “tactical” Scrum team that could be
assigned to different tasks more flexibly in that they were not
formally assigned to projects on a long-term basis, as was the case
with the normal Scrum teams at TPI. This tactical team could deal
with TC contributions when they arrived. However, in some cases
a normal Scrum team would also be assigned to the project, and in
these cases involvement of the tactical Scrum team would not then
be necessary. Overall, there was extra overhead and duplication of
work on the project in that two teams had to become familiar with
the project and deliverables. These two teams also had to
communicate with each other. To address this issue, TPI dropped
the use of the tactical team, and instead scheduled time in the
project sprints to integrate the deliveries from TC.

4.3 Planning and Scheduling
The Titan project comprised more than fifty TC competitions.
These competitions involved a total of 695 contest days, with an
average length of competition of just over 13 days.1 The shortest
completion time for a competition was 4 days while the longest
competition took 32 days to complete. As discussed above, TPI
had structured the overall development of the Titan product into
five phases. The average duration across these development
phases is 80 days, with the longest development duration (90
days) for the front-end HTML5 panels in the first phase, and the
shortest development duration (69 days) for the final phase
involving the low-end legacy and third-party arrays. Table 2 lists
the duration of each phase, the number of competitions per phase,
and the average length of a competition per phase. (Note that
competitions overlap in practice, so that a phase’s duration is not

1 These durations are calendar days and thus include weekend

days. This is justifiable as the TC community tend to treat
weekends as working days. If weekends are excluded, the total
number of workdays is 548, the average is just under 10
workdays, minimum of 3 workdays and a maximum of 23 days.

merely the product of the number of competitions and their
length).

Figure 3 presents a Gantt diagram that shows the planning of all
contests. The figure shows the dependencies between the various
contests, which are of varying types (see Figure 1). For instance,
assembly contests must be completed before any test suite
contests can start. This dependency corresponds to a waterfall
process.
Some of the specific timings and the granularity of possible deci-
sions for TC development were somewhat problematic for TPI.
For example, TC allows a customer five days to accept or reject a
deliverable. According to the architect, this was often not long
enough to analyze and fully test the deliverable, and it was
difficult to get these reviews done in time internally. A further
difficulty arose in that TC deliverables must be accepted as a
whole, or rejected as a whole, with no middle ground. It would be
better from TPI’s point of view if more flexible granularity was
possible in that certain parts of deliverables could be accepted and
partial payment made for these acceptable parts. Because TPI did
not want to deter TC developers from bidding on future
competitions, there was a tendency to accept code, even with
some defects. There was an additional warranty period of 30 days,
but integrating fixes under this warranty would pose considerable
overhead in receiving, checking and integrating new code with an
active code base which would more than likely have undergone
significant further modification internally within TPI in the
interim. Furthermore, when issues were escalated within the 30-
day warranty, the resolutions were generally not satisfactory to
TPI. Overall, a single longer initial acceptance period of 15 days
would probably be more beneficial to TPI than the two current
periods of five and 30 days, respectively. Another issue related to
planning and scheduling arose when TPI had to wait for a contest
to finish, while the main application was evolving, causing
possible integration issues. TPI’s schedule was also jeopardized
by several contests failing due to a lack of submissions. These
contests had to be rescheduled thus causing a delay in TPI’s
schedule. When rescheduled, there was only a single submission
in one case, despite more than 30 registrants indicating an interest.

As already discussed, TPI perceived the need to run multiple
competitions in parallel so as to shorten the development time,
and therefore chose to run their development phases concurrently.
However, this clearly had implications for coordination. For
example, as can be seen in Figure 3, there were interdependencies
between the products produced in the various development
phases. This also led to duplication of functionality in the JSP and
CSS code.

Table 2. Contest Duration per Phase.

Phase No. contests Avg. length Phase duration

1 5 17.6 90
2 10 14.5 80
3 21 12.0 81
4 8 13.1 80
5 9 10.1 69

4.4 Quality Assurance
Much research in software engineering has focused on identifying
and eliminating errors as early as possible in the development
process, on the well established basis that errors cost
exponentially more to rectify, the later they are found in the
development cycle [11]. However, the structure of the TC
development process made it difficult to preserve this, as it shifted

!

Phase 1

Phase 2

Phase 4

Phase 5

Phase 3 (C)

Phase 3 (B)

Phase 3 (A)

Figure 3. Gantt chart of TC contests.

