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Abstract: In this paper we study two-sample functional linear regression with

a scaling transformation of regression functions. We consider estimation of the

intercept, the slope function and the scalar parameter based on the functional

principal component analysis. We also establish the rates of convergence for the

estimator of the slope function, which is shown to be optimal in a minimax sense

under certain smoothness assumptions. We further investigate semiparametric

efficiency for the estimation of the scalar parameter and hypothesis testing. We

also extend the proposed method to sparsely and irregularly sampled functional

data and establish the consistency for the estimators of the scalar and the slope

function. We evaluate numerical performance of the proposed methods through

simulation studies and illustrate their utility via analysis of an AIDS data set.

Key words and phrases: Functional linear regression, functional principal compo-

nent analysis, hypothesis testing, minimax rate of convergence, semiparametric

comparison, semiparametric efficiency.

1. Introduction

Functional data analysis (FDA) has become increasingly more impor-
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TWO-SAMPLE FUNCTIONAL LINEAR MODELS 2

tant in the past two decades. See the monographs by Ramsay and Silverman

(2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Hsing

and Eubank (2015), the articles by Yao, Müller, and Wang (2005a,b),

Müller (2005), Hall, Müller, and Wang (2006), Li and Hsing (2010), Li,

Wang, and Carroll (2013), Cuevas (2014), Chen et al. (2017) and Wang,

Chiou, and Müller (2016), and the references therein.

This paper studies the semiparametric comparison of regression models

in FDA. Specifically speaking, consider

Y = (1− U)r(X) + Uθr(X) + ε = (1− U + Uθ)r(X) + ε, (1.1)

where U is a Bernoulli random variable with π = E(U) = P (U = 1),

θ ∈ (0,∞) is an unknown parameter, X(t) is a random function in the class

L2(I) of the square-integrable functions on a compact interval I of R1, r(·)

is a functional from L2(I) to R
1 and ε is a random error, independent of

(U,X), with mean zero and finite variance σ2. Furthermore, we assume

that U and X are independent.

Model (1.1) refers to a two-sample problem; i.e., in the first sample

(U = 0) the relationship between Y and X(t) is described by r(X) and

in the second sample (U = 1) this relationship changes to θr(X). For

independent data, Schick (1993) treated r(·) as a nonparametric function

and established semiparametric efficiency for estimating θ.
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There are many possible choices for r(·), for example, the fully nonpara-

metric form (Ferraty and Vieu, 2006), single index functional form (Chen,

Hall, and Müller, 2011). In this paper, we entertain a linear relationship

between r and X(t):

r(X) = a+

∫

I

X(t)b(t) dt

with an unknown intercept a and a square integrable slope function b(t).

As a result, we formulate our two-sample functional linear regression as

E{Y |X(t), U} = (1− U + Uθ){a+
∫

I

X(t)b(t)dt}. (1.2)

Let {(Yi, Xi, Ui), i = 1, . . . , n} be independent and identically distribut-

ed data from model (1.1). The goal is to estimate θ, a and b(t) based on

the sample. Model (1.2) is also related to the functional mixture regression

(FMR) of Yao, Fu, and Lee (2011), which is an extension of classical finite

mixture regression models (DeSarbo and Cron, 1988). However, they are

different, since the group label for each observation of FMR is unknown,

while it is known in (1.2). If θ ≡ 1, (1.2) reduces to a functional linear mod-

el: Y = a+
∫
I
X(t)b(t) dt+ ε. This model has been investigated intensively

in the literature. The focus is generally on the estimation of a and b(t).

See, for example, Cardot, Ferraty, and Sarda (2003), Ramsay and Silver-

man (2005), Cai and Hall (2006), Hall and Horowitz (2007), Li and Hsing
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(2007), Crambes, Kneip, and Sarda (2009), Yuan and Cai (2010), and Cai

and Yuan (2012). The most frequently used approach for estimating b(t)

was developed on the basis of functional principal components analysis (F-

PCA) or reproducing kernel Hilbert space (RKHS) methods. Cai and Hall

(2006) and Hall and Horowitz (2007) studied the prediction and estimation

of the slope function b(t) based on the FPCA method. Yuan and Cai (2010)

and Cai and Yuan (2012) investigated the estimation of the slope function

and adaptive prediction based on the RKHS method, while Cardot, Fer-

raty, and Sarda (2003) and Li and Hsing (2007) considered approximating

b(t) and X(t) by B-spline and Fourier approximation, respectively. They

established the rates of convergence for the resulting estimators or predic-

tions under various assumptions. More recently, Lei (2014) studied global

testing for b(t) based on the FPCA approach, and Shang and Cheng (2015)

studied statistical inference for (generalized) functional linear models under

the RKHS framework.

In this paper, we adopt the FPCA method to estimate the unknown

slope function b(t). FPCA is essentially a dimension reduction procedure

that has been well examined in the literature. See, for example, James,

Hastie, and Sugar (2000), Yao, Müller, and Wang (2005a), Hall, Müller,

and Wang (2006), and Li and Hsing (2010). We modify the method pro-
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posed by He, Müller, and Wang (2000) and Yao, Müller, and Wang (2005b)

to fit our setting. First, we use the population least squares to obtain basis

representations of θ, a and b(t). Then, we replace the unknown quantities

by their empirical versions with finite terms. We derive the optimal rate of

convergence for the FPCA-based estimator of the slope function b(t) under

certain smoothness assumptions, establish the consistency and asymptotic

normality for the estimator of θ, and show that this naive FPCA-based esti-

mator is not efficient in the sense of Bickel et al. (1998). We then construct

an asymptotically efficient estimator of θ and propose a test statistic for θ.

In practice Xi’s may be sparsely observed at a set of discrete points with

noise (Yao, Müller, and Wang, 2005a,b; Li and Hsing, 2010; Zhang and

Wang, 2016). We further extend the FPCA-based estimation method to

sparsely and irregularly sampled functional data and establish asymptotic

consistency properties for the resulting estimators.

