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Motivated by the need to statistically quantify the difference between two spatio-temporal datasets that arise
in climate downscaling studies, we propose new tests to detect the differences of the covariance operators
and their associated characteristics of two functional time series. Our two sample tests are constructed on
the basis of functional principal component analysis and self-normalization, the latter of which is a new
studentization technique recently developed for the inference of a univariate time series. Compared to the
existing tests, our SN-based tests allow for weak dependence within each sample and it is robust to the
dependence between the two samples in the case of equal sample sizes. Asymptotic properties of the SN-
based test statistics are derived under both the null and local alternatives. Through extensive simulations,
our SN-based tests are shown to outperform existing alternatives in size and their powers are found to be
respectable. The tests are then applied to the gridded climate model outputs and interpolated observations
to detect the difference in their spatial dynamics.

Keywords: climate downscaling; functional data analysis; long run variance matrix; self-normalization;
time series; two sample problem

1. Introduction

Functional data analysis (FDA) which deals with the analysis of curves and surfaces has received
considerable attention in the statistical literature during the last decade (Ramsay and Silverman
[19,20] and Ferraty and Vieu [6]). This paper falls into a sub-field of functional data analysis:
inference for temporally dependent functional data. Specifically, we focus on testing the equality
of the second-order structures (e.g., the covariance operators and their associated eigenvalues
and eigenfunctions) of two temporally dependent functional sequences. Our work is partially
motivated by our ongoing collaboration with atmospheric scientists on the development and as-
sessment of high-resolution climate projections through statistical downscaling. Climate change
is one of the most urgent problems facing the world this century. To study climate change, sci-
entists have relied primarily on climate projections from global/regional climate models, which
are numerical models that involve systems of differential equations and produce outputs at a pre-
specified grid. As numerical model outputs are widely used in situations where real observations
are not available, it is an important but still open question whether the numerical model outputs
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are able to mimic/capture the spatial and temporal dynamics of the real observations. To partly
answer this question, we view the spatio-temporal model outputs and real observations as real-
izations from two temporally dependent functional time series defined on the two-dimensional
space and test the equality of their second-order structures which reflects their spatial dynam-
ics/dependence.

Two sample inference for functional data has been investigated by a few researchers. Fan and
Lin [5], Cuevas et al. [4] and Horvith et al. [10] developed the tests for the equality of mean
functions. Benko et al. [1], Panaretos et al. [16], Fremdt et al. [7], and Kraus and Panaretos [12]
proposed tests for the equality of the second-order structures. All the above-mentioned works
assumed the independence between the two samples and/or independence within each sample.
However, the assumption of independence within the sample is often too strong to be realistic in
many applications, especially if data are collected sequentially over time. For example, the inde-
pendence assumption is questionable for the climate projection data considered in this paper, as
the model outputs and real station observations are simulated or collected over time and tempo-
ral dependence is expected. Furthermore the dependence between numerical model outputs and
station observations is likely because the numerical models are designed to mimic the dynamics
of real observations. See Section 5 for empirical evidence of their dependence. In this paper, we
develop new tests that are able to accommodate weak dependence between and within two sam-
ples. Our tests are constructed on the basis of functional principal component analysis (FPCA)
and the recently developed self-normalization (SN) method (Shao [21]), the latter of which is a
new studentization technique for the inference of a univariate time series.

FPCA attempts to find the dominant modes of variation around an overall trend function and
has been proved a key technique in the context of FDA. The use of FPCA in the inference of
temporally dependent functional data can be found in Gabrys and Kokoszka [8], Hérmann and
Kokoszka [9], Horvéth et al. [10] among others. To account for the dependence, the existing
inference procedure requires a consistent estimator of the long run variance (LRV) matrix of
the principal component scores or consistent estimator of the LRV operator. However, there is a
bandwidth parameter involved in the LRV estimation and its selection has not been addressed in
the functional setting. The same issue appears when one considers the block bootstrapping and
subsampling schemes (Lahiri [13] and Politis et al. [18]), since these techniques also require the
selection of a smoothing parameter, such as the block length in the moving block bootstrap, and
the window width in the subsampling method (see, e.g., Politis and Romano [17] and McMurry
and Politis [15]). Since the finite sample performance can be sensitive to the choice of these
tuning parameters and the bandwidth choice can involve certain degree of arbitrariness, it is
desirable to use inference methods that are free of bandwidth parameters. To this end, we build
on the bandwidth-free SN method (Shao [21]) recently developed in the univariate time series
setup, and propose SN-based tests in the functional setting by using recursive estimates obtained
from functional data samples.

In time series analysis, the inference of a parameter using normal approximation typically re-
quires consistent estimation of its asymptotic variance. The main difficulty with this approach
(and other block-based resampling methods) is the sensitivity of the finite sample performance
with respect to the bandwidth parameter, which is often difficult to choose in practice without
any parametric assumptions. As a useful alternative, the self-normalized approach uses an in-
consistent bandwidth-free estimate of asymptotic variance, which is proportional to asymptotic
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variance, so the studentized quantity (statistic) is asymptotically pivotal. Extending the early
idea of Lobato [14], Shao [21] proposed a very general kind of self-normalizers that are func-
tions of recursive estimates and showed the theoretical validity for a wide class of parameters
of interest. The settings in the latter two papers are however limited to univariate time series.
The generalization of the SN method from univariate to functional time series was first done in
Zhang et al. [23] where the focus was on testing the structure stability of temporally dependent
functional data. Here we extend the SN method to test the equality of the second-order proper-
ties of two functional time series, which is rather different and new techniques and results are
needed. To study the asymptotic properties of the proposed test statistics, we establish functional
central limit theorems for the recursive estimates of quantities associated with the second-order
properties of the functional time series which seems unexplored in the literature and are thus of
independent interest. Based on the functional central limit theorem, we show that the SN-based
test statistics have pivotal limiting distributions under the null and are consistent under the lo-
cal alternatives. From a methodological viewpoint, this seems to be the first time that the SN
method is extended to the two sample problem. Compared to most of the existing methods which
assumed the independence between the two samples and/or independence within each sample,
the SN method not only allows for unknown dependence within each sample but also allows for
unknown dependence between the two samples when the sample sizes of the two sequences are
equal.