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

Table 3. Raised, Resolved, Outstanding and Awaiting Issues.

Issue status Number
Raised 506
- Resolved - 367
- Outstanding - 139

QA issues towards the back-end of the development process, after
coding has been completed. As the Development Manager
expressed it:

“Crowdsourcing focuses on requirements and relaxes the quality
process at the onset of the project, so now all the emphasis on
managing the quality comes at the QA cycles later in the project,
and that tends to be more expensive

The number of defects identified was quite significant. Table 3
shows the number of issues raised, resolved and outstanding at the
time of our study. While many issues were of a cosmetic nature,
and therefore fairly trivial, the sheer volume of issues required
considerable time and attention from developers within TPI.
Furthermore, as more contests were finished and software
delivered back to TPI, the rate of new issues was increasing as
well. Figure 4 shows this trend over time, and suggests a growing
pressure on TPI developers to address these issues.

There was also a problem with lack of continuity. TC developers
do not remain idle at the end of competitions, and may thus not be
free to continue with TPI development in subsequent tasks. In
fact, TPI experienced problems with bugs which had previously
been identified being re-introduced to code after it went back for
further development with TC. Partly this was due to how TC
developers used the source code control tool. This added to the
critical perception expressed by the Divisional CTO, when he
contrasted it with the investment one would be prepared to make
when using remote development teams for development, in
describing crowdsourcing as being “a fleeting relationship.”

Given that the combination of technical and specific domain
expertise was considered by TPI to be quite rare (based on
experience in recruiting developers), TPI took some initiatives to
improve the quality of crowdsourced contributions. For example,
a virtual machine with a sample core application was made
available as an image that could easily be downloaded and run.
This was used by the TC development community both in
development and as a final test or demonstrator for code they
developed. Prior to this, TC code testing was done with stubbed-
out service calls to the back-end, but there was a concern within
TPI that TC code would not necessarily run smoothly when
connected fully to the back-end. When the code for the initial
HTML5 high-level panel applications was produced by TC, there
were some quality issues, for instance, the same header was
repeated in every file. TPI took this code and further developed it

to a “Gold Standard,” at the level required by TPI. This was
delivered back to the TC community as a template for future
development. This tactic was extended to prepare sample code for
a web application that could act as a template for the TC
community. This included a parent project object model (build
script), source code compliant with all TPI code standards, unit
and integration tests, automation tests, and instructions for
deployment and setup.

4.5 Knowledge and Intellectual Property
The “fleeting relationship” mentioned earlier also has
consequences for knowledge management and IP. According to
the architect involved in the project, the lack of depth in the
relationship with contestants meant that:

“there is a limited amount of carry-over knowledge. We will get a
few contestants that will participate in multiple contests, but they
won’t build up domain knowledge in the way that an internal
person would.”
Also, given that there is no single supplier as would be the case in
a traditional outsourcing scenario, any intellectual property
relating to specifications and product knowledge is more widely
exposed simply by virtue of its being viewed by the ‘crowd’ of
potential developers. Table 4 shows the total number of
registrants, and the total number of submissions per contest type
(see Figure 1). The table shows that there were considerable
numbers of potential participants (each of whom would have
access to the contest specifications), but that the number of
submissions was significantly lower – almost 90% of those
registered for a contest did not actually submit anything to that
contest. In other words, making detailed product and specification
information available, which is necessary to achieve the benefit of
tapping into the crowd’s wisdom and creativity, seems (in this
case) not to be as fruitful as one would hope given the limited
numbers of submissions.
TPI chose a pseudonym to disguise their participation on the TC
platform. This was to obfuscate the fact that the work was for the
TPI platform as it was felt that developers from competing
organizations might be working for TC in their spare time. TPI
took advantage of the standard Competition Confidentiality
Agreement (CCA) which TC use with their development
community. TPI will not do business with certain countries, for
example, and this can be policed through the CCA which
identifies the home location of TC developers. TPI were still
concerned about the extent to which proprietary information may
be exposed in TC competitions. To address this, TPI plan to
identify the “Secret Sauce” which should not be shared without
very careful consideration. This would include the source code for
the flagship and legacy applications, libraries and binaries from
other TPI business units, performance calculation formulae,
hardware specifications and business rules (e.g., Drools).

Table 4. Total number of registrants and submissions per
contest type.