The rest of the paper is organized as follows. Section 2 discusses the

identifiability, derives the estimators of θ, a and b(t), and investigates the

asymptotic properties for the proposed estimators, such as consistency and

asymptotic normality for the estimator of the primary parameter θ and the

rates of convergence and optimality for the estimator of the slope function

b(t). Section 3 derives the efficient influence function for estimating θ, and
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constructs an efficient estimator. We propose a testing procedure for θ

in Section 4. Section 5 extends the proposed estimator to sparsely and

irregularly sampled functional data. Section 6 presents simulation studies

for evaluating the finite-sample performance of the proposed procedures.

Section 7 analyzes a dataset from an AIDS study. All proofs are relegated

to the Supplementary Materials.

2. Identifiability and Estimation

In this section, we first explore the identifiability issue for the model (1.2).

Then we use the population least squares to obtain basis representations of

θ, a and b(t) (He, Müller, and Wang, 2000; Yao, Müller, and Wang, 2005b).

The proposed estimators are obtained by replacing the unknown quantities

in the representations with their empirical versions. In what follows, we

write
∫
pq for

∫
I
p(t)q(t) dt.

2.1 Model Identifiability

First, we show that the functional model (1.1) is identifiable under mild

conditions on the distribution of X. Let the covariance function of X(·)

be K(s, t) = Cov{X(s), X(t)}. Its corresponding covariance operator K :

L2(I) → L2(I), is defined by the mapping (Kf)(s) =
∫
I
K(s, t)f(t) dt for
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any f ∈ L2(I). If K is continuous and square integrable, we have the

spectral decomposition from Mercer’s theorem (Hsing and Eubank, 2015,

pp 120): K(s, t) =
∑∞

j=1 λjφj(s)φj(t), where λ1 ≥ λ2 ≥ · · · ≥ 0 are the

eigenvalues and φ1, φ2, . . . are the orthonormal eigenfunctions of the oper-

ator K. The φj’s are also known as the functional principal components.

The operator K is of full rank in L2(I) (Hall and Hooker, 2016) in the sense

that all λ′js 6= 0 and φ1, φ2, . . . are complete in L2(I).

Proposition 1. Suppose a 6= 0 or b(t) 6= 0 almost everywhere on I. If

there exist an alternative model intercept a1, a slope function b1(t) and a

scalar parameter θ1, such that

P

{
(1− U + Uθ)(a+

∫
Xb) = (1− U + Uθ1)(a1 +

∫
Xb1)

}
= 1, (2.3)

then a = a1, θ = θ1 and b(t) = b1(t) for almost all t ∈ I.

Throughout this paper, we assume that K is of full rank and a 6= 0 or

b(t) 6= 0 almost everywhere on I.

2.2 Population Least Squares

Let Ξ = (0,+∞)× R× L2(I) and

S(ϑ, ν, ξ) = E

{
Y − (1− U + Uϑ)

(
ν +

∫

I

X(t)ξ(t) dt

)}2

.
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It follows from the proof of Proposition 1 that θ, a and b(t) are the unique

minimum of S(ϑ, ν, ξ) over (ϑ, ν, ξ) ∈ Ξ, that is

(θ, a, b) = arg min
(ϑ,ν,ξ)∈Ξ

S(ϑ, ν, ξ).

Recall that U and X are independent. It is clear that

a =
(1− π)µ0 + πθµ1

1− π + πθ2
−

∫

I

µX(t)b(t) dt, (2.4)

where µj = E(Y |U = j), j = 0, 1 and µX(t) = E{X(t)}. It is easy to verify

that µ1 = θµ0. Consequently, finding ϑ, ν and ξ(·) to minimize S(ϑ, ν, ξ) is

equivalent to finding ϑ and ξ(·) to minimize

E

[
Y − 1− U + Uϑ

1− π + πϑ2
{(1− π)µ0 + πϑµ1}

−(1− U + Uϑ)

∫

I

{X(t)− µX(t)}ξ(t) dt
]2
. (2.5)

Define two cross-covariance functions:

g(t) = E{(Y − µY )(X(t)− µX(t))|U = 1},

h(t) = E{(Y − µY )(X(t)− µX(t))|U = 0},

where µY = E(Y ). Then g(t) = θh(t) for all t ∈ I.

Moreover, if we expand b(t) =
∑∞

j=1 bjφj(t), g(t) =
∑∞

j=1 gjφj(t) and

h(t) =
∑∞

j=1 hjφj(t), with bj =
∫
bφj, gj =

∫
gφj and hj =

∫
hφj, then by

minimizing the objective function (2.5) subject to ϑ and ξ(·), we can get

bj = λ−1
j

(1− π)hj + πθgj
1− π + πθ2

, (2.6)
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and

θ =

∑∞

j=1 λ
−1
j g2j + µ2

1∑∞

j=1 λ
−1
j gjhj + µ0µ1

. (2.7)

Furthermore
∑∞

j=1 λ
−1
j h2j = E{

∫
(X−µX)b}2 ≤

∫
E(X−µX)

2
∫
b2 by using

the Cauchy-Schwarz inequality. Recall that
∫
E(X2) <∞ and gj = θhj and

the assumption that b(t) is square-integrable, then
∑∞

j=1 λ
−1
j g2j ,

∑∞

j=1 λ
−1
j gjhj

and
∑∞

j=1 λ
−1
j h2j are all convergent. Hence the right-hand side of (2.7) is

well-defined.