2. Methodology

We shall consider temporally dependent functional processes {(X;(¢), Yi(¢)),t € T }j:f defined
on some compact set Z of the Euclidian space, where Z can be one-dimensional (e.g., a curve) or
multidimensional (e.g., a surface or manifold). For simplicity, we consider the Hilbert space H of
square integrable functions with Z = [0, 1] (or Z = [0, 11%). For any functions f, g € H, the inner
product between f and g is defined as fI f(t)g(¢)dr and || - || denotes the inner product induced
norm. Assume the random elements all come from the same probability space (€2, .4, P). Let
L? be the space of real valued random variables with finite L? norm, that is, (E|X|?)!/? < oo.
Further, we denote Lﬁ the space of H valued random variables X such that (E||X||?)!/? < oo.

Given two sequences of temporally dependent functional observations, {X; (t)}f.\gl and

{y; (t)}f\gl defined on a common region Z, we are interested in comparing their second-order
properties. Suppose that the functional time series are second-order stationary. We assume that
E[X;(t)] = E[Y;(¢)] = 0. The result can be easily extended to the situation with nonzero mean
functions. Define Cx = E[(X;,-)X;] and Cy = E[(Y;, -)Y;] as the covariance operators of the
two sequences respectively. For the convenience of presentation, we shall use the same nota-
tion for the covariance operator and the associated covariance function. Denote by {¢§( ‘;‘;1

and {)\g(}‘/?‘):l the eigenfunctions and eigenvalues of Cx. Analogous quantities are {d){;}‘/?o | and

{)L{,}j?';l for the second sample. Denote by |v| the Euclidean norm of a vector v € R”. Let vech(-)
be the operator that stacks the columns below the diagonal of a symmetric m X m matrix as a
vector with m(m + 1)/2 components. Let D[0, 1] be the space of functions on [0, 1] which are
right-continuous and have left limits, endowed with the Skorokhod topology (see Billingsley
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[2]). Weak convergence in D[0, 1] or more generally in the R™-valued function space D™[0, 1]
is denoted by “=", where m € N and convergence in distribution is denoted by “—?”. Define
la] the integer part of @ € R, and §;; =1 if i = j and §;; =0 if i # j. In what follows, we

shall discuss the tests for comparing the three quantities Cy, ¢>X and Aj with Cy, qSY and k;,,
respectively.

2.1. Covariance operator

Consider the problem of testing the hypothesis Hj o: Cx = Cy versus the alternative Hy ,: Cx #
Cy (in the operator norm sense) for two mean zero stationary functional time series {X; (t)}f\gl
and {Y; (t)}lN:2 - Let N = N1 + N3. Throughout the paper, we assume that

Ni/N — y1, No/N — ys, as min(Ny, Np) — +o00,

where y1,92 € (0,1) and y; + y» = 1. Deﬁne the one-dimensional operator X; = (X;, ) X; =
Xi®X;and Y; =(Y;,)Y; =Y; ®Y;. Let Cxy be the empirical covariance operator based on
the pooled samples, that is,

N1 Ny
Cxy = N1+N2 (ZX +;yl> 2.1)

Denote by {)A» ' y} and {qg)‘(y} the corresponding eigenvalues and eigenfunctions. The population

counterpart of C xy 1s then glven by C xy = Y1Cx + »Cy Whose elgenvalues and eigenfunc-
tions are denoted by {A/} and {¢/} respectively. Further let ¢ X.m = Zl 1 A; be the sample

covariance operator based on the subsample {X; (t)};":1 with 2 < m < Nj. Define {d’X,m}T:l and

{5& m};’?:l the eigenfunctions and eigenvalues of c x,m respectively, that is,
fI Com(t, D] () ds =34, 8%, ), 22)

and [ ¢X m(t)¢X MOLEE TS Slmﬂarly, quantities Cy. ', {¢Ym }Ni and {):{, m,}j\’il are de-
fined for the second sample with 2 < m’ < N,. To introduce the SN based test, we define the
recursive estimates

=((éX,LkN]/NJ - éY,Lsz/NJ)(%(y»‘lg{(y), 2<k=<N,1=i,j=<K,

which estimate the difference of the covariance operators on the space spanned by (@7} 5.{:1. Here
K is a user- chosen number, which is held fixed in the asymptotics. Denote by &; = vech(Cy)

with Cy = (ck )l _;- In the independent and Gaussian case, Panaretos et al. [16] proposed the
following test (hereafter, the PKM test),

N Ny

PRERILES o o1 S %{z«xi,qﬁf{y»z £ (07 )

i=1 j=I Q’Qf i=1 i=1
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which converges to X(ZK +DK)2 under the null. To take the dependence into account, we introduce
the SN matrix

N
1 A A A A
Vs(zlv),zv(d) N2 Zkz(ak —an) (G —an)’, 2.3)
k=1
with d = (K + 1)K /2. The SN-based test statistic is then defined as,

~ —1aA
G(;}V’ NOE Na},(VS(}\;’ N (@) . (2.4)

Notice that the PKM test statistic can also be written as a quadratic form of &y but with a different
normalization matrix that is only applicable to the independent and Gaussian case. The special
form of the SN-based test statistic makes it robust to the dependence within each sample and also
the dependence between the two samples when their sample sizes are equal. We shall study the
asymptotic behavior of G(Sljz,’ n (d) under the weak dependence assumption in Section 3.