Type Registrants Submissions %Sub/Reg
Copilot 13 6 46%
Studio 34 7 21%
Architecture 90 12 13%
Assembly 476 36 8%
Test Suite 8 1 13%
UI Prototype 99 22 22%
Total 720 84 12%

0"

10"

20"

30"

40"

50"

60"

70"

1" 2" 3" 4" 5" 6" 7" 8" 9"

Figure 4. Trend of new issues raised (last 9 weeks).

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

4.6 Motivation and Remuneration
Given a potential development community of a half million
members, TC would claim to have broad and deep enough
expertise to ensure a healthy competition rate. However, TPI have
had to cancel some competitions because of a lack of participation
and there had been a number of others with just a single
contestant. The fact that TPI used a pseudonym does appear to be
significant in that well known companies do attract TC developers
more readily and TPI would certainly be a very well known
company globally. The TC pricing structure was quite complex,
and an overview of the cost so far for the Titan project is shown in
Table 5 (all numbers rounded). At the top level, there was a
monthly platform fee to TC. For TPI this was a monthly fee of
$30,000. This allowed access to the TC component catalog
containing more than 1,500 software solutions. TC estimates that
approximately 60% of client projects can be solved through
reusing components from this catalog. However, TPI were not in a
position to leverage this catalog, since a lot of their IT product
stack has already been developed, as the software development
manager explained:
“We have our technology stack built and a lot of our software is
already written for that. So the TopCoder catalog is not much use
to us. There’s no real bang for the buck for us there.”
The co-pilot who was the principal liaison between TC and TPI
typically cost $600 per contest. There was an initial specification
review before the contest begins, and this cost $50. The individual
contest pricing was also quite complex. In the case of TPI, first
prizes for contests ranged from $200 up to $2,400, depending on
the size and complexity of a contest. A second prize of 50% of the
first prize was paid to the runner up in each contest, but this prize
would only be paid if the quality rating of the submission were at
least 75 (out of 100). If this score were less than 75, the runner-up
would only receive Digital Run points (discussed below).
There was also a Reliability Bonus which was paid to the winning
submission. The calculation of this bonus is quite detailed, but
basically it can be up to 20% of the first prize, depending on the
past successful track record of the winning contestant (i.e., his/her
reliability – does a contestant actually submit after registering?).
In addition, there was a cost of 45% of the first prize to support
the TC Digital Run, an initiative whereby TC share money with
the TC development community based on the monthly contest
revenue and proportional to the number of points that TC
developers have amassed in contests. The Digital Run is an
additional mechanism to motivate potential contestants to
participate even if they assess their chance of winning to be low.
Following the contests, three reviewers from the TC community
evaluated submissions and this cost approximately $800 on
average. Finally, TC charged a 100% commission equal to the
total development costs above. Overall, the total average cost per
competition so far was approximately $6,200 (excluding the
monthly platform fee).

In comparison with traditional development in-house, the Program
Manager was of the opinion that TC development was less
effective due to the lack of domain knowledge of the crowd and
the indirect nature of the communication with developers. The
primary reason for working with TC was the need to get
development done more rapidly than would be possible with the
existing level of internal resources.

However, given the planning and schedule statistics above, it is
clear that the expectations in relation to a more rapid development
time-frame were not fully realized.

Table 5. Overview of cost to date.

5. DISCUSSION AND CONCLUSION

5.1 Discussion of Results
Crowdsourcing is an emerging topic and several benefits have
were discussed in Section 1. Research suggests that
crowdsourcing can be a viable option in a variety of situations, but
very few studies so far have focused on crowdsourcing in a
software development context.
The TopCoder crowdsourcing platform represents a significant
‘market’ of supply and demand for software development tasks.
TopCoder claims many benefits can be achieved in terms of
quality, cost, speed and flexibility [55]. However, the results of
our study suggest that these benefits are not easy or automatic to
realize. The TPI case identifies a number of significant challenges
that the company had not foreseen prior to embarking on the
crowdsourcing approach.

