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Two-Sample Instrumental Variables Estimators

I. Introduction

A familiar problem in econometric research is consistent estimation of the coefficient vector in the

linear regression model

y = Wθ + ε (1)

where y and ε are n×1 vectors and W is an n×k matrix of regressors, some of which are endogenous,

i.e., contemporaneously correlated with the error term ε. As is well known, the ordinary least squares

estimator of θ is inconsistent, but consistent estimation is still possible if there exists an n×q (q ≥ k)

matrix Z of valid instrumental variables. For example, in the case of exact identification with q = k,

the conventional instrumental variables (IV) estimator is

θ̂IV = (Z ′W )−1Z ′y. (2)

With exact identification, this estimator is identical to the two-stage least squares (2SLS) estimator

θ̂2SLS = (Ŵ ′Ŵ )−1Ŵ ′y (3)

where Ŵ = Z(Z ′Z)−1Z ′W . If, in addition, ε is i.i.d. normal, this estimator is asymptotically

efficient among “limited information” estimators.

An influential article by Angrist and Krueger (1992) has pointed out that, under certain con-

ditions, consistent instrumental variables estimation is still possible even when only y and Z (but

not W ) are observed in one sample and only W and Z (but not y) are observed in a second distinct

sample. In that case, the same moment conditions that lead to the conventional IV estimator in

equation (2) motivate the “two-sample instrumental variables” (TSIV) estimator

θ̂TSIV = (Z ′2W2/n2)
−1(Z ′1y1/n1) (4)

1



where Z1 and y1 contain the n1 observations from the first sample and Z2 and W2 contain the n2

observations from the second.

Of the many empirical researchers who have since used a two-sample approach (e.g., Bjorklund

and Jantti, 1997; Currie and Yelowitz, 2000; Dee and Evans, 2003; Borjas, 2004), nearly all have

used the “two-sample two-stage least squares” (TS2SLS) estimator

θ̂TS2SLS = (Ŵ ′
1Ŵ1)

−1Ŵ ′
1y1 (5)

where Ŵ1 = Z1(Z
′
2Z2)

−1Z ′2W2. These researchers may not have been aware that the equivalence of

IV and 2SLS estimation in a single sample does not carry over to the two-sample case. Instead, it

is easy to show that, in the exactly identified case,

θ̂TS2SLS = (Z ′2W2/n2)
−1C(Z ′1y1/n1) (6)

where C = (Z ′2Z2/n2)(Z
′
1Z1/n1)

−1 can be viewed as a sort of correction factor for differences

between the two samples in their covariance matrices for Z. Under Angrist and Krueger’s assump-

tions, those differences would disappear asymptotically. As a result, the correction matrix C would

converge in probability to the identity matrix, and the TSIV and TS2SLS estimators would have

the same probability limit. In finite samples, however, the TSIV estimator originally proposed by

Angrist and Krueger and the TS2SLS estimator typically used by practitioners are numerically

distinct estimators.1

1In a subsequent paper on split-sample IV estimation as a method for avoiding finite-sample bias when the instru-

ments are only weakly correlated with the endogenous regressors, Angrist and Krueger (1995) noted the distinction

between TS2SLS and TSIV and conjectured (incorrectly) that the two estimators have the same asymptotic dis-

tribution. In another related literature, on “generated regressors,” first-stage estimation is performed to create a

proxy for an unobserved regressor in the second-stage equation, rather than to treat the endogeneity of the regressor.

Murphy and Topel (1985) discussed the instance in which the first-stage estimation is based on a different sample

than the second-stage estimation.
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The obvious question then becomes: Which estimator should be preferred? Our paper addresses

this question while going beyond the simple example described above to consider overidentified as

well as exactly identified models, heteroskedastic errors, and stratified samples. It turns out that

the two-sample two-stage least squares approach commonly used by practitioners not only is com-

putationally convenient, but also has theoretical advantages. Its implicit correction for differences

between the two samples in the distribution of Z yields a gain in asymptotic efficiency and also

maintains consistency in the presence of a practically relevant form of stratified sampling.