2.3 Estimation

Next, we describe the empirical versions of the basis representations of θ, a

and b(t). The conventional estimator K̂ of K is defined as

K̂(s, t) =
1

n

n∑

i=1

{Xi(s)− X̄(s)}{Xi(t)− X̄(t)},

where X̄ = n−1
∑n

i=1Xi. Mercer’s theorem implies the spectral decompo-

sition of the covariance functions K̂ as K̂(s, t) =
∑∞

j=1 λ̂jφ̂j(s)φ̂j(t), where

λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 are eigenvalues and φ̂1, φ̂2, . . . are the corresponding

orthonormal eigenfunctions. Notice that λ̂j vanish for j ≥ n + 1, so the

functions φ̂n+1, φ̂n+2, . . . may be chosen arbitrarily.
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Define

ĝ(t) =
1

nπ̂

n∑

i=1

YiUi{Xi(t)− X̄(t)},

ĥ(t) =
1

n(1− π̂)

n∑

i=1

Yi(1− Ui){Xi(t)− X̄(t)},

where π̂ = n−1
∑n

i=1 Ui. Note that E[Y U{X(t) − µX(t)}] = πg(t). There-

fore, we can treat ĝ(t) as an estimator of g(t). Similarly, ĥ(t) is an es-

timator of h(t). Note that we can represent ĝ(t) =
∑∞

j=1 ĝjφ̂j(t) and

ĥ(t) =
∑∞

j=1 ĥjφ̂j(t) with ĝj =
∫
ĝφ̂j and ĥj =

∫
ĥφ̂j.

(2.7) suggests an estimator of θ:

θ̂ =

∑mn

j=1 λ̂
−1
j ĝ2j + µ̂2

1∑mn

j=1 λ̂
−1
j ĝjĥj + µ̂0µ̂1

, (2.8)

where µ̂0 = {n(1 − π̂)}−1
∑n

j=1 Yj(1 − Uj) and µ̂1 = (nπ̂)−1
∑n

j=1 YjUj are

the sample average of µ0 and µ1, respectively, while mn is a positive integer

less than n. Assumptions on mn will be imposed later. In practice, mn can

be chosen by cross-validation.

(2.6) motivates us an estimator of b(t):

b̂(t) =
mn∑

j=1

b̂jφ̂j(t), where b̂j =
(1− π̂)ĥj + π̂θ̂ĝj

λ̂j(1− π̂ + π̂θ̂2)
. (2.9)

Finally, (2.4) suggests an estimator of a:

â =
(1− π̂)µ̂0 + π̂θ̂µ̂1

1− π̂ + π̂θ̂2
−

∫

I

X̄(t)̂b(t) dt. (2.10)
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2.4 Asymptotic Properties11

2.4 Asymptotic Properties

We now derive the asymptotic normality for the estimator θ̂ and the rate

of convergence for the estimator b̂(t) under the L2-norm, and show that the

rate of convergence is optimal in the minimax sense.

The Karhunen-Loève expansion of the random function X(t) is given by

X(t) = µX(t)+
∑∞

j=1 ξjφj(t), where the random variables ξj =
∫
(X−µX)φj

are uncorrelated random variables with mean zero and variance E(ξ2j ) = λj,

known as functional principal component scores. Let C > 1 be a constant

large enough. We make the assumptions.

(A1) X(t) has finite fourth moment in the sense that
∫
I
E{X4(t)}dt <∞;

E(ξ4j ) ≤ Cλ2j for all j ≥ 1.

(A2) C−1j−α ≤ λj ≤ Cj−α and λj − λj+1 ≥ C−1j−α−1 for some α > 1 and

all j ≥ 1.

(A3) |bj| ≤ Cj−β for some β > α/2 + 1 and all j ≥ 1.

(A4) mn → ∞ and m2α+2
n /n→ 0 as n→ ∞.

Assumptions (A1)–(A3) are standard conditions in the literature of

functional linear regression if the FPCA approach is used. See, e.g. Cai

and Hall (2006) and Hall and Horowitz (2007). In Assumption (A2), α
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measures the smoothness of the covariance function K, and also impacts

on the rate of convergence in estimating the slope function b(t) (Theorem 2

below). The second part of Assumption (A2) requires that the space among

λj are not too small to ensure that each individual φj is identifiable. As-

sumption (A3) implicates that b(t) is sufficiently smooth given β > α/2+1.

See Hall and Horowitz (2007) for detailed discussions on these assumptions.

Assumption (A4) is a technical condition for proving Theorems below. The

same assumption has been made by Imaizumi and Kato (2018) for function-

al linear regression with functional responses. Note that if mn ≍ n1/(α+2β),

it is easy to verify that Assumption (A4) holds, where for two positive se-

quences rn and sn, rn ≍ sn means that rn/sn is bounded away from 0 and

∞ as n→ ∞.

Theorem 1. Under Assumptions (A1)–(A4), θ̂ is a consistent estimator

of θ. Furthermore, we have

√
n(θ̂ − θ) = n−1/2

n∑

i=1

ψ(θ;Yi, Xi, Ui) + op(1)

d−−→ N

(
0,
u4θ

2 + σ2u2(1− π + πθ2)

π(1− π)u22

)
,

where

ψ(θ;Y,X, U) =

(
U

π
− 1− U

1− π

)
r2(X)

u2
θ +

(
U

π
− θ

1− U

1− π

)
r(X)

u2
ε
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2.4 Asymptotic Properties13

is the influence function of θ and uk = E{r(X)}k = E
(
a +

∫
Xb

)k
for

k = 2, 4.

Remark 1. Assumption (A1) ensures that u2 and u4 are finite. The result

of Theorem 1 implies that when π gets close to 0 or 1, the asymptotic

variance of θ̂ can be very large. So the performance of the estimator θ̂ may

be poor when the sample size of one group is too small compared to that

of another one.

Next, we establish the asymptotic property for b̂(t). Let F = F(C, α, β)

denote the set of all distributions F of (Y,X, U) compatible with Assump-

tions (A1)–(A3) for given values of C, α and β. Then, following Theorem

1 of Hall and Horowitz (2007), we obtain the same rate of convergence of

b̂(t) as Hall and Horowitz (2007) did.

