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TWO SAMPLE TESTS FOR HIGH-DIMENSIONAL
COVARIANCE MATRICES

BY JUN LI AND SONG XI CHEN1

Iowa State University, and Peking University and Iowa State University

We propose two tests for the equality of covariance matrices between two
high-dimensional populations. One test is on the whole variance–covariance
matrices, and the other is on off-diagonal sub-matrices, which define the co-
variance between two nonoverlapping segments of the high-dimensional ran-
dom vectors. The tests are applicable (i) when the data dimension is much
larger than the sample sizes, namely the “large p, small n” situations and
(ii) without assuming parametric distributions for the two populations. These
two aspects surpass the capability of the conventional likelihood ratio test.
The proposed tests can be used to test on covariances associated with gene
ontology terms.

1. Introduction. Modern statistical data are increasingly high dimensional,
but with relatively small sample sizes. Genetic data typically carry thousands of
dimensions for measurements on the genome. However, due to limited resources
available to replicate study objects, the sample sizes are usually much smaller than
the dimension. This is the so-called “large p, small n” paradigm. An enduring in-
terest in Statistics is to know if two populations share the same distribution or cer-
tain key distributional characteristics, for instance the mean or covariance. The two
populations here can refer to two “treatments” in a study. As testing for equality
of high-dimensional distributions is far more challenging than that for the fixed-
dimensional data, testing for equality of key characteristics of the distributions
is more achievable and desirable due to easy interpretation. There has been a set
of research on inference for means of high-dimensional distributions either in the
context of multiple testing, as in van der Laan and Bryan (2001), Donoho and Jin
(2004), Fan, Hall and Yao (2007) and Hall and Jin (2008), or in the context of si-
multaneous multivariate testing as in Bai and Saranadasa (1996) and Chen and Qin
(2010). See also Huang, Wang and Zhang (2005), Fan, Peng and Huang (2005) and
Zhang and Huang (2008) for inference on high-dimensional conditional means.

In addition to detecting difference among the population means, there is a strong
motivation for comparing dependence among components of random vectors un-
der different treatments, as high data dimensions can potentially increase the com-
plexity of the dependence. In genomic studies, genetic measurements, either the
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micro-array expressions or the single nucleotide polymorphism (SNP) counts, may
have an internal structure dictated by the genetic networks of living cells. And the
variations and dependence among the measurements of the genes may be different
under different biological conditions and treatments. For instance, some genes may
be tightly correlated in the normal or less severe conditions, but they can become
decoupled due to certain disease progression; see Shedden and Taylor (2004) for a
discussion.

There have been advances on inference for high-dimensional covariance matri-
ces. The probability limits and the limiting distributions of extreme eigenvalues of
the sample covariance matrix based on the random matrix theory are developed in
Bai (1993), Bai and Yin (1993), Tracy and Widom (1996), Johnstone (2001) and
El Karoui (2007), Johnstone and Lu (2009), Bai and Silverstein (2010) and oth-
ers. Wu and Pourahmadi (2003) and Bickel and Levina (2008a, 2008b) proposed
consistent estimators to the population covariance matrices by either truncation
or Cholesky decomposition. Fan, Fan and Lv (2008), Lam and Yao (2011) and
Lam, Yao and Bathia (2011) considered covariance estimation under factor mod-
els. There are also developments in conducting LASSO-type regularization estima-
tion of high-dimensional covariances in Huang et al. (2006) and Rothman, Levina
and Zhu (2010). Despite these developments, it is still challenging to transform
these results to test procedures on high-dimensional covariance matrices.

As part of the effort in discovering significant differences between two high-
dimensional distributions, we develop in this paper two-sample test procedures on
high-dimensional covariance matrices. Let Xi1, . . . ,Xini

be an independent and
identically distributed sample drawn from a p-dimensional distribution Fi , for
i = 1 and 2, respectively. Here the dimensionality p can be a lot larger than the
two sample sizes n1 and n2 so that p/ni → ∞. Let μi and �i be, respectively, the
mean vector and variance–covariance matrix of the ith population. The primary
interest is to test

H0a :�1 = �2 versus H1a :�1 �= �2.(1.1)

Testing for the above high-dimensional hypotheses is a nontrivial statistical prob-
lem. Designed for fixed-dimensional data, the conventional likelihood ratio test
[see Anderson (2003) for details] may be used for the above hypothesis under
p ≤ min{n1, n2}. If we let

X̄i = 1

ni

ni∑
j=1

Xij and Qi =
ni∑

j=1

(Xij − X̄i)(Xij − X̄i)
′,

then the likelihood ratio (LR) statistic for H0a is

λn =
∏2

i=1 |Qi |(1/2)ni

|Q|(1/2)n

n(1/2)pn∏2
i=1 n

(1/2)pni

i

,
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where Q = Q1 + Q2 and n = n1 + n2. However, when p > min{n1, n2}, at least
one of the sample covariance matrices Qi/(ni − 1) is singular [Dykstra (1970)].
This causes the LR statistic −2 log(λn) to be either infinite or undefined, which
fundamentally alters the limiting behavior of the LR statistic. In an important de-
velopment, Bai et al. (2009) demonstrated that even when p ≤ min{n1, n2} where
λn is properly defined, the test encounters a power loss if p → ∞ in such a manner
that p/ni → ci ∈ (0,1) for i = 1 and 2. By employing the theory of large dimen-
sional random matrices, Bai et al. (2009) proposed a correction to the LR statistic
and demonstrated that the corrected test is valid under p/ni → ci ∈ (0,1). Schott
(2007) proposed a test based on a metric that measures the difference between the
two sample covariance matrices by assuming p/ni → ci ∈ [0,∞) and the normal
distributions. There are also one sample tests for a high-dimensional variance–
covariance �. Ledoit and Wolf (2002) and Chen, Zhang and Zhong (2010) intro-
duced tests for � being sphericity and identity for normally distributed random
vectors. Ledoit and Wolf (2004) considered a class of covariance estimators which
are convex sums of Sn and Ip under moderate dimensionality (p/n → c). Cai and
Jiang (2011) developed tests for � having a banded diagonal structure based on
random matrix theory. Lan et al. (2010) developed a bias-corrected test to examine
the significance of the off-diagonal elements of the residual covariance matrix. All
these tests assume either normality or moderate dimensionality such that p/n → c

for a finite constant c, or both.
We develop in this paper two-sample tests on high-dimensional variance–

covariances without the normality assumption while allowing the dimension to be
much larger than the sample sizes. In addition to testing for the whole variance–
covariance matrices, we propose a test on the equality of off-diagonal sub-matrices
in �1 and �2. The interest on such a test arises naturally in applications, when we
are interested in knowing if two segments of the high-dimensional data share the
same covariance between the two treatments. We will argue in Section 3 that the
two tests on the whole covariance and the off-diagonal sub-matrices may be used
collectively to reduce the dimensionality of the testing problem.

This paper is organized as follows. We propose the two-sample test for the
whole covariance matrices in Section 2 which includes the asymptotic normality of
the test statistic and a power evaluation. Properties of the test for the off-diagonal
sub-matrices are reported in Section 3. Results from simulation studies are out-
lined in Section 4. Section 5 demonstrates how to apply the proposed tests on a
gene ontology data set for acute lymphoblastic leukemia. All technical details are
relegated to Section 6.

2. Test for high-dimensional variance–covariance. The test statistic for the
hypothesis (1.1) is formulated by targeting on tr{(�1 − �2)

2}, the squared Frobe-
nius norm of �1 − �2. Although the Frobenius norm is large in magnitude com-
pared with other matrix norms, using it for testing brings two advantages. One
is that test statistics based on the norm are relatively easier to be analyzed than
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those based on the other norm, which is especially the case when considering the
limiting distribution of the test statistics. The latter renders formulations of test
procedures and power analysis, as we will demonstrate later. The other advantage
is that it can be used to directly target on certain sections of the covariance matrix
as shown in the next section. The latter would be hard to accomplish with other
norms.