The outline of this paper is as follows. Section II compares the asymptotic efficiency of the TSIV

and TS2SLS estimators in a basic model. Section III considers departures from the basic model,

such as heteroskedasticity and stratification. Section IV summarizes and concludes the paper.

II. Asymptotic Efficiency

In this section, we will compare two-sample IV estimators in a general single-equation framework:

y1i = β′x1i + γ′z
(1)
1i + ε1i = θ′w1i + ε1i, (7)

x1i = Πz1i + η1i, (8)

x2i = Πz2i + η2i, (9)

where x1i and x2i are p-dimensional random vectors, z1i = [z
(1)′

1i z
(2)′

1i ]′ and z2i are q(= q(1) + q(2))-

dimensional random vectors, w1i is a k(= p + q(1))-dimensional random vector, and Π is a p × q

matrix of parameters.

For efficiency comparison, it is useful to characterize these estimators as generalized method

of moments (GMM) estimators. First the TSIV estimator is a GMM estimator based on moment

conditions

E
[
z1i(y1i − z

(1)′

1i γ)− z2ix
′
2iβ
]

= 0. (10)
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Next the TS2SLS estimator is a GMM estimator based on

E[z1i(y1i − z′1iΠ
′β − z

(1)′

1i γ)] = 0, (11)

E[z2i ⊗ (x2i − Πz2i)] = 0. (12)

When Π is defined to be the coefficient on zi in the population linear projection of xi on zi in the

second sample, (12) always holds by definition of linear projections.

Finally we consider the two-sample limited-information maximum likelihood (TSLIML) estima-

tor for efficiency comparison. Let σ11 = E[(ε1i +β′η1i)
2] and Σ22 = E(η2iη

′
2i). When [εi η′1i]

′ and η2i

are normally distributed the log of the likelihood function can be written as

lnL = −n

2
ln(2π)− n1

2
ln(σ11)−

n2

2
ln|Σ22|

− 1

2σ11

n1∑
i=1

(y1i − β′Πz1i − γ′z
(1)
i )2

−1

2

n2∑
i=1

(x2i − Πz2i)
′Σ−1

22 (x2i − Πz2i).

The TSLIML estimator is asymptotically equivalent to a GMM estimator based on the population

first-order conditions for the TSLIML estimator:

E[Πz1i(y1i − β′Πz1i − γ′z
(1)
i )] = 0, (13)

E[z
(1)
i (y1i − β′Πz1i − γ′z

(1)
i )] = 0, (14)

E(z1i ⊗ βu1i/σ11 + z2i ⊗ Σ−1
22 η2i) = 0, (15)

E(u2
1i/σ

2
11 − 1/σ11) = 0, (16)

E[(Σ−1
22 η2i)⊗ (Σ−1

22 η2i)− |Σ22|tr(Σ−1
22 )]D2 = 0, (17)
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where D2 is a p2 × p(p + 1)/2 matrix such that vec(Σ22) = D2vech(Σ22).

To derive the asymptotic distributions of these estimators we assume the following conditions.

Assumption 1.

(a) {[y1i, z
′
1i]
′}n1

i=1 and {[x2i, z
′
2i]
′}n2

i=1 are iid random vectors with finite fourth moments and are

independent.

(b) E(ε1i|z1i) = 0, E(η1i|z1i) = 0 and E(η2i|z2i) = 0.

(c) E(u2
1i|z1i) = σ11 and E(η2iη

′
2i|z2i) = Σ22 where u1i = ε1i + β′η1i, σ11 > 0 and Σ22 is positive

definite.

(d) Third moments of [ε1i η′1i] and those of η2i are all zero conditional on z1i and z2i, respectively.

(e) For the TSIV estimator

rank

[
E(z2ix

′
2i) 0

0 E(z1iz
(1)′

1i )

]
= dim(θ)

and for the TS2SLS and TSLIML estimators rank[E(z1iw
′
1i)] = dim(θ).