Theorem 2. Suppose that Assumptions (A1)–(A3) are satisfied. Take

mn ≍ n1/(α+2β). Then, we have

lim
M→∞

lim sup
n→∞

sup
F∈F

PF

[∫

I

{b̂(t)− b(t)}2 dt > Mn−(2β−1)/(α+2β)

]
= 0. (2.11)

Furthermore,

lim inf
n→∞

n(2β−1)/(α+2β) inf
b̄
sup
F∈F

EF

∫

I

{b̄(t)− b(t)}2 dt > 0, (2.12)

where inf b̄ is taken over all possible estimators b̄.
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(2.12) shows that the minimax lower bound of the convergence rate

for estimating b(t) is n−(2β−1)/(α+2β) and (2.11) indicates that this rate is

achieved with mn ≍ n1/(α+2β). Therefore, b̂(t) with mn ≍ n1/(α+2β) is a

rate-optimal estimator and n−(2β−1)/(α+2β) is the minimax optimal rate of

convergence under the L2-risk, which is determined by the smoothness of

the slope function and the decay rate of the eigenvalues of the covariance

function.

3. Semiparametric Efficiency

The estimator θ̂ of the parameter θ proposed in Section 2 was actually

derived on a basis of the expression gj = θhj and µ1 = θµ0. This hints

us that there are many potential estimators of θ, for example, ĝ1/ĥ1 or

(ĝ1 + 2ĝ2)/(ĥ1 + 2ĥ2). A natural question raised here is whether θ̂ is opti-

mal among all regular estimators of θ. We now investigate semiparametric

efficiency for the semiparametric model (1.1). We will demonstrate that θ̂

is not semiparametrically efficient even when ε is normally distributed, and

derive the efficient score and propose an efficient estimator based on θ̂ when

ε is normally distributed.

To achieve this goal, we first derive the efficient score and information

bound. Similar derivation for general semiparametric models for indepen-
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dent data refers to Severini and Wong (1992); Bickel et al. (1998); Brown

and Newey (1998).

Suppose ε ∼ N(0, σ2). We show in Section S5 of the Supplementary

Materials that for model (1.2), the efficient score for θ is

l̇∗θ =
U(1− π)− (1− U)πθ

(1− π + πθ2)σ2
r(X)ε. (3.13)

Then the semiparametric information bound for θ is

I(θ) = E(l̇∗2θ ) =
π(1− π)

(1− π + πθ2)σ2
u2. (3.14)

This means that the lower bound on the asymptotic variance of regular

estimators of θ is (1− π + πθ2)σ2/{π(1− π)u2}. Theorem 1 indicates that

θ̂ can not achieve this bound, and θ̂ is not semiparametrically efficient even

if ε is normally distributed.

Next, we construct a more efficient estimator of θ than θ̂ using θ̂ as

a preliminary estimator, and demonstrate that the resultant estimator is

semiparametrically efficient when ε follows the normal distribution. On a

basis of Bickel et al. (1998), the efficient influence function for θ is given by

ψ∗(θ;Y,X, U) = I−1(θ)l̇∗θ =

(
U

π
− θ

1− U

1− π

)
r(X)

u2
ε.

Thus, we construct the estimator of θ:

θ̂∗ = θ̂ +
1

n

n∑

i=1

(
Ui

π̂
− θ̂

1− Ui

1− π̂

)
r̂(Xi)

û2
ε̂i, (3.15)
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where r̂(Xi) = â+
∫
I
Xi(t)̂b(t) dt, û2 = n−1

∑n
i=1 r̂

2(Xi) and ε̂i = Yi − (1−

Ui+Uiθ̂)r̂(Xi). θ̂
∗ is derived as a one-step Newton-Raphson approximation

essentially.

Theorem 3. Under the assumptions of Theorem 2, the estimator θ̂∗ is

asymptotically normal, i.e.,

√
n(θ̂∗ − θ) = n−1/2

n∑

i=1

ψ∗(θ;Yi, Xi, Ui) + op(1)
d−−→ N(0, I−1(θ)).

Furthermore, when ε follows the normal distribution, θ̂∗ is semiparametri-

cally efficient.

Remark 2. Note that when the density function of ε is known but not

normal or unknown, θ̂∗ is not semiparametrically efficient. Schick (1993)

constructed an efficient estimator for θ in model(1.1) using a discretized

root-n preliminary estimator when the error density function is unknown.

It is also of interest to derive such an efficient estimator of θ in model (1.2)

if the error density function is unknown. We leave this as a future topic.

Once the more efficient estimator θ̂∗ is available, we can update the

estimators of a and b(t) as follows.

b̂∗(t) =
mn∑

j=1

b̂∗j φ̂j(t) with b̂∗j = λ̂−1
j

(1− π̂)ĥj + π̂θ̂∗ĝj

1− π̂ + π̂θ̂∗2
,

â∗ =
(1− π̂)µ̂0 + π̂θ̂∗µ̂1

1− π̂ + π̂θ̂∗2
−

∫

I

X̄(t)̂b∗(t) dt.

Statistica Sinica: Newly accepted Paper 

(accepted version subject to English editing)



17

From the proof of Theorem 2 in the Supplementary Materials, b̂∗(t) with

mn ≍ n1/(α+2β) is also a rate-optimal estimator. Theoretically, b̂(t) and b̂∗

have the same rate of convergence, but we will see that b̂∗ has a better finite

sample performance in Section 6.

4. Hypothesis Testing

The scalar parameter θ is sometimes of primary interest. For example,

θ = 1 means that the two curves of two groups are identical and indicates

that the two corresponding treatments have similar effects. So, we may be

interested in testing θ = 1. In general, we can test

H0 : θ = θ0 versus H1 : θ 6= θ0.