2.2. Eigenvalues and eigenfunctions

In practice, it is also interesting to infer how far the marginal distributions of two sequences of
stationary functional time series coincide/differ and quantify the difference. By the Karhunen—
Loeve expansion (Bosq [3], page 26), we have

+o0 - . +00 - )
Xi(t) = Z\/Eﬂx,-,jd);((r), Yi(0) =Y\ Br. ity ),
j=1

j=1

where By, j = [7 Xi(t)py(t)dt and By, j = [7Yi(1)¢y(t)dt are the principal components
(scores), which satisty that E[Bx;,;Bx,, j/]1 =46, and E[By; By, j/] = 8;j-. The problem is then
translated into testing the equality of the functional principal components (FPC’s) namely the
eigenvalues and eigenfunctions. For a prespecified positive integer M, we denote the vector
of the first M eigenvalues by )»}(:M =L, ..., )»1)‘(’1) and )»;,:M =0, ..., )»1)‘,’1). Further define
qb)l(:M = (gb}(, R ¢>§4) and gb}l,:M = (qﬁ},, R ¢1’}4) the first M eigenfunctions of the covariance op-
erators Cy and Cy, respectively. Since the eigenfunctions are determined up to a sign, we assume
that (¢§(, ¢{,) > ( in order for the comparison to be meaningful. We aim to test the null hypothe-
sis Hyo: )&M = )L;’M and H3 ¢: ¢>)1(:M = d)},‘M versus the alternatives that H; , :)&M #* A%}M and
Hs, :q)}(:M * q))l,:M (in the L? norm sense). The problem of comparing the FPC’s of two inde-
pendent and identically distributed (i.i.d.) functional sequences has been considered in Benko et
al. [1], where the authors proposed an i.i.d. bootstrap method which seems not applicable to the
dependent case. The block bootstrap based method is expected to be valid in the weakly depen-
dent case but the choice of the block size seems to be a difficult task in the current setting. To
accommodate the dependence and avoid the bandwidth choice, we adopt the SN idea.

Recall the recursive estimates of the eigenvalues ig(m and i{,’m, which are calculated based

on the subsamples {X;(#)}7_, and {Yi(t)}?l:/r Let é,{ = ig(,LkM/NJ — )A\{,’Lsz/NJ and 6, =
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(él, R é,f”)’ with [ Ne] <k < N for some € € (0, 1], which is held fixed in the asymptotics.
We consider the trimmed SN-based test statistic

N —1

2 A ~ A A A ~

Gy nM) =N 1 > K0 — On) G — HN)/} Oy . 2.5)
k=|Ne]

The trimmed version of the SN-based test statistic is proposed out of technical consideration

when the functional observations lie on an infinite dimensional space. It can be seen from the

proof in the supplemental material [22] that the trimming is not required when functional data
lie on a finite-dimensional space; see Remark 0.1 in the supplemental material [22].

Remark 2.1. To compare the difference between the eigenvalues, one may also consider their

ratios. Define &k = (A% uny /v ) /Ay kva/n g -+ Mo kv vy /M ko)) for k= [Nel, ..., N
An alternative SN-based test statistic is given by

. R A R
Gy =NGy =11 5 D kz(ck—cm(ck—m’} Cv—hp). @26

k=|Ne|

where 1)/ is a M-dimensional vector of all ones. Since the finite sample improvement by using
G(Szlz, (M) is not apparent, we do not further investigate the properties of G(Szg, N(M).

We now turn to the problem of testing the equality of the eigenfunctions. To proceed, we let

= (@4 D%y By @.7)

be a vector of p — j orthonormal basis functions for j =1,2,..., M with M < p and p being
a user chosen number. Recall that éj( m(t) and (]3{/ (1) are the jth eigenfunctions of the em-
pirical covariance operators c x.m and c y.m’ Which are computed based on the first m (and m’)
samples Here we require that (q‘)x m qu Ny )y >0 and (¢/Ym ,¢X Ny y >0 for 2 <m < Np and
2 <m’ < Nj. As the eigenfunctions are defined on an infinite-dimensional space, we project the

difference between the jth eigenfunctions onto the space spanned by ¥ ;. Formally, we define the
projection vectors

N N N . N " R
= ((¢§(,LkN1/NJ _¢{/,LkN2/NJ’¢§(J)r’ )’~-’<¢§(,Lkm/m _¢1]/,LkN2/NJ’¢§Y))’

where 1 < j <M and k = | Ne], ..., N. Further let fix = (7}, 77, ..., 7)€ RMo with My =
w. The trimmed SN-based test statistic is then defined as

-1

Gy (M) = Nily | 53 Z K2 (i — ) e = in)' | s (2.8)
k=|Ne|

forsome 0 <€ < 1.
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Remark 2.2. 1t is worth noting that G% S N N (Mo) is designed for testing the equality of the first M
eigenfunctions. Suppose we are interested in testing the hypothesis for a particular eigenfunction,

that is, the null ¢>X = ¢Y versus the alternative d)X #* qu We can consider the basis functions

~ 21 pi—1 2+l P
Vj= (¢XY""¢XY s Pxy ""’¢XY)’
ot S i oJ 21 2 2
and the projection vector 17, = (¢ kN /N | _¢¥,LkN2/NJ’¢XY?""’ (¢X,LkN1/NJ —¢Y’LkN2/NJ,

J= 20 2Jt+1 o 2J P
y ) (¢X,LkN1/NJ ¢y LkN2/N|* cPxy b (¢X,LkN1/NJ - ¢Y,LkN2/NJ’¢XY>)/' Th? SN‘based
test statistic can then be constructed in a similar manner. We also note that when gbff #+ ¢>{, and
¢§( = q‘); for i # j, the choice of U; may result in trivial power because (¢§( - ¢>{,, @) fori # j
can be close to 0. In this case, one remedy is to consider alternative basis functions, for example,
(4.5) and (4.6) as suggested in the simulation.