(f) E(z1iz
′
1i) and E(z2iz

′
2i) are nonsingular.

(g) E(z1ix
′
1i) = E(z2ix

′
2i) = E(zix

′
i) and E(z1iz

′
1i) = E(z2iz

′
2i) = E(ziz

′
i).

(h) limn1,n2→∞ n1/n2 = κ for some κ > 0.

Remarks. Assumption (c) rules out conditional heteroskedasticity, which will be considered in

Section III. Assumption (d) is used to simplify the derivation of the asymptotic covariance matrix
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of the TSLIML estimator. Assumption (g) provides a basis for combining two samples.2

Proposition 1. Under Assumption 1, θ̂TSIV , θ̂TS2SLS and θ̂TSLIML are
√

n1-consistent3 and asymp-

totically normally distributed with asymptotic covariance matrices ΣTSIV , ΣTS2SLS and ΣTSLIML,

respectively, where

ΣTSIV =
{
E(wiz

′
i)
[(

σ11 + κβ′Σ22β
)
E(ziz

′
i) + Cov(z1iz

′
1iΠβ) + κCov(z2iz

′
2iΠβ)

]−1
E(ziw

′
i)
}−1

(18)

ΣTS2SLS = {E(wiz
′
i)[(σ11 + κβ′Σ22β)E(ziz

′
i)]
−1E(ziw

′
i)}−1, (19)

ΣTSLIML = ΣTS2SLS, (20)

and Cov(ziz
′
iΠβ) = E(ziz

′
iΠββ′Π′ziz

′
i)− E(ziz

′
iΠβ)E(β′Π′ziz

′
i).

Remarks. 1. In the notation of Angrist and Krueger (1992),

φ1 = σ11E(ziz
′
i) + Cov(ziz

′
iΠβ),

ω2 = β′Σ22βE(ziz
′
i) + Cov(z2iz

′
2iΠβ).

2. Since Cov(z1iz
′
1iΠβ)+κCov(z2iz

′
2iΠβ) is positive semidefinite, it follows that ΣTSIV −ΣTS2SLS is

positive semidefinite. Thus, the TS2SLS estimator is more efficient than the TSIV estimator. The

asymptotic efficiency gain comes from the implicit correction of the TS2SLS estimator for differences

between the finite-sample distributions of z1i and z2i. 3. Proposition 1 shows that the TS2SLS and

TSLIML estimators are asymptotically equivalent. It follows that, when the disturbance terms

[εi η′i]
′ are jointly normally distributed, the TS2SLS estimator is asymptotically efficient within the

2One can show that the TS2SLS estimator requires a weaker condition E(z1ix
′
1i) = cE(z2ix

′
2i) and E(z1iz

′
1i) =

cE(z2iz
′
2i) for some c. Because c does not have to be unity, the TS2SLS estimator is more robust than the TSIV

estimator.

3Following Angrist and Krueger (1992), we scale the estimator by
√

n1.
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class of “limited information” estimators.4

As an illustration, let us consider the case in which one endogenous variable is the only ex-

planatory variable and we have one instrument, i.e., p = q = q(2) = 1. In this case one can show

that

√
n1(β̂TSIV − β)−

√
n1(β̂TS2SLS − β) =

n
−1/2
1

∑n1
i=1 z2

1i −
√

κn
−1/2
1

∑n2
i=1 z2

2i

(1/n2)
∑n2

i=1 z2ix2i

Πβ + op(1).

The first term on the RHS will be asymptotically independent of
√

n1(β̂TS2SLS − β) and have a

positive variance even asymptotically and it follows from Proposition 1 that its variance is given by

V ar(z2
1iΠβ) + κV ar(z2

2iΠβ)

[E(zixi)]2
.