As tr{(�1 −�2)
2} = tr(�2

1)+ tr(�2
2)−2 tr(�1�2), we will construct estimators

for each term. It is noted that tr(S2
nh), where Snh is the sample covariance of the

hth sample, is a poor estimator of tr(�2
h) under high dimensionality. The idea is

to streamline terms in tr(S2
nh) so as to make it unbiased to tr(�2

h) and easier to
analyze in subsequent asymptotic evaluations. We consider U-statistics of form

1
nh(nh−1)

∑
i �=j (X

′
hiXhj )

2 which is unbiased if μh = 0. To account for μh �= 0,
we subtract two other U-statistics of order three and four, respectively, using an
approach dated back to Glasser (1961, 1962). Specifically, we propose

Anh
= 1

nh(nh − 1)

∑
i �=j

(X′
hiXhj )

2 − 2

nh(nh − 1)(nh − 2)

�∑
i,j,k

X′
hiXhjX

′
hjXhk

(2.1)

+ 1

nh(nh − 1)(nh − 2)(nh − 3)

�∑
i,j,k,l

X′
hiXhjX

′
hkXhl

to estimate tr(�2
h). Throughout this paper we use

∑� to denote summation
over mutually distinct indices. For example,

∑�
i,j,k means summation over

{(i, j, k) : i �= j, j �= k, k �= i}. Similarly, the estimator for tr(�1�2) is

Cn1n2 = 1

n1n2

∑
i

∑
j

(X′
1iX2j )

2 − 1

n1n2(n1 − 1)

�∑
i,k

∑
j

X′
1iX2jX

′
2jX1k

− 1

n1n2(n2 − 1)

�∑
i,k

∑
j

X′
2iX1jX

′
1jX2k(2.2)

+ 1

n1n2(n1 − 1)(n2 − 1)

�∑
i,k

�∑
j,l

X′
1iX2jX

′
1kX2l .

There are other ways to attain estimators for tr(�2
h) and tr(�1�2). In fact, there

is a family of estimators for tr(�2
h) in the form of tr(S2

h) − αnh

∑nh

i=1 tr{(XhiX
′
hi −

Sh)
2} where αnh

= α/n2
h for any constant α. A family can be similarly formu-

lated for tr(�1�2). It can be shown that this family of estimators is asymptotically
equivalent to the proposed Anh

in the sense that they share the same leading order
term. However, this family is more complex than the proposed.

The test statistic is

Tn1,n2 = An1 + An2 − 2Cn1n2(2.3)
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which is unbiased for tr{(�1 −�2)
2}. Besides the unbiasedness, Tn1,n2 is invariant

under the location shift and orthogonal rotation. This means that we can assume
without loss of generality that E(Xij ) = 0 in the rest of the paper. As noted by a
reviewer, the computation of Tn1,n2 would be extremely heavy if the sample sizes
nh are very large. Indeed, the computation burden comes from the last two sums
in Anh

and the last three in Cn1,n2 , where the numbers of terms in the summations
are in the order of n3

h or n4
h, respectively. Although the main motivation was the

“large p small n” situations, we nevertheless require nh → ∞ in our asymptotic
justifications. A solution to alleviate the computation burden can be found by not-
ing that the last two terms in Anh and the last three in Cn1,n2 are all of smaller
order than the first, under the assumption of μh = 0. This means that we can first
transform each datum Xhi to Xhi − X̄nh

, and then compute only the first term in
(2.1) and (2.2). These will reduce the computation to O(n2

h) without affecting the
asymptotic normality. The only price paid for such an operation is that the modified
statistic is no longer unbiased.

To establish the limiting distribution of Tn1,n2 so as to establish the two sample
test for the variance–covariance, we assume the following conditions:

A1. As min{n1, n2} → ∞, n1/(n1 + n2) → ρ for a fixed constant ρ ∈ (0,1).
A2. As min{n1, n2} → ∞, p = p(n1, n2) → ∞, and for any k and l ∈ {1,2},

tr(�k�l) → ∞ and

tr{(�i�j )(�k�l)} = o{tr(�i�j ) tr(�k�l)}.(2.4)

A3. For each i = 1 or 2, Xij = �iZij + μi where �i is a p × mi matrix
such that �i�

′
i = �i , {Zij }ni

j=1 are independent and identically distributed
(i.i.d.) mi -dimensional random vectors with mi ≥ p and satisfy E(Zij ) = 0,
Var(Zij ) = Imi

, the mi × mi identity matrix. Furthermore, if write Zij =
(zij1, . . . , zijmi

)′, then each zijk has finite 8th moment, E(z4
ijk) = 3 + �i

for some constant �i and for any positive integers q and αl such that∑q
l=1 αl ≤ 8E(z

α1
ij l1

· · · zαq

ij lq
) = E(z

α1
ij l1

) · · ·E(z
αq

ij lq
) for any l1 �= l2 �= · · · �= lq .

While Condition A1 is of standard for two-sample asymptotic analysis,
A2 spells the extent of high dimensionality and the dependence which can be
accommodated by the proposed tests. A key aspect is that it does not impose
any explicit relationships between p and the sample sizes, but rather requires a
quite mild (2.4) regarding the covariances. To appreciate (2.4), we note that if
i = j = k = l, it has the form of tr(�4

i ) = o{tr2(�2
i )}, which is valid if all the

eigenvalues of �i are uniformly bounded. Condition (2.4) also makes the asymp-
totic study of the test statistic manageable under high dimensionality. We note here
that requiring tr(�k�l) → ∞ is a precursor to (2.4). We do not assume specific
parametric distributions for the two samples. Instead, a general multivariate model
is assumed in A3 which was advocated in Bai and Saranadasa (1996) for test-
ing high dimensional means. The model resembles that of the factor model with
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Zi representing the factors, except that here we allow the number of factor mi at
least as large as p. This provides flexibility in accommodating a wider range of
multivariate distributions for the observed data Xij .

Derivations leading to (6.4) in Section 6 show that, under A2 and A3, the leading
order variance of Tn1,n2 under either H0a or H1a is

σ 2
n1,n2

=
2∑

i=1

[
4

n2
i

tr2(�2
i ) + 8

ni

tr{(�2
i − �1�2)

2}

+ 4�i

ni

tr{�′
i (�1 − �2)�i ◦ �′

i(�1 − �2)�i}
]

(2.5)

+ 8

n1n2
tr2(�1�2),

where A ◦ B = (aij bij ) for two matrices A = (aij ) and B = (bij ). Note that for
any symmetric matrix A, tr(A ◦ A) ≤ tr(A2). Hence,

tr{�′
1(�1 − �2)�1 ◦ �′

1(�1 − �2)�1} ≤ tr{(�2
1 − �1�2)

2} and

tr{�′
2(�1 − �2)�2 ◦ �′

2(�1 − �2)�2} ≤ tr{(�2
2 − �2�1)

2}.
These together with the fact that �i ≥ −2 ensure that σ 2

n1,n2
> 0. We note that the

�i–Zij pair in Model A3 is not unique, and there are other pairs, say �̃i and Z̃ij ,
such that Xij = �̃iZ̃ij . However, it can be shown that the value of 4�i

ni
tr{�′

i (�1 −
�2)�i ◦ �′

i (�1 − �2)�i} remains the same.
The following theorem establishes the asymptotic normality of Tn1,n2 .

THEOREM 1. Under Conditions A1–A3, as min{n1, n2} → ∞
σ−1

n1,n2
[Tn1,n2 − tr{(�1 − �2)

2}] d→ N(0,1).

It is noted that under H0a :�1 = �2 = �, say, σ 2
n1,n2

becomes

σ 2
0,n1,n2

= 4
(

1

n1
+ 1

n2

)2

tr2(�2).

To formulate a test procedure, we need to estimate σ 2
0,n1,n2

. As An1 and An2 are

unbiased estimators of tr(�2
1) and tr(�2

2), respectively, we will use σ̂ 2
0,n1,n2

=:
2
n2

An1 + 2
n1

An2 as the estimator. The following theorem shows that σ̂ 2
0,n1,n2

is ratio-

consistent to σ 2
0,n1,n2

.

THEOREM 2. Under Conditions A1–A3 and H0a , as min{n1, n2} → ∞,

Ani

tr(�2
i )

p→ 1 for i = 1 and 2 and
σ̂0,n1,n2

σ0,n1,n2

p→ 1.(2.6)
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Applying Theorems 1 and 2, under H0a :�1 = �2,

Ln = Tn1,n2

σ̂0,n1,n2

d→ N(0,1).(2.7)

Hence, the proposed test with a nominal α level of significance rejects H0a if
Tn1,n2 ≥ σ̂0,n1,n2zα , where zα is the upper-α quantile of N(0,1).