Remark 2.3. The choice of the basis functions ¥; is motivated by the Bahadur representation of
the recursive estimates in the supplemental material [22]. Under suitable assumptions as given in
the next section, it can be shown that

(0% k- 0) = (0% ¢ Z{Zﬁx =Px; ¢)} +RY . 2.9)

=1 ‘s#a X

with RS , being the remainder term and ¢ € L?(Z). The second term on the RHS of (2.9) plays

a key role in determining the limiting distribution of the SN-based test statistic. When ¢ = ¢§(
,BX, ],BX a
)»j a
limit theorem under suitable weak dependence assumptlon. Notice that the linear term vanishes
when ¢ = ¢ and the asymptotic distribution of the projection vector is degenerate. It is also

with j # a, the linear term reduces to — Zl 1 , which satisfies the functional central

worth noting that the linear terms in the Bahadur representations of (qggl( o ¢§() and ((fA);( o %)
are opposite of each other which suggests that when testing the eigenfunctions jointly, the basis
functions should be chosen in a proper way so that the asymptotic covariance matrix of the
projection vector, that is, 7j; is nondegenerate.

3. Theoretical results

To study the asymptotic properties of the proposed statistics, we adopt the dependence mea-
sure proposed in Hérmann and Kokoszka [9], which is applicable to the temporally dependent
functional process. There are also other weak dependence measures (e.g., mixing) or specific
processes (e.g., functional linear processes) suitable for the asymptotic analysis of functional
time series (see Bosq [3]), we decide to use Hormann and Kokoszka’s L ,-m-approximating de-
pendence measure for its broad applicability to linear and nonlinear functional processes as well
as its theoretical convenience and elegance.
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Definition 3.1. Assume that {X;} € LI';H with p > 0 admits the following representation
Xi= f(ei,€i-1,...), i=12,..., (3.1)

where the €;’s are i.i.d. elements taking values in a measurable space S and f is a measurable
function f:8%° — H. For each i € N, let {851)}]_62 be an independent copy of {¢j}jez. The
sequence {X;} is said to be L?-m-approximable if

e ¢]

S (E] Xm — X417 < 0, 3.2)
m=1
where X,.(m) = f (&, 8i—1s.--) Eimmtls el@m, Ssz—l’ ).

Define B, (r) as a g-dimensional vector of independent Brownian motions. For € € [0, 1), we
let

1
W, (€)= B,(1)'J, (€)' B,(1),  where Jq(e):/ (B4 (r) — rBy(1))(By (r) — r By (1)) dr.

The critical values of W, := W, (0) have been tabulated by Lobato [14]. In general, the quantiles
of W, (€) can be obtained via simulation. To derive the asymptotic properties of the proposed
tests, we make the following assumptions.

Assumption 3.1. Assume {X;(1)};1° C L]%_H and {Y; (1)} C L]%_H are both L*-m-approximable

i=1 = i=1 =
and they are mutually independent.

Assumption 3.2. Assume {(X;(t), Y; (t))}l.+=°iJ - L]?—]IxH is an L*-m-approximable sequence.
Assumption 3.3. Assume )} > )& > > A’;OH and )}, > A% > > )L;',’(’Jr],for some posi-
tive integer mg > 2.

Note that Assumption 3.2 allows dependence between {X;(¢)} and {Y;(¢)}, which is weaker
than Assumption 3.1. To investigate the asymptotic properties of Ggljz, n (d) under the local al-
ternatives, we consider the local alternative Hy ,:Cx — Cy = LC / /N with C being a Hilbert—
Schmidt operator, where L is a nonzero constant. Define A = ((C¢', ¢/ ))i”< j=1 € REXK a5 the
projection of C onto the space spanned by {¢', ¢, ..., X} and assume that vech(A) # 0 € R?.
The following theorem states the asymptotic behaviors of G(SIK,’ n (d) under the null and the local
alternatives.

Theorem 3.1. Suppose Assumptions 3.1, 3.3 hold with mo > K. Further assume that the asymp-
totic covariance matrices AZ (Aj)’ given in Lemma 0.3 is positive definite. Then under H o,
Gg]z,’N(d) —4 W, and under Hyg, limjp |- 400 limy s oo G(Sljg,’N(d) = +o00. Furthermore, if
Y1 = V2, then the conclusion also holds with Assumption 3.1 replaced by Assumption 3.2.
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It is seen from Theorem 3.1 that G(Sljf, n (d) has pivotal limiting distributions under the null
and they are consistent under the local alternatives as L — +-o00. It is worth noting that in our
asymptotic framework, d (or K) is assumed to be fixed as n — oo. Since K is usually chosen
to make the first K principle components explain a certain percentage of variation (say 85%),
the magnitude of K critically depends on the prespecified threshold and the decay rate of the
eigenvalues. In some cases, d = (K + 1)K /2 can be quite large relative to sample size so it may
be more meaningful to use the asymptotic results established under the framework that d — oo
but d/n — 0 as n — oo. This motivates the question that whether the following convergence
result

sup| P(GSy y(d) <x) = P(Wg<x)| >0  asn— oo

xeR
holds when d diverges to oo but at a slower rate than n. This would be an interesting future
research topic but is beyond the scope of this paper.

To study the asymptotics of G(szzzi, y (M) and G(S313,’ ~ (Mo), we introduce some notation. Let
a)gf = Bx,.;Bx, k and rf(k’j/k/ (h) = E[(a)gj - 8jk)»j)(a)§(,’_]ih — 81 j1)] be the cross-covariance
function between a)g(]f and a)g(,’k/ at lag h. Set rf(k (h) := r)J(k”k (h). Define vg(]f = wg(]: - E[a)g(]f] =
a)%j — 8k . Analogous quantities r{/k’] * (h) and v{,lk can be defined for the second sample. We
make the following assumption to facilitate our derivation.