III. Robustness to Departures from the Basic Model

In this section, we consider departures from the basic model, namely, conditional heteroskedasticity

and stratification. In doing so, we assume that the inverse of a consistent estimator of the variance

covariance matrix of moment conditions is used as an optimal weighting matrix to achieve efficiency

among GMM estimators given the moment conditions. We will call the resulting GMM estimator

based on (10) the TSIV estimator and denote it by θ̃TSIV , and the resulting GMM estimator based

on (11) and (12) will be called the TS2SLS estimator and be denoted by θ̃TS2SLS.

4In Monte Carlo experiments, we have verified that these asymptotic results accurately characterize the finite-

sample behavior of the TSIV, TS2SLS, and TSLIML estimators. The exception is that, when the instruments are

very weakly correlated with the endogenous regressor, all three estimators appear to be biased towards zero. This

corroborates an analytical result of Angrist and Krueger (1995) concerning TS2SLS. The finding that TSLIML is

subject to a similar finite-sample bias is interesting. Apparently, the well-known tendency for LIML to be less biased

than 2SLS when the instruments are weak in the single-sample setting (e.g., Angrist, Imbens, and Krueger, 1999)

does not carry over to the two-sample setting.
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First, consider the case of conditional heteroskedasticity. We replace Assumption (c) by

(c’) E(u2
1iz1iz

′
1i) > 0 and E(z2iz

′
2i ⊗ η2iη

′
2i) is positive definite.

Then we obtain the following:

Proposition 2. Under Assumption 1 with Assumption (c) replaced by Assumption (c’), θ̃TSIV and

θ̃TS2SLS are consistent and asymptotically normally distributed with asymptotic covariance matrices

Σhetero
TSIV and Σhetero

TS2SLS, respectively, where

Σhetero
TSIV =

{
E(wiz

′
i)
[
E(u2

i ziz
′
i) + κE(β′ηiη

′
iβziz

′
i) + Cov(z1iz

′
1iΠβ) + κCov(z2iz

′
2iΠβ)

]−1
E(ziw

′
i)
}−1

(21)

Σhetero
TS2SLS =

{
E(wiz

′
i)
[
E(u2

i ziz
′
i) + κE(β′ηiη

′
iβziz

′
i)
]−1

E(ziw
′
i)
}−1

. (22)

Remark. As in Proposition 1, the GMM estimator based on (11) and (12) is asymptotically more

efficient than the GMM estimator based on (10).

Next consider a practically relevant type of stratified sampling. Suppose that either or both of

the two samples use sampling rates that vary with some of the instrumental variables. For example,

household surveys commonly use different sampling rates by race or location, which may be among

the regressors in z
(1)
1i in equation (7). The National Longitudinal Surveys have oversampled African-

Americans, the Health and Retirement Study has oversampled residents of Florida, and the Current

Population Survey has oversampled in less populous states.

When analyzing stratification, it is useful to define two binary selection variables:

s1i =

{
1 if the first sample includes the ith observation
0 otherwise

s2i =

{
1 if the second sample includes the ith observation
0 otherwise
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By construction, s1i + s2i = 1 for each i. Note that the TSIV estimator and the TS2SLS estimator

can be viewed as GMM estimators based on population moment conditions

E

[
si1

E(s1i)
zi(yi − z′1iγ)− s2i

E(s2i)
zix

′
iβ

]
= 0, (23)

and

E[s1izi(yi − z′1iγ)− κs2izix
′
iβ] = 0, (24)

E[(s1i − κs2i)vech(ziz
′
i)] = 0, (25)

respectively.

Assumption 2.

(a) [s1i, s2i, xi, yi, z
′
i]
′ is an iid random vector with finite fourth moments.

(b) E(εi|s1i, zi) = 0 and E(ηi|s1i, s2i, zi) = 0.

(c) E(u2
i |s1i, zi) = σ11 and E(ηiη

′
i|s2i, zi) = Σ22 where ui = εi + β′ηi, σ11 > 0 and Σ22 is positive

definite.