Let β1,n1,n2(�1,�2;α) = P(Tn1,n2/σ̂0,n1,n2 > zα|H1a) be the power of the test
under H1a :�1 �= �2. From Theorems 1 and 2, the leading order power is

�

(
−Zn1,n2(�1,�2)zα + tr{(�1 − �2)

2}
σn1,n2

)
,(2.8)

where Zn1,n2(�1,�2) = (σn1,n2)
−1{ 2

n2
tr(�2

1) + 2
n1

tr(�2
2)}. It is the case that

Zn1,n2(�1,�2) is bounded. To appreciate this, we note that σ 2
n1,n2

≥ 4
n2

1
tr2(�2

1) +
4
n2

2
tr2(�2

2). Let γp = tr(�2
1)/ tr(�2

2) and kn = n1/(n1 + n2), then

Zn1,n2(�1,�2) ≤ (2/n2) tr(�2
1) + (2/n1) tr(�2

2)√
(4/n2

1) tr2(�2
1) + (4/n2

2) tr2(�2
2)

=: Rn(γp),

where Rn(u) = ( kn

1−kn
u + 1){u2 + ( kn

1−kn
)2}−1/2. Since Rn(u) is maximized

uniquely at u∗ = ( kn

1−kn
)3, Zn1,n2(�1,�2) ≤ 1

kn(1−kn)
. Thus,

β1,n1,n2(�1,�2;α) ≥ �

(
− zα

kn(1 − kn)
+ tr{(�1 − �2)

2}
σn1,n2

)
(2.9)

implying the power is bounded from below by the probability on the right-hand
side.

Both (2.8) and (2.9) indicate that SNR1(�1,�2) =: tr{(�1 − �2)
2}/σn1,n2 is

instrumental in determining the power of the test. We term SNR1(�1,�2) as the
signal-to-noise ratio for the current testing problem since tr{(�1 − �2)

2} may be
viewed as the signal while σn1,n2 may be viewed as the level of the noise. If the
signal is strong or the noise is weak so that the signal-to-noise ratio diverges to the
infinity, the power will converge to 1. If the signal-to-noise ratio diminishes to 0,
the test will not be powerful and cannot distinguish H0a from H1a . We note that

σ 2
n1,n2

≤ 4
{

1

n1
tr(�2

1) + 1

n2
tr(�2

2)

}2

+ max{8 + 4�1,8 + 4�2}
{

1

n1
tr(�2

1) + 1

n2
tr(�2

2)

}
tr{(�1 − �2)

2}.

Let δ1,n = { 1
n1

tr(�2
1) + 1

n2
tr(�2

2)}/ tr{(�1 − �2)
2}, then

SNR1(�1,�2) ≥ [4δ2
1,n + max{8 + 4�1,8 + 4�2}δ1,n]−1/2.
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Thus, if the difference between �1 and �2 is not too small so that

tr{(�1 − �2)
2} is at the same or a larger order of

1
n1

tr(�2
1) + 1

n2
tr(�2

2),(2.10)

the test will be powerful. Condition (2.10) is trivially true for fixed-dimensional
data while ni → ∞. For high-dimensional data, it is less automatic as tr(�2

i )

can diverge. To gain further insight on (2.10), let λi1 ≤ λi2 ≤ · · · ≤ λip be the
eigenvalues of �i . Then, a sufficient condition for the test to have a nontriv-
ial power is tr{(�1 − �2)

2} = O{ 1
n1

∑p
i=1 λ2

1i + 1
n2

∑p
i=1 λ2

2i}. If all the eigen-
values of �1 and �2 are bounded away from zero and infinity, (2.10) becomes

tr{(�1 − �2)
2} = O(n−1p). Let δβ = p−1

√
tr{(�1 − �2)2} be the average signal.

Then the test has nontrivial power if δβ is at least at the order of n−1/2p−1/2, which
is actually smaller than the conventional order of n−1/2 for fixed-dimension situ-
ations. This partially reflects the fact that high data dimensionality is not entirely
a curse as there are more data information available as well. If the covariance ma-
trix is believed to have certain structure, for instance banded or bandable in the
sense of Bickel and Levina (2008a), we may modify the test statistic so that the
comparison of the two covariance matrices is made in the “important regions” un-
der the structure. The modification can be in the form of thresholding, a topic we
would not elaborate in this paper; see Cai, Liu and Xia (2011) for research in this
direction.

3. Test for covariance between two sub-vectors. Let Xij = (X
(1)
ij ,X

(2)
ij ) be

a partition of the original data vector into sub-vectors of dimensions of p1 and p2,
and �i,12 = Cov(X

(1)
ij ,X

(2)
ij ) be the covariance between the sub-vectors. The fo-

cus in this section is to develop a test procedure for H0b :�1,12 = �2,12. Test-
ing for such a hypothesis is importance in its own right, for instance in detecting
changes in correlation between two groups of genes under two treatment regimes.
It can be also viewed as part of the effort in reducing the dimensionality in testing
high-dimensional variance–covariances. To elaborate on this, consider the parti-
tion of �i ,

�i =
(

�i,11 �i,12
�′

i,12 �i,22

)
,(3.1)

induced by the partition of the data vectors. Instead of testing on the whole matrices
�1 = �2, we can first test separately on the two diagonal blocks �1,ll = �2,ll for
l = 1 and 2, by employing the test developed in the previous section based on
the sub-vectors of the two sample data respectively. Then, we can test for the off-
diagonal blocks H0b :�1,12 = �2,12 using a test procedure to be developed in this
section.

The partition of data vectors also induces a partition of the multivariate model
in A3 so that

X
(1)
ij = �

(1)
i Zij + μ

(1)
i and X

(2)
ij = �

(2)
i Zij + μ

(2)
i ,(3.2)
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where �
(1)
i is p1 × mi and �

(2)
i is p2 × mi such that �′

i = (�
(1)′
i , �

(2)′
i ) and

�
(1)
i �

(2)′
i = �i,12.

We are interested in testing H0b :�1,12 = �2,12 vs H1b :�1,12 �= �2,12. The test
statistic is aimed at

tr{(�1,12 − �2,12)(�1,12 − �2,12)
′}

(3.3)
= tr(�1,12�

′
1,12) + tr(�2,12�

′
2,12) − 2 tr(�1,12�

′
2,12),

a discrepancy measure between �1,12 and �2,12.
With the same considerations as those when we proposed the estimators in (2.1)

and (2.2), we estimate tr(�h,12�
′
h,12) by

Unh
= 1

nh(nh − 1)

∑
i �=j

X
(1)′
hi X

(1)
hj X

(2)′
hj X

(2)
hi

− 2

nh(nh − 1)(nh − 2)

�∑
i,j,k

X
(1)′
hi X

(1)
hj X

(2)′
hj X

(2)
hk(3.4)

+ 1

nh(nh − 1)(nh − 2)(nh − 3)

�∑
i,j,k,l

X
(1)′
hi X

(1)
hj X

(2)′
hk X

(2)
hl ,

and estimate tr(�1,12�
′
2,12) by

Wn1n2 = 1

n1n2

∑
i,j

X
(1)′
1i X

(1)
2j X

(2)′
2j X

(2)
1i

− 1

n1n2(n1 − 1)

∑
i �=k,j

X
(1)′
1i X

(1)
2j X

(2)′
2j X

(2)
1k

(3.5)

− 1

n1n2(n2 − 1)

∑
i �=k,j

X
(1)′
2i X

(1)
1j X

(2)′
1j X

(2)
2k

+ 1

n1n2(n1 − 1)(n2 − 1)

∑
i �=k,j �=l

X
(1)′
1i X

(1)
2j X

(2)′
1k X

(2)
2l .