In relation to the basic issues of cost, time and quality, while we
do not yet have a definitive direct comparison with a similar
development project done in-house, it is certainly the case that the
TPI development staff are not convinced that the TC model offers
clear advantages in relation to cost, time and quality.
In all, 128 panels were designed, coded and tested, and although
the work was not fully completed at time of writing, the estimated
development cost paid directly to TC will be several hundred
thousand US dollars, more than TPI expected to pay. Also, while
the amount of work to be done by TC developers represented a
significant part of the whole project, the complexity of the UI
panels is arguably simple, in that it does not require significant
business domain knowledge. Yet, TPI spent significant time and
effort on writing specification documentation, much more so than
if the software was being developed internally. This TPI internal
effort has not been factored directly into the costs incurred, nor
has any of the subsequent interaction and coordination effort of
TPI personnel. The time-scale for this development work was of
considerable magnitude, as shown in Table 2 and discussed in
Section 4.3. However, it is particularly difficult to make precise
effort estimates for a crowdsourced project: it is not possible to
determine the actual effort spent by TC developers on a contest.
There is a fixed end date for contests regardless of when
contestants actually finish the work involved. Furthermore, in the
(quite common) case of multiple contestants, efforts will vary
across contestants, and some contestants may start on a
submission but not finish. Also, comparing TC development effort

Description Average per contest
A Monthly platform fee $30,000a
B Member prizes
 - First place prize $1,160
 - Second place prizeb $351
 - Digital Runc $500
 - Reliability Bonusd $176
 Review Board
 - Spec review $50
 - Competition Review board $800
 Management
 - Co-pilot fees $600
C Matching fees in B above to TC 100%
a. Per month
b. Second prize is paid only if submission rating > 75.
c. Digital Run is 45% of the first prize; does not apply to bug hunts.
d. Reliability Bonus is up to 20% depending on winner’s rating.

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

with in-house development is complicated due to varying factors,
such as the overhead imposed on TC developers to understand the
context and domain of the contest work at hand. Finally, in
relation to quality, even though the front-end development done
by the crowd was of relatively low complexity, the data presented
in Table 3 and Figure 4 above illustrate that a significant number
of issues have been raised.

An important consideration also is that TC’s formulation of the
software development process is effectively a waterfall approach,
despite widely accepted wisdom that the waterfall model is not
well suited to the rapid pace of change in modern development
contexts. Agile and iterative methods are becoming increasingly
popular in industry, including in domains where they have long
been considered unsuitable [34], suggesting that these methods
offer significant benefits over the waterfall model. The waterfall
process also has serious consequences in that quality assurance
practices are pushed to the end of the development process. While
this can partly be addressed by adding a requirement to include
unit tests, integration of the task is still done at a later stage, after
a competition has finished.

Overall, TPI are of the opinion that crowdsourcing is limited in
the areas in which it is suitable. Areas such as storyboards, GUI
design, and even icon design, worked well for TPI. These areas
seem to be quite self-contained without interdependencies.
However, when there were dependencies between deliverables,
and back and forth communication was necessary, the situation
was quite different. Crowdsourcing competitions are effectively
‘black-boxed,’ meaning that while a competition is ongoing, a
customer has limited means to communicate with TC developers.
While there can be frequent communication with contestants prior
to commencement of a contest, once it starts, communication is
through a co-pilot, who acts as a proxy and thus inserts an
additional interaction layer.

The results and insights of this case study suggest a number of
open questions that we believe need further attention.

Contestants who are not familiar with the TopCoder software
development process may not be as successful as other contestants
who have extensive experience with the process. Archak [3]
referred to this as a ‘cold-start’ effect. Similarly, crowdsourcing
customers may also experience this. The duration of TPI’s
engagement with TC has been less than a year, and some of the
challenges encountered may have been due to this lack of
experience. Thus, one significant contribution to software
engineering research would be to conduct longitudinal studies of
organizations that have used a crowdsourcing approach for
software development.

Of particular interest also would be studies that could compare a
crowdsourced project with internal development. Such studies
would need to focus on comparing key attributes including effort,
cost, quality, and thus could address whether or not crowdsourc-
ing does, in fact, deliver cheap and high-quality software in a
short time-to-market. However, as noted earlier, these constructs
need to be well operationalized to make a sound comparison.
We are aware of a few limitations of our study. It comprised a
single case study, and therefore the issue of generalizability merits
consideration. Clearly, the experiences and opinions from the
participants in our study were specific to the case at TPI, and no
statistical generalization can be drawn from this. However, the
goal of this case study was to provide an in-depth account of a
real-world case of crowdsourcing software development.
Crowdsourcing is a topic that has been studied extensively in
other domains where it appears to offer a variety of benefits. Our