(d) For the TSIV estimator

rank

[
E(s2izix

′
i) 0

0 E(s1iziz
(1)′

i )

]
= dim(θ)

and for the TS2SLS and TSLIML estimators rank[E(s1iziw
′
i)] = dim(θ).

(e) E(s1iziz
′
i) and E(s2iziz

′
i) are nonsingular.

(f) E(s1is2i) = 0.

(g) s1i and s2i are independent of xi.
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(h) E((s1i/p1)zix
′
i) = κE((s2i/p2)zix

′
i) and E((s1i/p1)ziz

′
i) = κE((s2i/p2)ziz

′
i) for some constant

κ where p1 = P (s1i = 1) and p2 = P (s2i = 1).

Remarks.

Because

E[s1izi(yi − z′iΠ
′β − z′1iγ)] = E(s1iziεi) + E[s1iziη

′
i]β = 0,

E[s2izi ⊗ (xi − Πzi)] = E(s2izi ⊗ ηi) = 0,

this type of stratification does not affect the validity of the moment conditions for the TS2SLS

estimator. In contrast, when the two samples differ in their stratification schemes, the population

moment function for the TSIV estimator

E

[
s1i

p1

ziyi −
s2i

p2

zix
′
iβ

]
=

1

p1

E(s1iziεi) + E

[(
s1i

p1

− s2i

p2

)
zix

′
i

]
β

= E

[(
s1i

p1

− s2i

p2

)
ziz

′
i

]
Π′β (26)

is likely to be nonzero. As a result, the TSIV estimator will not be consistent in general.

It is possible, however, to modify the TSIV estimator so that it is robust to stratification. Define

a robust modification of the TSIV estimator, θ̃RTSIV = [β̃′RTSIV γ̃′RTSIV ]′, by a GMM estimator based

on sample moment functions

E[s1izi(yi − z′1iγ)− κs2izix
′
iβ] = 0, (27)

E[(s1i − κs2i)vech(ziz
′
i)] = 0. (28)

Proposition 3. Under Assumption 2, θ̃TS2SLS and θ̃RTSIV are consistent and asymptotically normally

distributed with asymptotic covariance matrices ΣTS2SLS and ΣRTSIV , respectively, where

ΣTS2SLS = (σ11 + κβ′Σ22β)[E(s1iwiz
′
i)E(s1iziz

′
i)
−1E(s1iziw

′
i)]
−1 (29)
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and ΣRTSIV is the upper-left k × k submatrix of (G′
RTSIV V −1

RTSIV GRTSIV )−1,

GRTSIV = −
[

E(s1iziw
′
i) E(s2izix

′
i)β

0 E(s2ivech(ziz
′
i))

]
,

VRTSIV =
[

(σ11 + κβ′Σ22β)E(s1iziz
′
i) + E[(s1i + κ2s2i)ziz

′
iΠ

′ββ′Πziz
′
i] E[(s1i + κ2s2i)ziz

′
iΠ

′βvech(ziz
′
i)

′]
E[(s1i + κ2s2i)vech(ziz

′
i)β

′Πziz
′
i] E[(s1i + κ2s2i)vech(ziz

′
i)vech(ziz

′
i)

′]

]
.

Moreover, ΣTS2SLS ≤ ΣRTSIV .5

Remarks. The TS2SLS estimator is more efficient than the robust version of the TSIV estimator.

Proposition 3 does not rule out cases in which Σstrat
TS2SLS = Σstrat

RTSIV . Even in those cases, the TS2SLS

estimator may be still preferable for the following reason. Note that the number of overidentifying

restrictions for the robust TSIV estimator is q2 + q(q +1)/2−p−1 whereas the one for the TS2SLS

estimator is q2−p. In typical applications, q > 1 and thus q2+q(q+1)/2−p−1 is greater than q2−p.

Because using too many moment conditions often results in poor finite-sample performance of the

GMM estimator (e.g., Tauchen, 1986, and Andersen and Sorensen, 1996), the TS2SLS estimator

may be preferable in small samples.