Both Unh and Wn1n2 are linear combinations of U-statistics.
Combining these estimators together leads to an unbiased estimator of

tr{(�1,12 − �2,12)(�1,12 − �2,12)
′},

Sn1,n2 = Un1 + Un2 − 2Wn1n2,(3.6)

which is also invariant under the location shift and orthogonal rotations.
To establish the asymptotic normality of Sn1,n2 , we need an extra assumption

regarding the off-diagonal sub-matrices.
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A4. As min{n1, n2} → ∞, for any i, j, k and l ∈ {1,2}.
tr(�i,11�j,12�k,22�

′
l,12) = o{tr(�i,11�j,11) tr(�k,22�l,22)}.(3.7)

Derivations leading to (6.5) in Section 6 show that, under A2, A3 and A4, the
leading order variance of Sn1,n2 is

ω2
n1,n2

=
2∑

i=1

[
2

n2
i

tr2(�i,12�
′
i,12) + 2

n2
i

tr(�2
i,11) tr(�2

i,22)

+ 4

ni

tr{(�i,12�
′
1,12 − �i,12�

′
2,12)

2}

+ 4

ni

tr{(�i,11�1,12 − �i,11�2,12)(�i,22�
′
1,12 − �i,22�

′
2,12)}(3.8)

+ 4�i

ni

tr
{
�

(1)′
i (�1,12 − �2,12)�

(2)
i ◦ �

(1)′
i (�1,12 − �2,12)�

(2)
i

}]
+ 4

n1n2
tr2(�1,12�

′
2,12) + 4

n1n2
tr(�1,11�2,11) tr(�1,22�2,22).

Similarly to the analysis on Tn1,n2 in the previous section, the asymptotic nor-
mality of Sn1,n2 can be established in the following theorem.

THEOREM 3. Under Conditions A1–A4, as min{n1, n2} → ∞,

ωn1,n2
−1[Sn1,n2 − tr{(�1,12 − �2,12)(�1,12 − �2,12)

′] d→ N(0,1).

Under H0b :�1,12 = �2,12 = �12, say, ω2
n1,n2

becomes

ω2
0,n1,n2

= 2
(

1

n1
+ 1

n2

)2

tr2(�12�
′
12) + 2

2∑
i=1

1

n2
i

tr(�2
i,11) tr(�2

i,22)

(3.9)

+ 4

n1n2
tr(�1,11�2,11) tr(�1,22�2,22).

In order to formulate a test procedure, ω2
0,n1,n2

needs to be estimated. An unbi-

ased estimator of tr(�2
h,ll) for h = 1 or 2 and l = 1 or 2, is

A(l)
nh

= 1

nh(nh − 1)

∑
i �=j

(
X

(l)′
hi X

(l)
hj

)2 − 2

nh(nh − 1)(nh − 2)

�∑
i,j,k

X
(l)′
hi X

(l)
hj X

(l)′
hj X

(l)
hk

+ 1

nh(nh − 1)(nh − 2)(nh − 3)

�∑
i,j,k,l

X
(l)′
hi X

(l)
hj X

(l)′
hk X

(l)
hl .
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Similarly, an unbiased estimator of tr(�1,hh�2,hh), for h = 1 or 2, is

C(h)
n1n2

= 1

n1n2

∑
i,j

(
X

(h)′
1i X

(h)
2j

)2 − 1

n1n2(n1 − 1)

∑
i �=k,j

X
(h)′
1i X

(h)
2j X

(h)′
2j X

(h)
1k

− 1

n1n2(n2 − 1)

∑
i �=k,j

X
(h)′
2i X

(h)
1j X

(h)′
1j X

(h)
2k

+ 1

n1n2(n1 − 1)(n2 − 1)

∑
i �=k,j �=l

X
(h)′
1i X

(h)
2j X

(h)′
1k X

(h)
2l .

Then under H0b, an unbiased estimator of ω2
0,n1,n2

is

ω̂2
0,n1,n2

= 2
(

Un1

n2
+ Un2

n1

)2

+ 2

n2
1

A(1)
n1

A(2)
n1

+ 2

n2
2

A(1)
n2

A(2)
n2

+ 4

n1n2
C(1)

n1n2
C(2)

n1n2
.

The following theorem shows that ω̂2
0,n1,n2

is ratio-consistent to ω2
0,n1,n2

.

THEOREM 4. Under Conditions A1–A4, and H0b :�1,12 = �2,12,

ω̂2
0,n1,n2

ω2
0,n1,n2

p→ 1.

Applying Theorems 3 and 4, we have, under H0b,

Sn1,n2

ω̂0,n1,n2

d→ N(0,1).

This suggests an α-level test that rejects H0b if Sn1,n2 ≥ ω̂0,n1,n2zα . The power of
the proposed test under H1b :�1,12 �= �2,12 is

β2,n1,n2(�1,12,�2,12;α) = P(Sn1,n2/ω̂0,n1,n2 > zα|H1b).

From Theorems 3 and 4, the leading order power is

�

(
− ω̃

ωn1,n2

zα + tr{(�1,12 − �2,12)(�1,12 − �2,12)
′}

ωn1,n2

)
,

where

ω̃2 = 2
{ tr(�1,12�

′
1,12)

n2
+ tr(�2,12�

′
2,12)

n1

}2

+ 2

n2
1

tr(�2
1,11) tr(�2

1,22)

+ 2

n2
2

tr(�2
2,11) tr(�2

2,22) + 4

n1n2
tr(�1,11�2,11) tr(�1,22�2,22).

Let ηp = tr(�1,12�
′
1,12)/ tr(�2,12�

′
2,12). It may be shown that

ω̃

ωn1,n2

≤
√

R2(ηp) + 1,
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where R(γp) is the same function defined in Section 2. Hence, asymptotically,

β2,n1,n2(�1,12,�2,12;α)

≥ �

(
−zα

√
1 + k2

n(1 − kn)2

kn(1 − kn)
+ tr{(�1,12 − �2,12)(�1,12 − �2,12)

′}
ωn1,n2

)
.

This implies that

SNR2 =: tr{(�1,12 − �2,12)(�1,12 − �2,12)
′}/ωn1,n2

is the key quantity that determines the power of the test. Furthermore, let

δ2,n = (1/n1) tr(�1,11) tr(�1,22) + (1/n2) tr(�2,11) tr(�2,22)

tr{(�1,12 − �2,12)(�1,12 − �2,12)′} .

It can be shown that

SNR2 ≥ [4δ2
2,n + max{8 + 4�1,8 + 4�2}δ2,n]−1/2.(3.10)

Hence, the test is powerful if the difference between �1,12 and �2,12 is not too
small so that tr{(�1,12 − �2,12)(�1,12 − �2,12)

′} is at the order of
∑2

i=1
1
ni

×
tr(�i,11) tr(�i,22) or larger. A further analysis on the power, similar to that given
at the end of last section, can be made. Here for the sake of brevity, we will not
report.

4. Simulation studies. We report results from simulation experiments which
were designed to evaluate the performance of the two proposed tests. A range of
dimensionality and sample sizes was considered which allowed p to increase as the
sample sizes were increased. This was designed to confirm the asymptotic results
reported in the previous sections.

We first considered the test for H0a :�1 = �2 regarding the whole variance–
covariance matrices. To compare with the conventional likelihood ratio (LR) test
and the corrected LR test proposed by Bai et al. (2009), we first considered cases of
p ≤ min{n1, n2} and the normally distributed data. Specifically, to create the null
hypothesis, we simulated both samples from the p-dimensional standard normal
distribution. To evaluate the power of the three tests, we set the first population to
be the p-dimensional standard normally distributed while simulating the second
population according to

Xijk = Zijk + θ1Zijk+1,(4.1)

where {Zijk} were i.i.d. standard normally distributed, and θ1 = 0.5,0.3 and 0.2,
respectively. As θ1 was decreased, the signal strength for the test became weaker.
We chose (p,n1, n2) = (40,60,60), (80,120,120) and (120,180,180), respec-
tively. The empirical size and power for the three tests are reported in Table 1. All
the simulation results reported in this section were based on 1000 simulations with
the nominal significance level to be 5%.
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TABLE 1
Empirical sizes and powers of the conventional likelihood ratio (LR), the corrected likelihood ratio
(CLR) and the proposed tests (Proposed) for the variance–covariance, based on 1000 replications

with normally distributed {Zijk}

Power

(p,n1,n2) Methods Size θ1 = 0.5 θ1 = 0.3 θ1 = 0.2

(40,60,60) LRT 1 1 1 1
CLRT 0.043 0.999 0.509 0.172

Proposed 0.052 0.999 0.734 0.271
(80,120,120) LRT 1 1 1 1

CLRT 0.045 1 0.946 0.421
Proposed 0.053 1 0.997 0.713

(120,180,180) LRT 1 1 1 1
CLRT 0.062 1 1 0.713

Proposed 0.045 1 1 0.958

We then carried out simulations for situations where p was much larger than
the sample sizes. In this case, only the proposed test was considered, as both the
LR and the corrected LR tests were no longer applicable. We chose a set of data
dimensions from 32 to 700, while the sample sizes ranged from 20 to 100, re-
spectively. We considered the moving average model (4.1) with θ1 = 2 as the null
model of both populations for size evaluation. To assess the power performance,
the first population was generated according to (4.1), while the second was from