case study of crowdsourcing software development, however,
suggests that there are significant challenges in a software devel-
opment context. Another issue that merits attention during
qualitative data analysis is that of ‘multiple realities,’ i.e., the
unavoidable fact that understanding of reality is based on an
individual subjective interpretation of the data, and that different
individuals may interpret the same data in different ways. We
used a number of tactics to address this. Firstly, the research
process established an audit trail consisting of the interview
transcripts and an extensive set of memos, which we revisited
regularly. Secondly, to ensure correctness of the data we
triangulated across a number of different data sources (interviews,
documentation and TC website data). Furthermore, we also
conducted ‘member checking’ by sending several earlier drafts of
this paper to key participants to elicit feedback and clarification.

5.2 Conclusion
Crowdsourcing software development is a distinct and emerging
approach to software development. Contrary to traditional out-
sourcing strategies that are characterized by contracts between
two parties – the customer and supplier – crowdsourcing
introduces a third party of unknown magnitude (sometimes very
small in fact) and diversity, namely the crowd. Rather than a
single supplier, there can be any number of contributors. This has
clear implications for task decomposition, coordination and
communication, planning and scheduling, QA, knowledge and IP,
and motivation and remuneration.

This topic has received very limited attention from the software
engineering research community. In this light, the contribution of
this paper is threefold. Firstly, this paper provides a definition of
crowdsourcing in a software development context that takes into
consideration specific characteristics of software development
tasks, as opposed to the small-grained and simple human intelli-
gence tasks found on crowdsourcing platforms such as Amazon
Mechanical Turk. Given the current lack of agreement on a
general definition, this proposed definition can help to better focus
and classify future research studies. For instance, our definition
complies with Brabham’s argument that open source is not a form
of crowdsourcing, and thus, studies of opensourcing should not be
classified as crowdsourcing studies. Secondly, based on a review
of the literature on crowdsourcing, we derived a number of key
concerns that are of particular importance in a software
development context. Further research could use this framework
to replicate the study at different organizations and different
crowdsourcing platforms. Furthermore, each of the six themes in
the framework can be used as a focus and starting point for further
research. For instance, task decomposition and coordination are
two important themes that warrant in-depth studies in their own
right. Finally, to the best of our knowledge this paper presents one
of the first in-depth industry case studies on crowdsourcing
software development. Indeed, with a few exceptions ([3, 55])
there are no in-depth studies of crowdsourcing software platforms.

6. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for useful suggestions. This
work was supported, in part, by Science Foundation Ireland grant
10/CE/I1855 to Lero—the Irish Software Engineering Research
Centre (www.lero.ie).

7. REFERENCES
[1] Ågerfalk, P.J. and Fitzgerald, B. 2008. Outsourcing to an

unknown worforce: Exploring opensourcing as a global
sourcing strategy, MIS Quarterly, 32, 2.

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

[2] AppStori. http://www.appstori.com.

[3] Archak, N. 2010. Money, Glory and Cheap Talk: Analyzing
Strategic Behavior of Contestants in Simultaneous
Crowdsourcing Contests on TopCoder.com. Proc. WWW.

[4] Aurum, A., Jeffery, R., Wohlin, C. and Handzic, M. 2003.
Managing Software Engineering Knowledge, Springer.

[5] Baddoo, N. and Hall, T. 2002. Motivators of Software
Process Improvement: an analysis of practitioners' views, J
Syst Softw, 62, 2, 85-96.

[6] Beecham, S., Baddoo, N., Hall, T., Robinson, H. and Sharp,
H. 2008. Motivation in Software Engineering: A systematic
literature review, Inform Software Tech, 50, 9-10.

[7] Begel, A., Bosch, J. and Storey, M.A. 2013. Social
Networking Meets Software Development: Perspectives
from GitHub, MSDN, Stack Exchange, and TopCoder, IEEE
Software, 30, 1.

[8] Begel, A., Herbsleb, J.D. and Storey, M.-A. 2012. The
Future of Collaborative Software Development. Proc.
Computer Supported Cooperative Work.

[9] Bjørnson, F.O. and Dingsøyr, T. 2008. Knowledge
management in software engineering: A systematic review of
studied concepts, findings and research methods used, Inform
Software Tech, 50, 11.

[10] Boehm, B. 2006. A View of 20th and 21st Century Software
Engineering. Proc. International Conference on Software
Engineering. Shanghai, China. ACM. 12-29.