IV. Summary

Following Angrist and Krueger’s (1992) influential work on two-sample instrumental variables

(TSIV) estimation, many applied researchers have used a two-sample two-stage least squares (TS2SLS)

variant of Angrist and Krueger’s estimator. In the two-sample context, unlike the single-sample

setting, the IV and 2SLS estimators are numerically distinct. Under the conditions in which both

estimators are consistent, we have shown that the commonly used TS2SLS approach is more as-

ymptotically efficient because it implicitly corrects for differences in the empirical distributions of

the instrumental variables between the two samples. That correction also protects the TS2SLS

5Following the convention, Σstrat
TS2SLS ≤ Σstrat

RTSIV if and only if Σstrat
RTSIV − Σstrat

TS2SLS is positive semidefinite.
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estimator from an inconsistency that afflicts the TSIV estimator when the two samples differ in

their stratification schemes.
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Appendix: Proofs

In Propositions 1, 2 and 3, the consistency and asymptotic normality of the GMM estimators follow

from the standard arguments. Thus, we will focus on the derivation of asymptotic variances in the

following proofs.

Proof of Proposition 1. Let GTSIV and VTSIV denote the Jacobian and covariance matrix,

respectively, of the moment condition (10). Under Assumptions 1(c)(g)(h), we have

GTSIV = −E(ziw
′
i),

VTSIV = (σ11 + κβ′Σ22β) E(ziz
′
i) + Cov(z1iz

′
1iΠβ) + κCov(z2iz

′
2iΠβ).

from which (18) follows.

Let GTS2SLS and VTS2SLS denote the Jacobian and covariance matrix, respectively, of the moment

conditions (11) and (12). Because the Jacobian and covariance matrices of the moment functions

are given by

GTS2SLS = −
[

E(ziw
′
i) E(ziz

′
i)⊗ β′

0 E(ziz
′
i)⊗ Ip

]
,

VTS2SLS =

[
σ11E(ziz

′
i) 0

0 κE(ziz
′
i)⊗ Σ22

]
,

respectively, the asymptotic covariance matrix of the TS2SLS estimator is the k × k upper-left

submatrix of the inverse of

G′
TS2SLSV −1

TS2SLSGTS2SLS =

 1
σ11

E(wiz
′
i)(E(ziz

′
i))
−1E(ziw

′
i) E(wiz

′
i)⊗ β′

σ11

E(ziw
′
i)⊗ β

σ11
E(ziz

′
i)⊗

(
ββ′

σ11
+ 1

κ
Σ−1

22

)  .

Because the k × k upper-left submatrix of (G′
TS2SLSV −1

TS2SLSGTS2SLS)−1 is the inverse of

1
σ11

E(wiz
′
i)(E(ziz

′
i))
−1E(ziw

′
i)− E(wiz

′
i)⊗

β′

σ11

[
E(ziz

′
i)⊗

(
ββ′

σ11
+

1
κ

Σ−1
22

)]−1

E(ziw
′
i)⊗

β

σ11

=

[
1

σ11
− β′

σ11

(
ββ′

σ11
+

1
κ

Σ−1
22

)−1 β

σ11

]−1

E(wiz
′
i)(E(ziz

′
i))
−1E(ziw

′
i)
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by Theorem 13 in Amemiya (1985, p. 460) and

 1

σ11

− β′

σ11

(
ββ′

σ11

+
1

κ
Σ−1

22

)−1
β

σ11

−1

= σ11 + κβ′Σ22β

by Theorem 0.7.4 of Horn and Johnson (1985, p.19), (19) follows.

Under the assumptions, one can show that the asymptotic distribution of θ̂TSLIML and the one

of the TSLIML estimator for [σ11 vech(Σ22)
′]′ are independent. Thus, we can focus on the moment

conditions (13), (14) and (15). Under the stated assumptions, the Jacobian GTSLIML and covariance

matrix VTSLIML of these moment conditions are the same and are given by
ΠE(ziz

′
i)Π

′/σ11 ΠE(ziz
′
1i)/σ11 ΠE(ziz

′
i)⊗ β′/σ11

E(z1iz
′
i)Π

′/σ11 E(z1iz
′
1i)/σ11 E(z1iz

′
i)⊗ β′/σ11

E(ziz
′
i)Π

′ ⊗ β/σ11 E(ziz
′
1i)⊗ β/σ11 E(ziz

′
i)⊗

(
ββ′

σ11
+ 1

κ
Σ−1

22

)
 .