Xijk = Zijk + θ1Zijk+1 + θ2Zijk+2,(4.2)

where θ1 = 2 and θ2 = 1. Three combinations of distributions were experi-
mented for the i.i.d. sequences {Zijk}pk=1 in models (4.1) and (4.2), respectively.
They were: (i) both sequences were the standard normal; (ii) the centralized
Gamma(4,0.5) for Sample 1 and the centralized Gamma(0.5,

√
2) for Sample 2;

(iii) the standard normal for Sample 1 and the centralized Gamma(0.5,
√

2) for
Sample 2. The last two combinations were designed to assess the performance
under nonnormality. The empirical size and power of the test are reported in Ta-
bles 2–4.

We observed from Table 1 that the size of the conventional LR test was grossly
distorted, confirming its breakdown under even mild dimensionality, discovered in
Bai et al. (2009). The severely distorted size for the LR test made its power artifi-
cially high. Both the corrected LR test and the proposed test had quite accurate size
approximation to the nominal 5% level for all cases in Table 1. Both tests enjoyed
perfect power at θ1 = 0.5, when the signal strength of the tests was strong. When
the value of θ2 decreased, both tests had smaller power, although the proposed test
was slightly more powerful than the corrected LR test at θ1 = 0.3 and much more
so at θ1 = 0.2, when the signal strength was weaker.
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TABLE 2
Empirical sizes and powers of the proposed test for the variance–covariance matrices, based on

1000 replications with normally distributed {Zijk} in Models (4.1) and (4.2)

p

n1 = n2 32 64 128 256 512 700

Sizes
20 0.044 0.054 0.051 0.048 0.051 0.038
50 0.052 0.060 0.033 0.043 0.054 0.049
80 0.054 0.060 0.047 0.048 0.052 0.053

100 0.056 0.049 0.052 0.046 0.049 0.048

Powers
20 0.291 0.256 0.267 0.277 0.282 0.291
50 0.746 0.821 0.830 0.837 0.832 0.849
80 0.957 0.992 0.991 0.998 0.999 0.998

100 0.994 1 0.999 1 1 1

The simulation results for the proposed test with dimensions much larger than
the sample sizes and for nonnormally distributed data are reported in Tables 2–4.
We note that the LR tests are not applicable for the setting. The simulation results
show that the proposed test had quite accurate and robust size approximation in
a quite wider range of dimensionality and distributions, considered in the simula-
tion experiments. The tables also show that the power of the proposed tests was

TABLE 3
Empirical sizes and powers of the proposed test for the variance–covariance matrices, based on

1000 replications with Gamma distributed {Zijk} in Models (4.1) and (4.2)

p

n1 = n2 32 64 128 256 512 700

Sizes
20 0.119 0.117 0.069 0.063 0.051 0.040
50 0.150 0.110 0.094 0.052 0.053 0.051
80 0.155 0.111 0.093 0.067 0.064 0.044

100 0.148 0.120 0.084 0.056 0.058 0.053

Powers
20 0.299 0.282 0.290 0.309 0.265 0.277
50 0.574 0.665 0.693 0.750 0.801 0.828
80 0.804 0.886 0.942 0.968 0.991 0.986

100 0.899 0.945 0.986 0.995 0.998 1
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TABLE 4
Empirical sizes and powers of the proposed test for the variance–covariance matrices, based on

1000 replications with the mixed normal and Gamma distributions for {Zijk} in Models (4.1)
and (4.2)

p

n1 = n2 32 64 128 256 512 700

Sizes
20 0.108 0.099 0.076 0.059 0.070 0.050
50 0.117 0.111 0.069 0.068 0.057 0.053
80 0.124 0.099 0.091 0.065 0.064 0.060

100 0.150 0.122 0.085 0.069 0.056 0.047

Powers
20 0.256 0.296 0.278 0.297 0.276 0.295
50 0.606 0.659 0.724 0.766 0.824 0.823
80 0.805 0.890 0.950 0.977 0.989 0.992

100 0.904 0.958 0.982 0.996 0.999 1

quite satisfactory and was increased as the dimension and the sample sizes became
larger.

We then conducted simulations to evaluate the performance of the second test
for H0b :�1,12 = �2,12. We partition equally the entire random vector Xij into two
subvectors of p1 = p/2 and p2 = p − p1. To ensure sufficient number of nonzero
elements in the off-diagonal sub-matrices �1,12 and �2,12 when the dimension
was increased, we considered a moving average model of order m1, which is much
larger than the orders used in (4.1) and (4.2). In the size evaluation,

Xijk = Zijk + α1Zijk+1 + · · · + αm1Zijk+m1(4.3)

for i = 1,2, j = 1, . . . , ni , where all the αi coefficients were chosen to be 0.1. In
the simulation for the power, we generated the first sample according to the above
(4.3) and the second from

Xijk = Zijk + β1Zijk+1 + · · · + βm2Zijk+m2(4.4)

for j = 1, . . . , n2, where the βi were chosen to be 0.8. We chose the lengths
of the moving average m1 and m2 according to the dimension p such that as
p was increased, the values of m1 and m2 were increased as well. Specifi-
cally, we set (m1,m2,p) = (2,25,50), (3,50,100), (7,100,200), (12,250,500)

and (18,300,700), respectively. Two distributions were considered for the i.i.d.
sequences {Zijk}pk=1 in (4.3) and (4.4): (i) both sequences were standard normally
distributed; (ii) the centralized Gamma(4,0.5) for Sample 1 and the centralized
Gamma(0.5,

√
2) for Sample 2. The simulation results for the second test are re-

ported in Table 5 for the normally distributed case and Table 6 for the Gamma
distributed case.
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TABLE 5
Empirical sizes and powers of the proposed test for the covariance between two sub-vectors, based

on 1000 replications for normally distributed {Zijk} in Models (4.3) and (4.4)

p

n1 = n2 50 100 200 500 700

Sizes
20 0.069 0.071 0.070 0.065 0.077
50 0.064 0.056 0.064 0.063 0.055
80 0.057 0.046 0.056 0.073 0.052

100 0.047 0.062 0.055 0.054 0.048

Powers
20 0.639 0.625 0.628 0.620 0.615
50 0.993 0.994 0.982 0.983 0.989
80 1 1 1 1 1

100 1 1 1 1 1

We observed from Table 5 that the empirical sizes of the proposed test con-
verged to the nominal 5% quite rapidly, while the powers were quite high and
quickly increased to 1. For the Gamma distributed case reported in Table 6, the
convergence of the empirical sizes to the nominal level was slower than the nor-
mally distributed case indicating that the convergence of the asymptotic normality
depends on the underlying distribution, as well as the sample size and dimension-
ality. The powers in Table 6 were reasonable, although they were smaller than the

TABLE 6
Empirical sizes and powers of the proposed test for the covariances between two sub-vectors, based

on 1000 replications with Gamma distributed {Zijk} in Models (4.3) and (4.4)

p

n1 = n2 50 100 200 500 700

Sizes
20 0.105 0.092 0.085 0.082 0.082
50 0.101 0.090 0.081 0.088 0.090
80 0.107 0.094 0.083 0.078 0.065

100 0.093 0.083 0.093 0.059 0.071

Powers
20 0.499 0.501 0.519 0.482 0.502
50 0.775 0.802 0.783 0.754 0.777
80 0.945 0.923 0.921 0.922 0.923

100 0.974 0.957 0.969 0.964 0.960
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corresponding normally distributed case in Table 5. Nevertheless, the power was
quite responsive to the increase of p and the sample sizes.