Theorem 2 implies that {nI(θ)}1/2(θ̂∗ − θ) → N(0, 1) in distribution. This

result can be used to derive a test statistic after we estimate the information

bound I(θ) by substituting all unknown quantities with their estimates. We

estimate I(θ) by Î(θ):

Î(θ) =
π̂(1− π̂)

(1− π̂ + π̂θ̂∗2)σ̂∗2
û∗2,

where

û∗2 =
1

n

n∑

i=1

{
â∗ +

∫

I

Xi(t)̂b
∗(t) dt

}2

and σ̂∗2 =
1

n

n∑

i=1

Y 2
i −(1−π̂+π̂θ̂∗2)û∗2.
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From the proof of Lemma 5 in Section S6 of the Supplementary Materials,

we can also prove that û∗2 converges to u2 in probability. By Theorem 3, it

is easy to verify that Î(θ) is a consistent estimator of I(θ). Consequently,

we propose a test statistic:

T ∗
n = {nÎ(θ)}1/2(θ̂∗ − θ0).

This statistic is asymptotically normal under H0 by using the Slutsky the-

orem. This suggests rejecting H0 when |T ∗
n | is larger than z1−τ/2, where zτ

is the τ -th quantile of the standard normal distribution. The procedure is

equivalent to the Wald-type test.

5. Extension to Sparse and Irregular Data

The methodological and theoretical development in the previous sections

was done on a basis of the assumption that predictor trajectory X(t) is

fully observed without noise, which may not be true in practice. In this

section, we assume that Xi(t) can only be realized at some discrete set of

sampling points with additional measurement errors; i.e., we observe data

Wij = Xi(Tij) + ǫij, j = 1, . . . , Ni, (5.16)

where ǫij’s are i.i.d. measurement errors with mean zero and finite vari-

ance σ2
ǫ , and each Ni ≥ 2. Assume that the Xi’s, Tij’s, and ǫij’s are all
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independent.

Most existing literature has classified functional data into sparse and

dense according to the number of observations within each curve; see Li

and Hsing (2010). For dense functional data, we can smooth each individ-

ual curve first to construct the curve X̂i from the data Di = {(Tij,Wij) :

1 ≤ j ≤ Ni} (Ramsay and Silverman, 2005). It has been shown by Hall,

Müller, and Wang (2006) that when the observations are dense enough, the

smoothing errors are asymptotically negligible. Therefore, the methodol-

ogy developed in the previous sections would be carried out as if X̂i were

the true curve. For sparse functional data, however, such a pre-smoothing

method is inadequate.

The proposed estimation procedure in Section 2 can be extended to the

case of sparse and irregular designs. A key step is to estimate µX(t), K(s, t)

and g(t), h(t), based on sparsely observed longitudinal dataD = {(Tij,Wij) :

1 ≤ i ≤ n, 1 ≤ j ≤ Ni}. We adapt the idea of pooling sparse longitudinal

data across subjects and apply the local linear smoother to the resulting

scatter plots (Yao, Müller, and Wang, 2005a,b; Hall, Müller, and Wang,

2006; Li and Hsing, 2010; Zhang and Wang, 2016). Let κ(·) be a univari-

ate kernel function. Then the mean function µX , covariance function K,

and cross-covariance functions f, g are estimated as follows. By an abuse
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of notation, we use c0 and c1 for local linear regression in estimating these

functions in this section.

Step 1 The local linear estimator of the mean function µX(t) is µ̃X(t) = ĉ0,

where

(ĉ0, ĉ1) = argmin
c0,c1

n∑

i=1

Ni∑

j=1

κ

(
Tij − t

dµ

)
{Wij − c0 − c1(Tij − t)}2

with a bandwidth dµ.

Step 2 Let Gi(Tij, Til) = {Wij − µ̃X(Tij)}{Wil − µ̃X(Til)} for 1 ≤ j, l ≤

Ni. The local linear estimator of the covariance function K(s, t) is

K̃(s, t) = ĉ0, where

(ĉ0, ĉ1, ĉ2) = arg min
c0,c1,c2

n∑

i=1

∑

1≤j 6=l≤Ni

κ

(
Tij − s

dK

)
κ

(
Til − t

dK

)

× {Gi(Tij, Til)− c0 − c1(Tij − s)− c2(Til − t)}2

with a bandwidth dK .

Step 3 Let Ci(Tij) = Yi{Wij − µ̃X(Tij)} for 1 ≤ j ≤ Ni. The local linear

estimators of the cross-covariance functions g(t) and h(t) are g̃(t) =

ĉ0/π̂ and h̃(t) = c̃0/(1− π̂), respectively, where

(ĉ0, ĉ1) = argmin
c0,c1

n∑

i=1

Ni∑

j=1

κ

(
Tij − t

dg

)
{Ci(Tij)Ui − c0 − c1(Tij − t)}2,

(c̃0, c̃1) = argmin
c0,c1

n∑

i=1

Ni∑

j=1

κ

(
Tij − t

dh

)
{Ci(Tij)(1− Ui)− c0 − c1(Tij − t)}2
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with bandwidths dg and dh.

Bandwidths dµ, dK , dg and dh for the above smoothing steps are selected

by leave-one-curve-out cross-validation or generalized cross-validation. We

denote the estimators of λj and φj(t) by λ̃j and φ̃j(t), respectively, which

can be calculated from an eigenvalue decomposition of K̃(·, ·) by discretiza-

tion and matrix spectral decomposition (Yao, Müller, and Wang, 2005a).

Therefore, motivated by population representations in Section 2, θ, a, and

b(t) are estimated as follows.

θ̃ =

∑mn

j=1 λ̃
−1
j g̃2j + µ̂2

1∑mn

j=1 λ̃
−1
j g̃jh̃j + µ̂0µ̂1

, and b̃(t) =
mn∑

j=1

b̃jφ̃j(t)

with

b̃j = λ̃−1
j

(1− π̂)h̃j + π̂θ̃g̃j

1− π̂ + π̂θ̃2
, and ã =

(1− π̂)µ̂0 + π̂θ̃µ̂1

1− π̂ + π̂θ̃2
−

∫

I

µ̃X(t)̃b(t) dt,

where f̃j =
∫
I
f̃(t)φ̃j(t) dt and g̃j =

∫
I
g̃(t)φ̃j(t) dt.