Assumption 3.4. Suppose that

too 2 +00
ZZ( > \r;jfk'j/k/(h)\) <to0. > 3 m] < +oo (3.3)

Jik j' k' \h=—00 Jj,k h=—00

and
]k ]k j/k/ j/k/
ZZ Z |curn(vxo,vxi],vxiz,vxia)i < 00. (3.4)
Jik jlkiy,i2,i3€Z

The summability conditions also hold for the second sample {Y;(t)}.

Assumption 3.4 is parallel to the summability condition considered in Benko et al. [1] (see
Assumption 1 therein) for i.i.d. functional data. It is not hard to verify the above assumption
for Gaussian linear functional process (see, e.g., Bosq [3]), as demonstrated in the following
proposition.

Proposition 3.1. Consider the linear process X;(t) = Z?;O bjei_j(t), where g;(t) =
Yo VAizi j¢i (t) with {z;, i} being a sequence of independent standard normal random vari-
ables across both index i and j. Let w(h) = ), bjbj1y. Assume that chil Aj < oo and
>y | (h)| < oo. Then Assumption 3.4 holds for {X;(1)}.

Theorem 3.2. Suppose Assumptions 3.1, 3.3, 3.4 hold with mo = M and the asymptotic co-
variance matrix Ay Ay, given in Lemma 0.5 is positive definite. Then under Ha, we have
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G?]z,N(M) —d W (€). Under the local alternative Hz,a:)&M — )\;:M = ﬁi with A #*

0 e RM we have lim) | 00 limy 5 400 GSN NM) =

In order to study the asymptotic properties of GY s N ~ (Mp) under the null and local alternative,
we further make the following assumption.

Assumption 3.5. Let ﬁ(m) = X; (m) (t)gb)‘( (¢)dt, where X; ™) s the m- -dependent approximation
of X;(t) (see Definition 3 1) Suppose one of the followmg conditions holds:

N — 471/4 > 1/4
S OS{EEBx. -8 ) <0 S (BB, ) < 0. 3.5)
m=1 j=1 j=1
or
Y llox. ¢7) <400, 2<j<p. (3.6)

s=1

The same condition holds for the second sample {Y;(t)}.

Theorem 3.3. Suppose Assumptions 3.1, 3.3, 3.4 and 3.5 hold with mo > M and the asymptotic
covariance matrix A M0A§v10 given in Lemma 0.7 is positive definite. Then under Hs (, we have

Gy (Mo) =7 Wagy (e).

Proposition 3.2. Define A by replacing qgf( Ny ¢3{/ Ny and ¢A>§(Y with ¢>§(, ¢>§ and ¢/ in the def-
inition of fn. Consider the local alternative Hs  : A= Lv/_//\/ﬁ with 1} #0 € RMo, Suppose
Assumptions 3.1, 3.3, 3.4 and 3.5 hold with mo = M and the asymptotic covariance matrix
A M0A§lflo given in Lemma 0.7 is positive definite. Then we have

3)
|L1|1£100N1—1>I—Ii-1 sy (Mo) = +00

under H3 ;.

It is worth noting that the conclusions in Theorem 3.2, Theorem 3.3 and Proposition 3.2 also
hold with Assumption 3.1 replaced by Assumption 3.2 and y; = y». Finally, we point out that
condition (3.5) can be verified for Gaussian linear functional process as shown in the following
proposition.

Proposition 3.3. Consider the Gaussian linear process in Proposition 3.1. Assume that
/ 1/Aj <ooand Yy o 1(200 b2 112 < 00. Then Assumption 3.4 and condition (3.5) are
sati ?ﬁedfor {Xi(»)}.
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4. Numerical studies

We conduct a number of simulation experiments to assess the performance of the proposed SN-
based tests in comparison with the alternative methods in the literature. We generate functional
data on a grid of 103 equispaced points in [0, 1], and then convert discrete observations into func-
tional objects by using B-splines with 20 basis functions. We also tried 40 and 100 basis functions
and found that the number of basis functions does not affect our results much. Throughout the
simulations, we set the number of Monte Carlo replications to be 1000 except for the i.i.d. boot-
strap method in Benko et al. [1], where the number of replications is only 250 because of high
computational cost.

4.1. Comparison of covariance operators

To investigate the finite sample properties of G\ s N  (d) for dependent functional data, we modify
the simulation setting considered in Panaretos et al. [16]. Formally, we consider the model,

3
> & V2sin@njn) + £,V 2c0s@mjn),  i=1.2,....1€[0,1], (4.1)
j=1

where the coefficients & = (.§f 1 g; 1 $3i 1 5{ 2 Eé' 25 §3i ,)" are generated from a VAR process,

& =p&i_1++/1—p?e, 4.2)

with ¢; € RS being a sequence of i.i. d normal random variables with mean zero and covari-

ance matrix X, = 7 + — . We generate two independent functional time
series {X;(¢)} and {Y;(¢)} from (4. 1) w1th ,0 = 0.5 and © = 1. We compare the SN-based
test with the PKM test which is designed for independent Gaussian process, and the tradi-
tional test which is constructed based on a consistent LRV estimator (denoted by CLRV), that
is, Ger.N(d) = Nay f]oj lay, where T, is a lag window LRV estimator with Bartlett ker-
nel and data dependent bandwidth (see Andrews (1991)). We report the simulation results for
N; = N, =100,200, K =1,2,3,4,5(d =1,3,6, 10, 15) and various values of v in Table 1.
Results in scenario A show that the size distortion of all the three tests increases as K gets larger.
The SN-based test has the best size compared to the other two tests. The PKM test is severely
oversized due to the fact that it does not take the dependence into account. It is seen from the ta-
ble that the CLRYV test also has severe size distortion especially for large K, which is presumably
due to the poor estimation of the LRV matrix of &y when the dimension is high. Under the alter-
natives, we report the size-adjusted power which is computed using finite sample critical values
based on the simulation under the null model where we assume that both {X;(¢)} and {Y;(z)}
are generated from (4.1) with p = 0.5, © = 1 and v = vyx. From scenarios B-D in Table 1, we
observe that the PKM is most powerful which is largely due to its severe upward size distortion.
The SN-based test is less powerful compared to the other two tests but the power loss is generally
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Table 1. Empirical sizes and size-adjusted powers of (i) the SN-based test, (ii) the PKM test and (iii) the
CLRYV test for testing the equality of the covariance operators. The nominal level is 5%