[11] Boehm, B.W. 1981. Software Engineering Economics,
Pearson Education.

[12] Bonabeau, E. 2009. Decisions 2.0: The Power of Collective
Intelligence, MIT Sloan Manage Rev, 50, 2, 45-52.

[13] Boudreau, K.J., Lacetera, N. and Lakhani, K.R. 2011.
Incentives and Problem Uncertainty in Innovation Contests:
An Empirical Analysis, Management Science, 57, 5.

[14] Brabham, D.C. 2008. Crowdsourcing as a Model for Problem
Solving: An Introduction and Cases, Convergence, 14, 1.

[15] Brabham, D.C. 2012. The Myth of Amateur Crowds: A
critical discourse analysis of crowdsourcing coverage,
Information, Communication & Society, 15, 3.

[16] Brabham, D.C. 2013. Crowdsourcing, MIT Press.

[17] Brooks, F.P. 1995. The mythical man-month: essays on
software engineering, Addison-Wesley.

[18] Chanal, V. and Caron-Fasan, M.L. 2010. The Difficulties
involved in Developing Business Models open to Innovation
Communities: the Case of a Crowdsourcing Platform,
M@n@gement, 13, 4.

[19] Chandler, D. and Kapelner, A. 2013. Breaking monotony
with meaning: Motivation in crowdsourcing markets,
Journal of Economic Behavior & Organization, 90, 123-133.

[20] Dabbish, L., Farzan, R., Kraut, R. and Postmes, T. 2012.
Fresh Faces in the Crowd: Turnover, Identity, and
Commitment in Online Groups. Proc. CSCW. ACM.

[21] Desouza, K.C. and Evaristo, J.R. 2004. Managing
Knowledge in Distributed Projects, Commun. ACM, 47, 4.

[22] DiPalantino, D. and Vojnovic, M. 2009. Crowdsourcing and
all-pay auctions. Proc. 10th ACM Conf. Electronic
Commerce.

[23] Doan, A., Ramakrishnan, R. and Halevy, A.Y. 2011.
Crowdsourcing systems on the World-Wide Web, Commun.
ACM, 54, 4.

[24] Dow, S.P., Kulkarni, A., Klemmer, S.R. and Hartmann, B.
2012. Shepherding the Crowd Yields Better Work. Proc.
Computer-Supported Cooperative Work. ACM.

[25] Ebner, W., Leimeister, M., Bretschneider, U. and Krcmar, H.
2008. Leveraging the Wisdom of Crowds: Designing an IT-
supported Ideas Competition for an ERP Software Company.
Proc. 41st Hawaii International Conference System Sciences.

[26] Erickson, L.B. 2012. Leveraging the Crowd as a Source of
Innovation: Does Crowdsourcing Represent a New Model
for Product and Service Innovation? Proc. SIGMIS
Computers and People Research. ACM.

[27] Erickson, L.B., Petrick, I. and Trauth, E.M. 2012.
Organizational Uses of the Crowd: Developing a Framework
for the Study of Crowdsourcing. Proc. SIGMIS-CPR.

[28] Estellés-Arolas, E. and González-Ladrón-de-Guevara, F.
2012. Towards an Integrated Crowdsourcing Definition,
Journal of Information Science, 38, 2.

[29] Faridani, S., Hartmann, B. and Ipeirotis, P.G. 2011. What's
the Right Price? Pricing Tasks for Finishing on Time. Proc.
AAAI Workshop on Human Computation.

[30] Feller, J., Finnegan, P., Fitzgerald, B. and Hayes, J. 2008.
From Peer Production to Productization: A Study of Socially
Enabled Business Exchanges in Open Source Service
Networks, Inform Syst Res, 19, 4.

[31] Feller, J. and Fitzgerald, B. 2002. Understanding Open
Source Software Development, Pearson Education Ltd.

[32] Fitzgerald, B. 2006. The Transformation of Open Source
Software, MIS Quarterly, 30, 3.

[33] Fitzgerald, B. 2012. Software Crisis 2.0, IEEE Comput., 45.

[34] Fitzgerald, B., Stol, K., O'Sullivan, R. and O'Brien, D. 2013.
Scaling Agile Methods to Regulated Environments: An
Industry Case Study. Proc. 35th International Conference on
Software Engineering. San Francisco, CA, USA. IEEE.