5. An empirical study. We report an empirical study on a leukemia data
by applying the proposed tests on the variance–covariance matrices. The data
[Chiaretti et al. (2004)], available from http://www.bioconductor.org/, consist of
microarray expressions of 128 patients with either T-cell or B-cell acute lym-
phoblastic leukemia (ALL); see Dudoit, Keles and van der Laan (2008) and Chen
and Qin (2010) for analysis on the same dataset. We considered a subset of the
ALL data of 79 patients with the B-cell ALL. We were interested in two types
of the B-cell tumors: BCR/ABL, one of the most frequent cytogenetic abnormal-
ities in human leukemia, and NEG, the cytogenetically normal B-cell ALL. The
number of patients with BCR/ABL was 37 and that with NEG was 42.

A major motivation for developing the proposed test procedures for high-
dimensional variance–covariance matrices comes from the need to identify sets
of genes which are significantly different with respect to two treatments in genetic
research; see Barry, Nobel and Wright (2005), Efron and Tibshrini (2007), Newton
et al. (2007) and Nettleton, Recknor and Reecy (2008) for comprehensive discus-
sions. Biologically speaking, each gene does not function individually, but rather
tends to work with others to achieve certain biological tasks. Gene-sets are tech-
nically defined vocabularies which produce names of gene-sets (also called GO
terms). There are three categories of Gene ontologies of interest: Biological Pro-
cesses (BP), Cellular Components (CC) and Molecular Functions (MF). For the
ALL data, a preliminary screening with gene-filtering left a total number of 2391
genes for analysis with 1599 unique GO terms in BP category, 290 in CC and 357
in MF.

Let us denote S1, . . . , Sq for q gene-sets, where Sg consists of pg genes. Let
F1Sg and F2Sg be the distribution functions corresponding to Sg under the treat-
ment and control, and μ1Sg and μ2Sg be their respective means, and �1Sg and �2Sg

be their respective variance–covariance matrices. Our first hypotheses of interest
are H0g :�1Sg = �2Sg for g = 1, . . . , q regarding the variance–covariance matri-
ces. For the second hypothesis, we divided each gene-set into two sub-vectors by
selecting the first [p/2] dimensions of the gene-set as the first segment and the rest
as the second.

We first applied the proposed test for the equality of the entire variance–
covariance matrices and obtained the p-value for each gene-set. The p-values and
the values of the test statistics Ln as given in (2.7) are displayed in Figure 1 for
the three gene-categories. By controlling the false discovery rate [FDR, Benjamini
and Hochberg (1995)] at 0.05, 338 GO terms were declared significant in the BP
category, 77 in the CC and 75 in the MF, indicating that the dependence structure
among the gene-sets was significantly different between the BCR/ABL and the
NEG ALL patients for a large number of gene sets. That a relatively large number

http://www.bioconductor.org/
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FIG. 1. Histograms of p-values (left panels) for testing two covariance matrices and test statistic
Ln (right panels) for the three gene-categories.

of gene-sets being declared significant by the proposed test was not entirely sur-
prising, as we observe from Figure 1 that there were very large number of p-values
which were very close to 0.

For those GO terms which had been declared having different variance–
covariance matrices, we carried out a follow-up analysis trying to gain more details
on the differences by partitioning the variance–covariance into four blocks in the
form of (3.1) with p1 = [p/2] and p2 = p − p1. We want to know if the dif-
ference was caused by the diagonal blocks or the off-diagonal blocks. The tests
on the two diagonal blocks were conducted using the first proposed test for the
variance–covariance matrix but with p1 or p2 dimensions, respectively. The tests
on the off-diagonal blocks were conducted by employing the second proposed test
for covariances between the two sub-vectors. The results are summarized in Ta-
ble 7, which provides the numbers of gene-sets which were tested significant in
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TABLE 7
Number of GO terms which were tested significantly different at the diagonal blocks, off-diagonal

blocks and both diagonal and off-diagonal blocks, respectively

Diagonal only Off-diagonal only Both Total

BP 115 17 206 338
CC 26 1 50 77
MF 22 0 53 75

the diagonal matrices only, the off-diagonal matrix only, and both at 5%. There
were far more gene-sets which had both diagonal and off-diagonal matrices being
significantly different, and it was less likely that the off-diagonal matrices were
different while the diagonal matrices were otherwise. It was a little surprising to
see that the numbers of significant gene-sets for the diagonally-only, off-diagonal
only and both in each functional category added up to the total numbers exactly
for all three gene-categories.

As we have stated in the Introduction, the proposed tests are part of the effort
in testing for high-dimensional distributions between two treatments. However,
directly testing on the distribution functions is quite challenging due to the high
dimensionality as such tests may endure low power. A realistic and intuitive way
is to test for simpler characteristics of the distributions, for instance testing for
the means as in Bai and Saranadasa (1996) and Chen and Qin (2010), and the
variance–covariance as considered in this paper. For the ALL data, in addition to
testing for the variance–covariance, we also carried out tests for the means pro-
posed in Chen and Qin (2010) at a level of 5%. Table 8 contains two by two clas-

TABLE 8
Two by two classifications on the number (probability) of GO-terms rejected/not rejected by the

tests for the means and the variances for the three functional categories, respectively

Mean test

Variance test Rejected Not rejected

(a) Biological Processes (BP)
Rejected 314 (0.196) 22 (0.015)
Not rejected 1000 (0.625) 263 (0.164)

(b) Cellular Components (CC)
Rejected 77 (0.266) 4 (0.014)
Not rejected 164 (0.566) 45 (0.154)

(c) Molecular Functions (MF)
Rejected 86 (0.241) 1 (0.003)
Not rejected 203 (0.568) 67 (0.188)
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sifications on the number and the probability of gene-sets which are rejected/not
rejected by the tests for the mean and the variance respectively. It is observed that
it is far more likely for the means to be significantly different than the variance–
covariance, with the probability of rejection being around 0.8 for the means versus
0.2 to 0.3 for the covariance for the three functional categories. Given a gene-set
which was not tested significant for the means, the conditional probability of be-
ing tested significant for the covariance is lower than that given a gene-set was
not tested significant for the means. These were confirmed by conducting the chi-
square test for association for the three gene-set categories, which rejected over-
whelmingly (with p-values all less than 0.0005) the hypothesis of no-association
between being tested significant for the mean and the variance. For this particular
dataset, the tests for the means were quite effective in disclosing most of the differ-
entially expressed gene-sets. However, we do see that for Biological Processes and
Cellular Component categories, among those whose means were not declared sig-
nificantly different, there were about 10% of gene-sets having significant different
covariance structures.

6. Technical details. As both Tn1,n2 and Sn1,n2 are invariant under the loca-
tion transformation, we assume μi = 0 throughout this section.

6.1. Derivations of Var(Tn1,n2) and Var(Sn1,n2). Recall that Tn1,n2 = An1 +
An2 − 2Cn1n2 . It is straightforward to show that E(Tn1,n2) = tr{(�1 − �2)

2}. By
noticing that Cov(An1,An2) = 0,

Var(Tn1,n2) = Var(An1) + Var(An2) + 4 Var(Cn1n2)
(6.1)

− 4 Cov(An1,Cn1n2) − 4 Cov(An2,Cn1n2).

Adopting results from Chen, Zhang and Zhong (2010), for h = 1 or 2,

Var(Anh
) = 4

n2
h

tr2(�2
h) + 8

nh

tr(�4
h) + 4�h

nh

tr(�′
h�h�

′
h�h ◦ �′

h�h�
′
h�h)

(6.2)

+ O

{
1

n3
h

tr2(�2
h) + 1

n2
h

tr(�4
h)

}
.