K

Parameter N1 =N, 1 2 3 4 5 Ky K3

A vx=(12,7,0.5,9,5,0.3) 100 (1) 43 57 68 8.7 143 87 10.7
Gi) 145 209 229 322 395 320 340

Gii) 9.1 129 209 398 679 388 48.6

vy =(12,7,0.5,9,5,0.3) 200 (1) 47 57 46 7.0 80 7.0 7.0

Gi) 12.8 206 267 347 42,6 348 373

Gi) 69 96 145 252 415 251 28.9

B vx=(14,7,0.5,6,5,0.3) 100 (1) 19.1 236 17.7 14.2 12.7  14.1 13.0
Gi) 27.6 377 31.6 229 212 231 227

Gii) 27.0 33.8 23.0 205 14.0 20.5 15.8

vy =(8,7,0.5,6,5,0.3) 200 (1) 312 377 304 219 219 219 221

(i) 39.1 61.6 51.7 442 412 442 415

Gii) 37.6 57.0 447  30.1 243 30.1 24.9

C vx=(12,7,05,9,3,0.3) 100 (1) 55 109 308 624 647 623 637
(ii) 47 161 573 946 98.7 944 971

Gii) 55 134 423 794 708 792 743

vy =(12,7,0.5,3,9,0.3) 200 (1) 53 10.0 457 903 943 904 925

(ii) 6.4 13.0 67.8 999 100.0 99.9 100.0

Gii) 6.1 125 605 999 99.8 999 998

D vx=(12,7,0.5,9,5,0.3) 100 (1) 6.1 83 283 80.1 822 756  80.6
(ii) 5.5 14.6 472 100.0 100.0 94.7 100.0

Gii) 69 123 372 957 88.6 90.6 90.7

vy =(12,7,0.5,0,5,0.3) 200 (1) 57 89 397 963 984 955 983

(ii) 6.4 145 53.6 100.0 100.0 994 100.0

Gii) 6.0 129 47.7 100.0 100.0 99.3 100.0

Note: Under the alternatives, we simulate the size-adjusted critical values by assuming that both {X;} and {Y;} are
generated from (4.1) with p =0.5, u =1and v=vy.

moderate in most cases. Furthermore, we present the results when choosing K by

20 9 J

TL
Kj:argmin{nggzo:M>a*}, i=1,2, (4.3)
i=1"XY

where o] = 85% and a; = 95%. An alternative way of choosing K is to consider the penalized
fit criteria (see Panaretos et al. [16] for the details). We notice that the performance of all the
three tests based on automatic choice K ;‘ is fairly close to the performance when K =4 or 5 in
most cases. To sum up, the SN-based test provides the best size under the null and has reasonable
power under different alternatives considered here, which is consistent with the “better size but
less power” phenomenon seen in the univariate setup (Lobato [14] and Shao [21]).
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4.2. Comparison of eigenvalues and eigenfunctions

In this subsection, we study the finite sample performance of the SN-based test for testing the
equality of the eigenvalues and eigenfunctions. We consider the data generating process,

2
> (&l (Vasin@ujit +8)) + &1,V 2c0s@mjr +8)).  i=1.2.....1€[0,1], (44
j=1

where £ = (5{171 , %,1 , §1i,2’ 5512)’ is a 4-variate VAR process (4.2) with ¢; € R* being a sequence
1+ —— diag(v) +

1+M < —141. We set p =0.5 and o = 0. Under Ha (or Hp,), {X;(?)} and {Y;(r)} are gener-
ated independently from (4.4) with §; =4, =0 and vy = vy (or vy # vy). Notice that the
eigenvalues of {X;(#)} and {Y;(¢)} are given respectively, by vx and vy when §; = §, = 0. Un-
der Hz o and Hs,, we generate {X;(¢)} and {Y;(¢)} independently from (4.4) with vx = vy,
8x.1 —8y,1 =6, and 6x 2 = §y» =0, where § = 0 under the null and é§ # 0 under the alter-
natives. We aim to test the equality of the first four eigenvalues and eigenfunctions separately
and jointly. Because functional data are finite dimensional, we implement the untrimmed ver-
sion of the SN-based tests, that is, € = 0. To further assess the performance of the SN-based
test, we compare our method with the subsampling approach with several choices of subsam-
pling widths and the i.i.d. bootstrap method in Benko et al. [1]. Suppose N1 = No = Np. Let [

= xi = Mupyir i = 1.2, sno (D) = [No/ I, where

by sub,x.; and A sub,y,; are estimates of the jth eigenvalues based on the /th nonoverlapping subsam-

of i.i.d. normal random variables with mean zero and covariance matrix X, =

be the subsamphng width and A/

sub,i

ples { Xk (t)}f(l (i— 1)l+1 and {Yx (t)};'(l (i—1)1+1’ respectively. The subsampling variance estimate is