We establish consistency of the proposed estimators for sparse and ir-

regular functional data. Let ρn1 = d2g + (ndg)
−1/2, ρn2 = d2h + (ndh)

−1/2 and

ρn3 = d2K + (nd2K)
−1/2. We make the following assumptions for Theorem 4.

(B1) κ(·) is a symmetric probability density function on [−1, 1] and is Lip-

schitz continuous: There exists 0 < L < ∞ such that |κ(s)− κ(t)| ≤

L|s− t| for any s, t ∈ [0, 1].
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(B2) Tij’s are i.i.d. copies of a random variable T defined on I with density

function ϕT (·) and there exists some constants mT > 0 and MT <∞

such that mT ≤ ϕT (t) ≤ MT for all t ∈ I. Furthermore, the second

derivative of ϕT (·) is bounded on I.

(B3) The second derivatives of µX(·), g(·) and h(·) are bounded on I; All

second-order partial derivatives of K(s, t) are bounded on I2.

(B4) dµ → 0 and log(n)/(ndµ) → 0.

(B5) dK → 0 and log(n)/(nd2K) → 0; supt∈I E|X(t) − µX(t)|4 < ∞ and

E|ǫij|4 <∞.

(B6) dg → 0 and log(n)/(ndg) → 0; dh → 0 and log(n)/(ndh) → 0.

(B7) mn → ∞, m
α+1/2
n ρn1 → 0, m

α+1/2
n ρn2 → 0 and m

2α+3/2
n ρn3 → 0 as

n→ ∞.

Assumptions (B1)–(B5) are adapted from Zhang and Wang (2016). As-

sumptions (B4) and (B5) are special cases of (C1b)–(C3b) and (D1b)–(D3b)

in Zhang and Wang (2016) for sparse functional data, respectively. As-

sumption (B6) is similar to (B4) and is used to establish the L2 rates of

convergence of g̃(t) and h̃(t). Assumption (B7) is a technique condition for

proving Theorem 4.
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Theorem 4. Suppose that Assumptions (A2)–(A3) and (B1)–(B7) hold.

For sparse data: max1≤i≤nNi ≤ N0 <∞, θ̃ is consistent and

∫

I

{b̃(t)− b(t)}2 dt p−→ 0.

Remark 3. Whether θ̃ remains root-n consistency for sparse data and what

is the rate of convergence of b̃(t) are not clear. In addition, the impact of

Ni on the asymptotic properties of θ̃ and b̃(t) is unknown. These topics

warrant future work.

6. Simulation Studies

We conduct three Monte Carlo simulation studies to evaluate the numerical

performance of the proposed estimation and test procedures. In Section 6.1,

we examine the finite sample performance of θ̂, θ̂∗ and b̂(·), b̂∗(·) for differ-

ent sample sizes, variances of the error, and the smoothness of covariance

function K. In Section 6.2, we assess the type I error rate and power of the

statistic T ∗
n . In Section S1 of the Supplemental Material, we examine the

finite sample performance of θ̃ and b̃(·).

6.1 Estimation

For r(X) = a+
∫
I
X(t)b(t) dt, we adopt a design similar to that of Hall and

Horowitz (2007) and Yuan and Cai (2010); that is, I = [0, 1], a = 0, and
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b(t) is given by

b(t) = 0.3φ1(t) +
50∑

k=2

4(−1)k+1k−2φk(t),

where φ1(t) = 1 and φk+1(t) = 21/2 cos(kπt) for k ≥ 1. The random function

X(t) was generated asX(t) =
∑50

k=1 γkZkφk(t), where Zk were independent-

ly sampled from the uniform distribution on [−31/2, 31/2]. It is clear that

the eigenvalues of the covariance function of X(t) are γ2k . There are two

sets of the γk, “well-spaced” and “closely spaced” eigenvalues, used in Hall

and Horowitz (2007) and Yuan and Cai (2010). We only consider the “well-

spaced” eigenvalues, in that γk = (−1)k+1k−α/2 with α = 1.1, 1.5, 2, 2.5.

Let θ = 1.5 and U follow the binomial distribution with a success

probability π = 0.6. The error ε follows the normal N(0, σ2), where σ =

0.5 or 1.0. In addition, X(t), U , and ε are independently. We consider

n = 200, 350, 500 and 800.

For each configuration, we repeated Q = 1000 times, and chose mn by

10-fold cross-validation. Table 1 presents the averages and standard devia-

tions of the estimated θ̂ and θ̂∗. For each combination of α, σ, the average

of θ̂ gets closer to the true value and the standard deviation decreases with

increasing n. Comparing the results of θ̂ with θ̂∗, θ̂∗ has a smaller standard

deviation than θ̂. This observation concurs that θ̂∗ is more efficient than θ̂.