Furthermore, we obtain

Var(Cn1n2) = 2

n1n2
tr2(�1�2) +

(
2

n1
+ 2

n2

)
tr(�1�2�1�2)

+ �1

n1
tr(�′

1�2�
′
2�1 ◦ �′

1�2�
′
2�1)

(6.3)

+ �2

n2
tr(�′

2�1�
′
1�2 ◦ �′

2�1�
′
1�2) + o

{
1

n1n2
tr2(�1�2)

}

+ O

[{
1√
n1n2

+ 1

n1n2
+

2∑
i=1

(
1√
ni

+ 1

ni

)}
Var(Cn1n2,1)

]
.
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By carrying out similar procedures, we are able to obtain Cov(An1,Cn1n2) and
Cov(An2,Cn1n2). After we substitute all the results into (6.1),

Var(Tn1n2) =
2∑

i=1

[
4

n2
i

tr2(�2
i ) + 8

ni

tr(�4
i ) + 4�i

ni

tr(�′
i�i�

′
i�i ◦ �′

i�i�
′
i�i)

− 16

ni

tr(�2
i �1�2) − 8�i

ni

tr(�′
i�1�i ◦ �′

i�2�i)

]
+ 8

n1n2
tr2(�1�2) +

(
8

n1
+ 8

n2

)
tr(�1�2�1�2)

+ 4�1

n1
tr(�′

1�2�
′
2�1 ◦ �′

1�2�
′
2�1)

(6.4)

+ 4�2

n2
tr(�′

2�1�
′
1�2 ◦ �′

2�1�
′
1�2)

+ o

{
1

n1n2
tr2(�1�2)

}

+ O

[{
1√
n1n2

+ 1

n1n2
+

2∑
i=1

(
1√
ni

+ 1

ni

)}
Var(Cn1n2,1)

+
2∑

i=1

{
1

n2
i

tr(�4
i ) + 1

n3
i

tr2(�2
i )

}]
.

Similarly to Tn1,n2 , we have E(Sn1,n2) = tr{(�1,12 −�2,12)(�1,12 −�2,12)
′} and

the leading order terms in Var(Sn1n2) are given by

Var(Sn1n2) =
2∑

i=1

[
2

n2
i

tr2(�i,12�
′
i,12) + 2

n2
i

tr(�2
i,11) tr(�2

i,22)

+ 4

ni

tr{(�i,12�
′
1,12 − �i,12�

′
2,12)

2}

+ 4

ni

tr{(�i,11�1,12 − �i,11�2,12)(�i,22�
′
1,12 − �i,22�

′
2,12)}

(6.5)

+ 4�i

ni

× tr
{
�

(1)′
i (�1,12 − �2,12)�

(2)
i ◦ �

(1)′
i (�1,12 − �2,12)�

(2)
i

}]
+ 4

n1n2
tr2(�1,12�

′
2,12) + 4

n1n2
tr(�1,11�2,11) tr(�1,22�2,22).
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6.2. Proof of Theorem 1. The leading order terms in Var(Tn1,n2) are con-
tributed by Anh,1 for h = 1,2 and Cn1n2,1, which are defined by

Anh,1 = 1

nh(nh − 1)

∑
i �=j

(X′
hiXhj )

2, Cn1n2,1 = 1

n1n2

∑
ij

(X′
1iX2j )

2.

Hence, we only need to study the asymptotic normality of Zn1,n2 which is defined
by Zn1,n2 =: An1,1 + An2,1 − 2Cn1n2,1.

In order to construct a martingale sequence, it is convenient to have new random
variables Yi which are defined as

Yi = X1i for i = 1,2, . . . , n1,

Yn1+j = X2j for j = 1,2, . . . , n2.

To construct a martingale difference, we let F0 = {∅,�}, Fk = σ {Y1, . . . , Yk}
with k = 1,2, . . . , n1 + n2. And let Ek(·) denote the conditional expectation
given Fk . Define Dn,k = (Ek − Ek−1)Zn1,n2 and it is easy to see that Zn1,n2 −
E(Zn1,n2) = ∑n1+n2

k=1 Dn,k .

LEMMA 1. For any n, {Dn,k,1 ≤ k ≤ n} is a martingale difference sequence
with respect to the σ -fields {Fk,1 ≤ k ≤ n}.

PROOF. First of all, it is straightforward to show that EDn,k = 0. Next,
by denoting Sn,m = ∑m

k=1 Dn,k = EmZn1,n2 − EZn1,n2 , we have Sn,q = Sn,m +
(EqZn1,n2 − EmZn1,n2). Then we can show that E(Sn,q |Fm) = Sn,m. This com-
pletes the proof of Lemma 1. �

To apply martingale central limit theorem, we need Lemmas 2 and 3.

LEMMA 2. Under Condition A2 and as min{n1, n2} → ∞,∑n1+n2
k=1 σ 2

n,k

Var(Zn1,n2)

p→ 1,

where σ 2
n,k = Ek−1(D

2
n,k).

PROOF. To prove Lemma 2, first we can show E(
∑n1+n2

k=1 σ 2
n,k) = Var(Zn1,n2).

Then we will show that as min{n1, n2} → ∞, Var(
∑n1+n2

k=1 σ 2
n,k)/Var2(Zn1,n2) →

0. To this end, we decompose
∑n1+n2

k=1 σ 2
n,k into the sum of eight parts,

n1+n2∑
k=1

σ 2
n,k = R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8,
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where with Q1,k−1 = ∑k−1
i=1 (YiY

′
i −�1) and Q2,n1+l−1 = ∑l−1

i=1(Yn1+iY
′
n1+i −�2),

R1 =
n1∑

k=1

8

n2
1(n1 − 1)2

tr(Q1,k−1�1Q1,k−1�1)

+
n2∑
l=1

8

n2
2(n2 − 1)2

tr(Q2,n1+l−1�2Q2,n1+l−1�2),

R2 =
n1∑

k=1

16

n2
1(n1 − 1)

k−1∑
i=1

{Y ′
i (�

3
1 − �1�2�1)Yi},

R3 =
n2∑
l=1

16

n2
2(n2 − 1)

[
tr(Q2,n1+l−1�

3
2) − tr

{
Q2,n1+l−1�2

(
1

n1

n1∑
i=1

YiY
′
i

)
�2

}]
,

R4 = 8

n2
1n2

n1∑
i,j

tr(YjY
′
j�2YiY

′
i �2) − 16

n1n2
tr

{
�3

2

(
n1∑
i=1

YiY
′
i

)}
,

R5 =
n1∑

k=1

4�1

n2
1(n1 − 1)2

tr(�′
1Q1,k−1�1 ◦ �′

1Q1,k−1�1)

+
n2∑
l=1

4�2

n2
2(n2 − 1)2

tr(�′
2Q2,n1+l−1�2 ◦ �′

2Q2,n1+l−1�2),

R6 =
n1∑

k=1

8�1

n2
1(n1 − 1)

tr{�′
1(�1 − �2)�1 ◦ �′

1Q1,k−1�1},

R7 =
n2∑
l=1

8�2

n2
2(n2 − 1)

[
tr(�′

2Q2,n1+l−1�2 ◦ �′
2�2�2)

− tr

{
�′

2Q2,n1+l−1�2 ◦ �′
2

(
1

n1

n1∑
i=1

YiY
′
i

)
�2

}]

and

R8 = 4�2

n2
1n2

n1∑
i,j

tr(�′
2YiY

′
i �2 ◦ �′

2YjY
′
j�2) − 8�2

n1n2

n1∑
i=1

tr(�′
2�2�2 ◦ �′

2YiY
′
i �2).

Therefore, we need to show that Var(Ri) = o{Var2(Zn1,n2)} for i = 1, . . . ,8.
For R1, there exists a constant K1 such that

Var(R1) ≤ K1{n−4
1 tr2(�2

1) tr(�4
1) + n−4

2 tr2(�2
2) tr(�4

2)}.
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Then, applying Var2(Zn1,n2) ≥ 16
n4

1
tr4(�2

1) + 16
n4

2
tr4(�2

2) from (2.5), we know

Var(R1)

Var2(Zn1,n2)
≤ K1

16

{
tr(�4

1)

tr2(�2
1)

+ tr(�4
2)

tr2(�2
2)

}
,

where tr(�4
1)/ tr2(�2

1)→0 under Condition A2. Thus, Var(R1) = o{Var2(Zn1,n2)}.
By carrying out similar procedures we can show that the above is true for Ri

with i = 1, . . . ,8. Hence we complete the proof of Lemma 2. �

LEMMA 3. Under Condition A2, as min{n1, n2} → ∞∑n1+n2
k=1 E(D4

n,k)

Var2(Zn1,n2)
→ 0.

PROOF. For the case of 1 ≤ k ≤ n1, there exists a constant c such that

n1∑
k=1

E(D4
n,k) ≤ c[n−3

1 tr2{(�2
1 − �1�2)

2} + n−5
1 tr4{(�2

1)}].