given by o2, = (l) ZSNO D ()‘subz ~ (l) ZXNO(D Adub, ;)?, and the test statistic based on
the subsampling Varlance estimate for testing the equality of the jth eigenvalue is defined as
Gab.N = No()A\g(’ No — Y N0)2 / Gsub e Since the data-dependent rule for choosing the subsam-
pling width is not available in the current setting, we tried [ = 8, 12, 16 for Ny = 48, 96. For
testing the equality of eigenvalues jointly and equality of the eigenfunctions, we shall consider
a multivariate version of the subsampling-based test statistic which can be defined in a similar
fashion. Table 2 summarizes some selective simulation results for testing the eigenvalues with
various values of v. From scenario A, we see that performance of the SN-based test under the
null is satisfactory while the size distortion of the subsampling-based method is quite severe and
is sensitive to the choice of block size /. It is also not surprising to see that the i.i.d. bootstrap
method has obvious size distortion as it does not take the dependence into account. Under the
alternatives (scenarios B-D), we report the size-adjusted power by using the simulated critical
values as described in previous subsection. When the sample size is 48, the SN-based method
delivers the highest power among the tests and it tends to have some moderate power loss when
the sample size increases to 96. On the other hand, the subsampling method is sensitive to the
choice of subsampling width and its power tends to decrease when a larger subsampling width is
chosen.
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Table 2. Empirical sizes and size-adjusted powers of (i) the SN-based test, the subsampling-based test with
(i) I =8, (iii) / =12 and (iv) / = 16, and (v) Benko et al.’s i.i.d. bootstrap based method for testing the
equality of the first two eigenvalues separately (the columns with M = 1, 2) and jointly (the column with
M = (1, 2)), and the equality of the first four eigenvalues jointly (the column with M = (1,2, 3,4)). The
nominal level is 5% and the number of replications for i.i.d. bootstrap method is 250

M
Parameter N1 =Ny 1 2 (1,2) (1,2,3,4)
A vy =(10,0.5,5,0.3) 48 @) 5.4 5.1 4.6 3.8
(ii) 24.2 38.5 52.4 90.8
(iii) 21.9 28.8 51.3 68.8
>iv) 21.8 28.1 57.9 44.7
) 11.2 9.2 11.6 11.6
vy = (10,0.5,5,0.3) 96 @) 5.2 5.6 4.8 5.1
(ii) 19.0 40.4 46.4 84.8
(iii) 16.3 29.6 38.2 77.0
@iv) 16.0 25.3 36.5 78.5
) 14.4 8.4 15.2 15.2
B vy =(20,0.5,5,0.3) 48 @) 25.1 4.3 21.8 15.5
(>ii) 24.2 5.4 13.3 7.1
(iii) 19.8 6.8 8.8 8.8
@iv) 14.1 6.8 8.0 9.1
vy =(10,0.5,5,0.3) 96 @) 48.4 4.8 35.6 25.0
(ii) 58.4 6.9 29.4 114
(iii) 50.9 6.1 29.7 13.3
@iv) 53.8 6.0 29.3 11.4
C vy =(10,0.5,5,0.3) 48 1) 6.2 70.6 58.9 441
(ii) 5.5 68.1 54.6 13.9
(iii) 4.8 49.3 23.0 16.9
@iv) 6.1 34.2 154 21.2
vy =(10,0.5,1,0.3) 96 @) 4.7 914 84.6 77.6
(>ii) 4.7 98.7 96.3 69.7
(iii) 5.5 97.9 92.5 51.6
@iv) 5.4 96.5 83.0 29.4
D vy =(20,0.5,5,0.3) 48 @) 27.0 70.1 68.4 55.3
(ii) 25.8 65.7 51.1 14.0
(iii) 20.9 58.4 23.9 19.9
@iv) 14.9 40.1 11.8 17.2
vy = (10,0.5,1,0.3) 96 1) 55.3 87.9 88.4 83.3
(ii) 54.5 98.3 96.9 62.3
(iii) 48.8 97.6 95.2 53.2
@iv) 50.1 95.2 88.0 27.7

Note: Under the alternatives, we simulate the size-adjusted critical values by assuming that both {X;} and {Y;} are

generated from (4.1) with p =0.5, u =0and v=vy.
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To test the equality of the first four eigenfunctions, we implement the SN-based test and the
subsampling-based test with the basis functions,

ax _ (41 2 Il S|
Vj _(¢XY +¢XY""’¢XY +¢XY’

. . . N “.5)
G 4Ly B+ BLy), 1<j<4,p=4,

for testing individual eigenfunction and

A AL R RjH2 2 2 2 ..

V= (dxy +Oxys Pxy T Oxys - Oxy T xy), 1<i<jt.p=4 (46
with j* = 2,3, 4, for testing the first j* eigenfunctions jointly (correspondingly Mo = 3, 5, 6).
The tests with the above basis functions tend to provide similar sizes but higher powers as com-
pared to the tests with the basis functions ¥; in our simulation study. The basis functions f);’.‘ is

constructed by adding the same estimated eigenfunction 4;;“, to each component of ¥;, and the
associated SN-based test is expected to be asymptotically valid in view of the Bahadur represen-
tation (2.9). Selective simulation results are summarized in Table 3 and Figure 1 which present
the sizes of the SN-based test, the subsampling-based test and the i.i.d. bootstrap method, and
the size adjusted powers of the former two respectively. It is seen from Table 3 that the sizes
of the SN-based test are accurate while the subsampling-based test is apparently size-distorted.
It is somewhat surprising to see that the i.i.d. bootstrap provides better sizes compared to the
subsampling-based approach which is designed for dependent data. Figure 1 plots the (size-
adjusted) power functions of the SN-based test and the subsampling-based test which are mono-
tonically increasing on §. When N; = N, = 48, the SN-based test delivers the highest power in
most cases. The subsampling-based test with a small subsampling width becomes most powerful
when sample size increases to 96. Overall, the SN-based test is preferable as it provides quite
accurate size under the null and has respectable power under the alternatives.