We use the mean integrated squared error (MISE) to evaluate the per-
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Table 1: The results for simulation study (estimation). Average and stan-

dard deviation (in parentheses) of estimators (Est) θ̂ and θ̂∗ given θ = 1.5.
Est σ n α = 1.1 α = 1.5 α = 2.0 α = 2.5

θ̂

0.5 200 1.582(0.306) 1.582(0.317) 1.557(0.321) 1.555(0.326)
350 1.546(0.221) 1.554(0.228) 1.557(0.238) 1.558(0.254)
500 1.526(0.178) 1.531(0.186) 1.531(0.197) 1.533(0.202)
800 1.517(0.147) 1.522(0.153) 1.524(0.159) 1.527(0.162)

1.0 200 1.633(0.399) 1.649(0.464) 1.621(0.504) 1.653(0.610)
350 1.573(0.289) 1.572(0.298) 1.581(0.330) 1.600(0.393)
500 1.548(0.236) 1.561(0.264) 1.567(0.282) 1.562(0.291)
800 1.525(0.175) 1.530(0.195) 1.548(0.212) 1.542(0.229)

θ̂∗

0.5 200 1.474(0.131) 1.471(0.140) 1.471(0.162) 1.493(0.192)
350 1.482(0.095) 1.487(0.102) 1.486(0.121) 1.485(0.135)
500 1.486(0.079) 1.490(0.085) 1.497(0.104) 1.499(0.115)
800 1.492(0.064) 1.495(0.071) 1.496(0.081) 1.498(0.090)

1.0 200 1.498(0.265) 1.499(0.305) 1.543(0.397) 1.518(0.442)
350 1.508(0.196) 1.505(0.216) 1.510(0.256) 1.523(0.300)
500 1.499(0.162) 1.509(0.192) 1.510(0.207) 1.513(0.224)
800 1.496(0.117) 1.496(0.137) 1.511(0.161) 1.501(0.182)

formance of the estimator b̂(t):

MISE(̂b(t)) = Q−1

Q∑

q=1

∫ 1

0

{b̂(t)[q] − b(t)}2 dt,

where {b̂(t)[q], q = 1, . . . , Q} are estimators of b(t) obtained from the Q =

1000 datasets. MISE(̂b∗) is defined analogously. The MISE and associated

standard deviation of the estimates b̂(t) and b̂∗(t) are displayed in Table

2. For each combination of α and σ, MISE and the standard deviation

decrease as n increases. MISE of b̂∗(t) is consistently smaller than that of

b̂(t), and the MISE increases with σ for given n and α. MISE of b̂∗(t) or
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b̂(t) also shows an increasing trend with α for given n and σ. Given σ,

the standard derivation of MISE of b̂∗(t) or b̂(t) seems stable with α when

n = 800, but increases with α when n is less than 800. It is interesting that

the standard deviation of MISE of b̂∗(t) is consistently larger than that of

b̂(t).

We also compare the proposed method with the FMR method (Yao,

Fu, and Lee, 2011) under the current simulation setting, where the number

of groups is 2 for FMR. Because FMR is a nonparametric model, we can

only compare the performance of the estimators of b(t). Let b̂FMR(t) be the

FMR estimator of b(t) proposed by Yao, Fu, and Lee (2011). The MISE and

associated standard deviation of b̂FMR(t) are displayed in Table 2. For each

configuration, MISE and the standard deviation of b̂FMR(t) are consistently

larger than those of b̂(t) and b̂∗(t). This may indicate that the proposed

estimators outperform the competitor b̂FMR(t).

6.2 Testing

We examine the finite-sample performance of the statistic T ∗
n given in Sec-

tion 4, and use the same setting for r(X) and U as in Subsection 6.1 but

let θ = 1 and α = 1.1. Consider the hypothesis:

H0 : θ = 1 versus H1 : θ = c,
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Table 2: The results for simulation study (estimation). MISE of the es-

timated slope functions b̂(t), b̂∗ and b̂FMR. The corresponding standard

deviations are given in the parentheses.
σ n α = 1.1 α = 1.5 α = 2.0 α = 2.5

b̂(t)

0.5 200 0.126(0.078) 0.103(0.061) 0.161(0.059) 0.345(0.074)
350 0.095(0.058) 0.080(0.044) 0.078(0.038) 0.085(0.042)
500 0.076(0.045) 0.067(0.034) 0.136(0.034) 0.136(0.027)
800 0.065(0.035) 0.060(0.026) 0.058(0.022) 0.061(0.021)

1.0 200 0.164(0.105) 0.155(0.099) 0.221(0.111) 0.247(0.134)
350 0.184(0.084) 0.214(0.098) 0.177(0.063) 0.195(0.078)
500 0.093(0.052) 0.089(0.050) 0.099(0.053) 0.167(0.051)
800 0.074(0.039) 0.071(0.033) 0.078(0.035) 0.095(0.048)

b̂∗

0.5 200 0.115(0.076) 0.092(0.058) 0.151(0.053) 0.337(0.069)
350 0.088(0.056) 0.073(0.042) 0.071(0.035) 0.077(0.039)
500 0.072(0.044) 0.062(0.032) 0.131(0.031) 0.132(0.025)
800 0.062(0.035) 0.057(0.025) 0.055(0.020) 0.058(0.020)

1.0 200 0.157(0.103) 0.145(0.094) 0.215(0.145) 0.242(0.135)
350 0.178(0.084) 0.166(0.066) 0.173(0.062) 0.189(0.074)
500 0.088(0.049) 0.084(0.046) 0.093(0.050) 0.164(0.049)
800 0.071(0.038) 0.068(0.030) 0.076(0.032) 0.092(0.048)

b̂FMR

0.5 200 0.479(0.353) 0.531(0.424) 0.696(0.706) 0.907(0.887)
350 0.359(0.298) 0.464(0.396) 0.597(0.563) 0.760(0.821)
500 0.299(0.274) 0.399(0.377) 0.535(0.550) 0.734(0.846)
800 0.241(0.257) 0.350(0.348) 0.467(0.530) 0.608(0.648)

1.0 200 1.106(1.097) 1.369(1.415) 1.961(2.552) 2.400(3.091)
350 0.955(0.873) 1.220(1.342) 1.640(2.051) 2.117(2.728)
500 0.911(0.883) 1.068(1.087) 1.596(2.175) 2.261(3.768)
800 0.756(0.737) 1.024(1.164) 1.326(1.640) 1.852(2.726)

where c ranges from 1 to 1.6 with increment 0.01. To show the effects of

estimating I(θ) by Î(θ), we also proceed Tn = {nI(θ)}1/2(θ̂∗ − θ) as if I(θ)

were known, and compare it with T ∗
n = {nÎ(θ)}1/2(θ̂∗− θ). The exact value
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I(θ) was calculated based on (3.14) with π = 0.6, θ = 1, σ = 0.5 or 1.0 and

u2 was calculated as u2 = E
(∫ 1

0
Xb

)2

= 0.32 + 16
∑50

j=2 j
−(4+α).