[35] Greengard, S. 2011. Following the Crowd, Commun. ACM,
54, 2, 20-22.

[36] Herbsleb, J.D. and Grinter, R.E. 1999. Splitting the
Organization and Integrating the Code: Conway's Law
Revisited. Proc. 21st Int'l Conf Software Engineering.

[37] Herbsleb, J.D. and Mockus, A. 2003. An Empirical Study of
Speed and Communication in Globally Distributed Software
Development, IEEE Trans Softw Eng, 29, 6.

[38] Hetmank, L. 2013. Components and Functions of
Crowdsourcing Systems—A Systematic Literature Review.
Proc. 11th Int'l Conf. Wirtschaftsinformatik.

[39] Hoffmann, L. 2009. Crowd Control, Commun. ACM, 52, 3.

[40] Horton, J.J. and Chilton, L.B. 2010. The Labor Economics of
Paid Crowdsourcing. Proc. Conf. Electronic Commerce.

[41] Howe, J. http://www.crowdsourcing.com.
[42] Howe, J. 2006. The Rise of Crowdsourcing, Wired, 14.

[43] Howe, J. 2008. Crowdsourcing: Why the Power of the Crowd
Is Driving the Future of Business, Crown Business.

[44] Ipeirotis, P.G. 2010. Analyzing the Amazon Mechanical
Turk marketplace, XRDS, 17, 2, 16-21.

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

[45] Ipeirotis, P.G. and Paritosh, P.K. 2011. Managing
Crowdsourced Human Computation. WWW.

[46] Jouret, G. 2009. Inside Cisco's Search for the Next Big Idea,
Harvard Business Review, 87, 9, 43-45.

[47] Kaufmann, N., Schulze, T. and Veit, D. 2011. More than fun
and money. Worker Motivation in Crowdsourcing - A Study
on Mechanical Turk. Proc. 17th AMCIS.

[48] Kazman, R. and Chen, H.-M. 2009. The Metropolis Model:
A new Logic for Development of crowdsourced systems,
Commun. ACM, 52, 7.

[49] Kinnaird, P., Dabbish, L., Kiesler, S. and Faste, H. 2013. Co-
Worker Transparency in a Microtask Marketplace. Proc.
Computer Supported Coordination Work.

[50] Kittur, A. 2010. Crowdsourcing, Collaboration and
Creativity, XRDS, 17, 2.

[51] Kittur, A., Nickerson, J.V., Bernstein, M.S., Gerber, E.M.,
Shaw, A., Zimmerman, J., Lease, M. and Horton, J.J. 2013.
The Future of Crowd Work. Proc. CSCW. ACM.

[52] Kittur, A., Smus, B., Khamkar, S. and Kraut, R.E. 2011.
CrowdForge: Crowdsourcing Complex Work. Proc. ACM
Symposium on User Interface Software and Technology.

[53] Kraut, R.E. and Streeter, L.A. 1995. Coordination in
Software Development, Commun. ACM, 38, 3.

[54] Kulkarni, A., Can, M. and Hartmann, B. 2012.
Collaboratively Crowdsourcing Workflows with Turkomatic.
Proc. Computer-Supported Cooperative Work.

[55] Lakhani, K.R., Garvin, D.A. and Lonstein, E. 2010.
TopCoder (A): Developing Software through
Crowdsourcing, Harvard Business School 610-032.

[56] Lakhani, K.R. and Panetta, J.A. 2007. The Principles of
Distributed Innovation, Innovations: Technology,
Governance, Globalization, 2, 3.

[57] LaToza, T.D., Towne, W.B., van der Hoek, A. and Herbsleb,
J.D. 2013. Crowd Development. Proc. 6th CHASE
Workshop. San Francisco, CA, USA. IEEE.

[58] Malone, T.W. and Crowston, K. 1994. The Interdisciplinary
Study of Coordination, ACM Comput Surv, 26, 1.

[59] Mao, K., Yang, Y., Li, M. and Harman, M. 2013. Pricing
Crowdsourcing-Based Software Development Tasks. Proc.
35th International Conference on Software Engineering.

[60] Mason, W. and Watts, D.J. 2009. Financial Incentives and
the `Performance of Crowds'. Proc. KDD-HCOMP. ACM.

[61] Mockus, A., Fielding, R. and Herbsleb, J.D. 2000. A Case
Study of Open Source Software Development. Proc. ICSE.