5. Climate projections analysis

We apply the SN-based test to a gridded spatio-temporal temperature dataset covering a sub-
region of North America. The dataset comes from two separate sources: gridded observations
generated from interpolation of station records (HadCRU), and gridded simulations generated by
an AOGCM (NOAA GFDL CM2.1). Both datasets provide monthly average temperature for the
same 19-year period, 1980-1998. Each surface is viewed as a two-dimensional functional datum.
The yearly average data have been recently analyzed in Zhang et al. [23], where the goal is to
detect a possible change point of the bias between the station observations and model outputs.
In this paper, we analyze the monthly data from 1980 to 1998, which includes 228 functional
images for each sequence. We focus on the second-order properties and aim to test the equality
of the eigenvalues and eigenfunctions of the station observations and model outputs. To perform
the analysis, we first remove the seasonal mean functions from the two functional sequences. At
each location, we have two time series from the demeaned functional sequences. We apply the
SN-based test developed in Shao [21] to test whether their cross-correlation at lag zero is equal
to zero. The p-values of these tests are plotted in Figure 2. The result tends to suggest that the



924 X. Zhang and X. Shao

Table 3. Empirical sizes of (i) the SN-based test, the subsampling-based test with (ii) / = 8, (iii) [ = 12
and (iv) / = 16, and (v) Benko et al.’s i.i.d. bootstrap based method for testing the equality of the first two
eigenfunctions separately (the columns with M = 1, 2) and jointly (the column with M = (1, 2)), and the
equality of the first four eigenfunctions jointly (the column with M = (1, 2, 3, 4)). The nominal level is 5%
and the number of replications for i.i.d. bootstrap is 250

M
Parameter N1 =N 1 2 (1,2) (1,2,3,4)
A vy =(10,0.5,5,0.3) 48 @) 6.4 3.2 4.9 4.8
(ii) 39.5 36.0 78.7 67.0
(iii) 62.9 62.3 24.8 26.4
@iv) 32.6 25.9 9.6 7.7
) 2.4 11.2 2.4 2.4
vy =(8,0.5,4,0.3) 96 @) 4.5 3.3 4.3 4.7
(ii) 18.2 16.8 27.2 45.8
(iii) 24.9 21.0 49.0 71.2
@iv) 32.6 30.6 75.9 61.0
) 3.2 12.4 4.8 6.8
B vy =(4,0.5,2,0.3) 48 @) 8.2 3.8 7.0 6.1
(ii) 43.3 45.8 83.4 71.4
(iii) 66.6 65.2 23.8 18.1
(@iv) 26.5 22.5 5.8 3.7
) 2.4 6.0 3.6 1.6
vy =(2,0.5,1,0.3) 96 @) 5.3 4.5 5.2 4.9
(ii) 20.3 24.2 36.7 54.6
(iii) 25.3 27.9 53.0 75.7
@iv) 33.1 32.6 78.1 60.1
) 2.8 8.4 6.8 3.6

dependence between the station observations and model outputs may not be negligible at certain
regions as the corresponding p-values are extremely small. The two sample tests introduced in
this paper are useful in this case because they are robust to such dependence.

We perform FPCA on the demeaned sequences. Figure 3 plots the first three PC’s of the station
observations and model outputs. We then apply the SN-based tests ngli,’ y (M) and G(SSK,’ N (Mo)
(with p = 3) to the demeaned sequences, which yields the results summarized in Table 4. It is
seen from the table that the first two eigenvalues of the station observations and model outputs
may be the same, at least statistical significance is below the 10% level, while there is a signif-
icant difference between their third eigenvalue. The SN-based tests also suggest that there are
significant differences of the first and second PCs between the station observations and model
outputs as the corresponding p-values are less than 5% while the difference between the third
PCs is not significant at the 10% level; compare Figure 3. We also tried the basis functions v* ;

and v** for G?]f, y (Mo) (see (4.5) and (4.6)), which leads to the same conclusion. To sum up,
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Size-adjusted powers of the SN-based test and the subsampling-based tests for testing the equal-
ity of the first two eigenfunctions separately and jointly, and the equality of the first four eigenfunctions
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P-values

120°W 110°W 100°W 90°W 80°W
0 1 2 3 4 5

Figure 2. p-values for testing the nullity of lag zero cross-correlation between the station observations and
model outputs at each location. The numbers 0-5 denote the ranges of the p-values, that is, 0 denotes [0.1,
1]; 1 denotes [0.05, 0.1]; 2 denotes [0.025, 0.05]; 3 denotes [0.01, 0.025]; 4 denotes [0.005, 0.01] and 5
denotes [0, 0.005].

our results suggest that the second-order properties of the station observations and model outputs
may not be the same.

In climate projection studies, the use of numerical models outputs has become quite common
nowadays because of advances in computing power and efficient numerical algorithms. As men-
tioned in Jun et al. [11], “Climate models are evaluated on how well they simulate the current
mean climate state, how they can reproduce the observed climate change over the last century,
how well they simulate specific processes, and how well they agree with proxy data for very
different time periods in the past.”” Furthermore, different institutions produce different model
outputs based on different choices of parametrizations, model components, as well as initial and
boundary conditions. Thus there is a critical need to assess the discrepancy/similarity between
numerical model outputs and real observations, as well as among various model outputs. The
two sample tests proposed here can be used towards this assessment at a preliminary stage to
get a quantitative idea of the difference, followed by a detailed statistical characterization using
sophisticated spatio-temporal modeling techniques (see, e.g., Jun et al. [11]). In particular, the
observed significance level for each test can be used as a similarity index that measures the sim-
ilarity between numerical model outputs and real observations, and may be used to rank model
outputs. A detailed study along this line would be interesting, but is beyond the scope of this
article.
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Figure 3. The first three PCs of the station observations (left panels) and model outputs (right panels), and
the associated eigenvalues and percentage of variations explained.
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Table 4. Comparison of the eigenvalues and eigenfunctions of the covariance operators of the station ob-
servations and model outputs

K G(Szizl, N (M) p-value G?]z,’ N (M) p-value

1 10.8 0.1, 1 126.4 (0.025, 0.05)
2 5.4 0.1, 1) 295.4 (0, 0.005)

3 119.9 (0.005, 0.01) 34.2 0.1, 1)

- 326.2 (0.005, 0.01) 318.0 (0.005, 0.01)

Note: The first three rows show the results for testing individual eigencomponent, and the last row shows the results for
testing the first three eigenvalues and eigenfunctions jointly.
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