Since

[
ΠE(ziz

′
i)Π

′/σ11 ΠE(ziz
′
1i)/σ11

E(z1iz
′
i)Π

′/σ11 E(z1iz
′
1i)/σ11

]

−
[

ΠE(ziz
′
i)⊗ β′/σ11

E(z1iz
′
i)Π

′ ⊗ β′/σ11

] [
E(ziz

′
i)⊗

(
ββ′

σ11

+
1

κ
Σ−1

22

)]−1 [
ΠE(ziz

′
i)⊗ β′/σ11

E(z1iz
′
i)Π

′ ⊗ β′/σ11

]′

=

(
1− 1

σ11

β′(
ββ′

σ11

+
1

κ
Σ−1

22 )−1β

)[
ΠE(ziz

′
i)Π

′/σ11 ΠE(ziz
′
1i)/σ11

E(z1iz
′
i)Π

′/σ11 E(z1iz
′
1i)/σ11

]

and

β′(
ββ′

σ11

+
1

k
Σ−1

22 )−1β = κβ′Σ22β − (κβ′Σ22β)
2
/ (σ11 + κβ′Σ22β) ,

one can show that the upper-left k× k submatrix of (G′
TSLIMLV −1

TSLIMLGTSLIML)−1 can be written

as (20).

Proof of Proposition 2. Note that

A−1 − A−1BA−1 + A−1B(A + B)−1BA−1 = B−1A(A + B)−1BA−1 = (A + B)−1, (30)

where A = E(u2
i ziz

′
i) and B = E(β′ηiη

′
iβziz

′
i). The remainders of the proofs of (21) and (22) are

14



analogous to those of (18) and (19), respectively, and thus they are omitted.

Proof of Proposition 3. The proof of (29) is analogous to the one of (19) and is omitted.

By Theorem 13 of Amemiya (1985, p.460), the upper-left q × q submatrix matrix and the

upper-right q × (q(1 + 1)/2) submatrix of V −1
RTSIV can be written as the inverse of

(σ11 + κβ′Σ22β)E(s1iziz
′
i) + E[(s1i + κ2s2i)ziz

′
iΠ
′ββ′Πziz

′
i]

−E[(s1i + κ2s2i)ziz
′
iΠ
′βvech(ziz

′
i)
′]{E[(s1i + κ2s2i)ziz

′
iΠ
′ββ′Πziz

′
i]}−1

×E[(s1i + κ2s2i)vech(ziz
′
i)β

′Πziz
′
i]

= (σ11 + κβ′Σ22β)E(s1iziz
′
i) (31)

where the equality follows because the residuals from regressing β′Πziz
′
i on vech(zizi)

′ are numer-

ically zero by the projection argument. The other submatrices of V −1
RAK can be obtained by using

the same theorem. After some matrix algebra, one can show that

(G′
RTSIV V −1

RTSIV GRTSIV )−1 =

[
Σstrat

TS2SLS a′

a b

]

where

a′ = E(s1iwiz
′
i)[E(s1iziz

′
i)]
−1
(
E(s2izix

′
i)β − E[(s1i + κ2s2i)ziz

′
iΠ
′βvech(zizi)

′]

× {E[(s1i + κ2s2i)vech(zizi)vech(zizi)
′]}−1E(s2ivech(ziz

′
i))
)

and b is a positive number. Because a is not necessarily zero in general and b is positive, Σstrat
TS2SLS

cannot be greater than Σstrat
RTSIV by Theorem 13 of Amemiya (1985, p.460).
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