[62] Musson, R., Richards, J., Fisher, D., Bird, C., Bussone, B.
and Ganguly, S. 2013. Leveraging the crowd: how 48,000
users helped improve Lync performance, IEEE Softw., 30, 4.

[63] Naparat, D. and Finnegan, P. 2013. Crowdsourcing Software
Requirements and Development: A Mechanism-based
Exploration of `Opensourcing'. Proc. 19th AMCIS.

[64] Parnas, D.L. 1972. On the criteria to be used in decomposing
systems into modules, Commmun. ACM, 15, 12.

[65] Pilz, D. and Gewald, H. 2013. Does Money Matter?
Motivational Factors for Participation in Paid- and Non-
Profit-Crowdsourcing Communities. Proc. 11th Int'l Conf.
Wirtschaftsinformatik.

[66] Raymond, E.S. 2001. The Cathedral & the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary,
O'Reilly Media.

[67] Rouse, A.C. 2010. A Preliminary Taxonomy of
Crowdsourcing. Proc. Australasian Conference on
Information Systems (ACIS).

[68] Runeson, P., Höst, M., Rainer, A. and Regnell, B. 2012.
Case Study Research in Software Engineering: Guidelines
and Examples, Wiley.

[69] Savage, N. 2012. Gaining Wisdom from Crowds, Commun.
ACM, 55, 3, 13-15.

[70] Schenk, E. and Guittard, C. 2009. Crowdsourcing: What can
be outsourced to the crowd, and why?

[71] Schenk, E. and Guittard, C. 2011. Towards a
Characterization of Crowdsourcing Practices, Journal of
Innovation Economics, 1, 7.

[72] Schwarz, A., Mehta, M., Johnson, N. and Chin, W.W. 2007.
Understanding Frameworks and Reviews: A Commentary to
Assist us in Moving Our Field Forward by Analyzing Our
Past, Database Adv Inform Syst, 38, 3.

[73] Seaman, C. 1999. Qualitative Methods in Empirical Studies
of Software Engineering, IEEE Trans Softw Eng, 24, 4.

[74] Simula, H. 2013. The Rise and Fall of Crowdsourcing? 46th
Hawaii International Conference on System Sciences.

[75] Singer, Y. and Mittal, M. 2013. Pricing Mechanisms for
Crowdsourcing Markets. Proc. WWW.

[76] Stol, K. and Fitzgerald, B. 2014. Research Protocol for a
Case Study of Crowdsourcing Software Development.
http://staff.lero.ie/stol/publications, University of Limerick.

[77] Surowiecki, J. 2005. The Wisdom of Crowds: Why the Many
Are Smarter Than the Few, Abacus.

[78] Tajedin, H. and Nevo, D. 2013. Determinants of success in
crowdsourcing software development. Proc. SIGMIS
Computer and People Research. Cincinnati, OH, USA.

[79] Tamburri, D., Lago, P. and van Vliet, H. 2013.
Organizational social structures for software engineering,
ACM Comput Surveys, 46, 1.

[80] TopCoder. http://www.topcoder.com.
[81] TopCoder. http://www.topcoder.com/whatiseoi/.
[82] TopCoder. 2010. 10 Burning Questions on Crowdsourcing:

Your starting guide to open innovation and crowdsourcing
success. http://www.topcoder.com/blog/10-burning-
questions-on-crowdsourcing-and-open-innovation.

[83] Tung, Y.-H. and Tsenga, S.-S. 2013. A novel aproach to
collaborative testing in a crowdsourcing environment, J Syst
Softw, 86, 8.

[84] uTest. http://www.utest.com.
[85] Vukovic, M. 2009. Crowdsourcing for Enterprises.

SERVICES.

[86] Wolfson, S.M. and Lease, M. 2011. Look Before You Leap:
Legal Pitfalls of Crowdsourcing. ASIST Annual Meeting.

[87] Yin, R.K. 2003. Case Study Research, 3rd ed., SAGE.

[88] Zhao, Y. and Zhu, Q. 2012. Evaluation on crowdsourcing
research: Current status and future direction, Inf Syst Front,
April.

Article Pre-Print
Please cite as: K Stol and B Fitzgerald (2014) Two's Company, Three's a Crowd: A Case Study of Crowdsourcing Software Development,

in: Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India.