We set 0.05 as the nominal level, and generated 1000 datasets, each

consisting of n = 500 or 800 random samples to calculate type I errors

and power of Tn and T ∗
n . Figure 1 displays the power against c for four

different settings: (σ, n) = (0.5, 500), (1.0, 500), (0.5, 800) and (1.0, 800). In

each plot, the solid and dashed lines denote the power functions of Tn and

T ∗
n , respectively. These two curves close each other. This indicates good

performance of Î(θ) as an estimator of I(θ), and T ∗
n performs well. The

type I errors (the power at c = 1) for the four settings are displayed in

Table 3. They close to the nominal level 0.05. Moreover, we also observe

that the empirical size of power increases to 1 as c increases. The results

demonstrate that the proposed T ∗
n is a useful test.

Table 3: The results for simulation study (testing). Type I error rates of T ∗
n

and Tn for the four different settings in respect to the nominal level 0.05.
(σ, n) (0.5, 500) (1.0, 500) (0.5, 800) (1.0, 800)
T ∗
n 0.053 0.058 0.052 0.057
Tn 0.055 0.061 0.052 0.048
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Figure 1: The results for simulation study (testing). The power functions of

the test statistic T ∗
n (dashed line) and Tn (solid line) for the four different

settings (1)-(4) corresponding to (σ, n) = (0.5, 500), (1.0, 500), (0.5, 800)

and (1.0, 800) for (1)-(4), respectively.
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7. Application to an AIDS Dataset

Now we illustrate the proposed procedures by analyzing a dataset from an

AIDS study. CD4+ cells are targets of HIV and decline after an HIV infec-

tion. Thus, when antiviral therapies suppress viral load, CD4+ cell count

may recover to a higher level (Lederman et al., 1998). It is believed that

the virologic response (measured by viral load) and immunologic response

(measured by CD4+ cell count) are negatively correlated during antiviral

treatments. However, this relationship may not be constant during the w-

hole period of treatment. In fact, the discordance between virologic and

immunologic responses has been observed in several clinical studies (Mel-

lors et al., 1996; Wu, Ding, and DeGruttola, 1998). Motivated by an ACTG

study (Lederman et al., 1998), we use model (1.2) and apply the proposed

procedures to analyze a data set from this study, in which 53 HIV-1 infected

patients were divided into two arms (arms 1 and 2) and were treated with

potent antiviral drugs. 361 observations of viral load and CD4+ cell count

were obtained on days 0, 2, 7, 10, 14, 21, and 28.

The patterns of CD4 and viral load of the two arms show similarities

(See Figure 2) and the combination of these two arms may be beneficial to

evaluating the treatment and increasing the power. We apply model (1.2)

and the proposed methods to analyze this dataset. θ reflects how close the
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effects of the viral load on the CD4 cell count in two arms are. In the initial

analysis of this study, the observations from two arms were combined for the

preliminary report. We now rigorously evaluate the difference by estimating

θ and further investigate whether such a combination is proper. We average

CD4 count over time and divide it by 1000, and treat it as the response

variable Y , and use viral load as the functional predictor X(t), t ∈ I, where

we take I = [0, 29].

The smoothing parameter mn = 2 was obtained by leave-one-out cross-

validation. The estimated θ̂∗ = 0.9591. The estimated slope function and

associated pointwise confidence interval are depicted in the left panel of

Figure 3. The pattern shows that the CD4+ cell count increases as viral

load decreases in the primary treatment period. This negative relationship

lasts until day 15, and then changes to a slight positive trend. The right

panel of Figure 3 plots the normal Q-Q plot of residuals, and suggests a

reasonable fit of the data. We further consider whether the two treatment

arms are significantly different; i.e., test H0 : θ = 1. The statistic |T ∗
n | =

0.1392 < 1.96. This indicates that the difference of two treatments between

two arms may be insignificant.
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Figure 2: The scatter plots of viral load (upper panel) and CD4 cell count

(lower panel) against treatment times for two arms.

8. Discussions

In this paper, we have studied two-sample functional linear models that

combine two functional curves with similar patterns, and have develope-

d estimation and testing procedures. Briefly, the proposed methods have
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Figure 3: The results for the CD4 dataset. The estimated slope function

b̂(t) and 95% bootstrap pointwise confidence interval (left panel), and the

Q-Q plot of the residuals (right panel).

the properties: (i) the estimators of the scalar parameter are asymptoti-

cally normal, and the estimators of the nonparametric functions have the

optimal rates of convergence; (ii) the proposed methods show promising

performance in finite sample situations; and (iii) the implemented algorith-

m is computationally efficient.

There are interesting possible extensions of two-sample FLM. Generally,

our model implies that the two curves differ from each other by a constant

θ, which may not be true; i.e., θ could also be a function of time. It would

be interesting to consider estimation of this function and a and b(t), find
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limiting distributions and discuss efficiency accordingly. However, there are

considerable issues with identifiability and efficiency for estimation of θ(t).

In this article, we have focused on modeling with the linear relation-

ship between r(X) and X(t). It is of interest to extend the methods to

a nonparametric or semiparametric relationship. However, the theory and

implementation of such an extension is much more complicated and war-

rants further studies. Semiparametric asymptotic efficiency for estimating

θ when ε is unknown is a much more complex problem, both technically

and practically.

Supplementary Materials

The Supplementary Materials present a simulation example continued

from Section 6, the proofs of Proposition 1 and Theorems 1 to 4, the deriva-

tion of the efficient score given in (3.13).
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