Using the results Var2(Zn1,n2) ≥ 64n−2
1 tr2{(�2

1 − �1�2)
2} and Var2(Zn1,n2) ≥

16n−4
1 tr4{(�2

1)} from (2.5) and as n1 → ∞, we have∑n1
k=1 E(D4

n,k)

Var2(Zn1,n2)
≤ c

n1
→ 0.

For the case of n1 < k < n1 + n2, there exists a constant d such that

n1+n2∑
k=n1

E(D4
n,k)

≤ d

n2
1n

4
2

{2 tr4(�1�2) + tr2(�1�2) tr2(�2
1)}

(6.6)

+ d

n1n
4
2

[2 tr2(�1�2) tr{(�2
2 − �2�1)

2}] + d

n5
2

tr4{(�2
2)}

+ d

n4
2

[2 tr2(�2
2) tr{(�2

2 − �2�1)
2} + 4 tr2(�1�2) tr2(�2

2)].

To evaluate the ratio of individual term in (6.6) to Var2(Zn1,n2), respectively,
we simply replace Var2(Zn1,n2) by corresponding terms in (2.5). Then under Con-
dition A2 and as n2 → ∞,

∑n1+n2
k=n1+1 E(D4

n,k)/Var2(Zn1,n2) → 0. Therefore, we
complete the proof of Lemma 3. �
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With two sufficient conditions given in Lemmas 2 and 3, we conclude that

Zn1,n2 − E(Zn1,n2)

Var(Zn1,n2)

d→ N(0,1).

If we let εn1,n2 = An1,2 + An1,3 + An2,2 + An2,3 − 2Cn1n1,2 − 2Cn1n1,3 −
2Cn1n1,4, then Tn1,n2 = Zn1,n2 + εn1,n2 . From Var(εn1,n2) = o(σ 2

n1,n2
),

Var
(

εn1,n2

σn1,n2

)
= Var(εn1,n2)

σ 2
n1,n2

→ 0.

Moreover, E(εn1,n2) = 0. Therefore, εn1,n2/σn1,n2

p→ 0. From Slutsky’s Theo-
rem, we complete the proof of Theorem 1.

6.3. Proof of Theorem 2. Recall that E(Anh
) = tr(�2

h) for h = 1 or 2. To show

Anh
/ tr(�2

h)
p→ 1, it is sufficient to show that Var{Anh

/ tr(�2
h)} → 0.

From (6.2), we have

Var
{

Anh

tr(�2
h)

}

≤ 1

tr2(�2
h)

[
4

n2
h

tr2(�2
h) + 8 + 4�h

nh

tr(�4
h) + O

{
1

n3
h

tr2(�2
h) + 1

n2
h

tr(�4
h)

}]
,

where tr(�4
h)/ tr2(�2

h) → 0 under Condition A2. Hence, Anh
/ tr(�2

h)
p→ 1.

Moreover, under H0a :�1 = �2 = �, Anh
/ tr(�2)

p→ 1. Then using the contin-

uous mapping theorem, we have σ̂0,n1,n2/σ0,n1,n2

p→ 1.

6.4. Proof of Theorem 3. The leading order terms in Var(Sn1,n2) are con-
tributed by Unh,1 and Wn1n2,1 which are defined by

Unh,1 = 1

nh(nh − 1)

∑
i �=j

X
(1)′
hi X

(1)
hj X

(2)′
hj X

(2)
hi ,

Wn1n2,1 = 1

n1n2

∑
ij

X
(1)′
1i X

(1)
2j X

(2)′
2j X

(2)
1i .

From Slutsky’s Theorem, we only need to study the asymptotic normality of Hn1,n2

which is defined as Hn1,n2 =: Un1,1 + Un2,1 − 2Wn1n2,1.
To implement martingale central limit theorem to Hn1,n2 , we need a martingale

sequence. To this end, we define random variables which are

Y
(1)
i = X

(1)
1i and Y

(2)
i = X

(2)
1i for i = 1,2, . . . , n1,

Y
(1)
n1+j = X

(1)
2j and Y

(2)
n1+j = X

(2)
2j for j = 1,2, . . . , n2.



TWO SAMPLE TESTS FOR HIGH-DIMENSIONAL COVARIANCE MATRICES 933

If we define Cn,k = (Ek − Ek−1)Hn1,n2 , where Ek(·) denote the conditional
expectation given Fk = σ {Y1, . . . , Yk} with k = 1,2, . . . , n1 + n2, we claim that
{Cn,k,1 ≤ k ≤ n} is a martingale difference sequence with respect to the σ -fields
{Fk,1 ≤ k ≤ n} from Lemma 1. We need Lemmas 4 and 5 to implement the mar-
tingale central limit theorem.

LEMMA 4. Under Conditions A2 and A4, as min{n1, n2} → ∞,∑n1+n2
k=1 τ 2

n,k

Var(Hn1,n2)

p→ 1,

where τ 2
n,k = Ek−1(C

2
n,k).

PROOF. First, we can show that E(
∑n1+n2

k=1 τ 2
n,k) = Var(Hn1,n2). Therefore, we

only need to show Var(
∑n1+n2

k=1 τ 2
n,k) = o{Var2(Hn1,n2)} to complete the proof of

Lemma 4. To this end, we decompose
∑n1+n2

k=1 τ 2
n,k into twelve parts,

n1+n2∑
k=1

σ 2
n,k = P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10 + P11 + P12,

where with

O1,k−1 =
k−1∑
i=1

(
Y

(1)
i Y

(2)′
i − �1,12

)
and

O2,n1+l−1 =
l−1∑
i=1

(
Y

(1)
n1+iY

(2)′
n1+i − �2,12

)
,

P1 =
n1∑

k=1

4

n2
1(n1 − 1)2

tr(O1,k−1�
′
1,12O1,k−1�

′
1,12)

+
n2∑
l=1

4

n2
2(n2 − 1)2

tr(O2,n1+l−1�
′
2,12O2,n1+l−1�

′
2,12),

P2 =
n1∑

k=1

4

n2
1(n1 − 1)2

tr(O1,k−1�1,22O
′
1,k−1�1,11)

+
n2∑
l=1

4

n2
2(n2 − 1)2

tr(O2,n1+l−1�2,22O
′
2,n1+l−1�2,11),

P3 =
n1∑

k=1

8

n2
1(n1 − 1)

tr{O1,k−1�
′
1,12(�1,12 − �2,12)�

′
1,12},
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P4 =
n1∑

k=1

8

n2
1(n1 − 1)

tr{O1,k−1�1,22(�
′
1,12 − �′

2,12)�1,11},

P5 =
n2∑
l=1

8

n2
2(n2 − 1)

tr

{
O2,n1+l−1�

′
2,12

(
�2,12− 1

n1

n1∑
i=1

Y
(1)
i Y

(2)′
i

)
�′

2,12

}
,

P6 =
n2∑
l=1

8

n2
2(n2 − 1)

tr

{
O2,n1+l−1�2,22

(
�′

2,12− 1

n1

n1∑
i=1

Y
(2)
i Y

(1)′
i

)
�2,11

}
,

P7 = 4

n2
tr

{(
�2,12 − 1

n1

n1∑
i=1

Y
(1)
i Y

(2)′
i

)
�′

2,12

×
(
�2,12 − 1

n1

n1∑
i=1

Y
(1)
i Y

(2)′
i

)
�′

2,12

}
,

P8 = 4

n2
tr

{(
�2,12 − 1

n1

n1∑
i=1

Y
(1)
i Y

(2)′
i

)
�2,22

×
(
�′

2,12 − 1

n1

n1∑
i=1

Y
(2)
i Y

(1)′
i

)
�2,11

}
,

P9 =
n1∑

k=1

4�1

n2
1(n1 − 1)2

tr
(
�

(1)′
1 O1,k−1�

(2)
1 ◦ �

(1)′
1 O1,k−1�

(2)
1

)

+
n2∑
l=1

4�2

n2
2(n2 − 1)2

tr
(
�

(1)′
2 O2,n1+l−1�

(2)
2 ◦ �

(1)′
2 O2,n1+l−1�

(2)
2

)
,

P10 =
n1∑

k=1

8�1

n2
1(n1 − 1)

tr
{
�

(1)′
1 (�1,12 − �2,12)�

(2)
1 ◦ �

(1)′
1 O1,k−1�

(2)
1

}
,

P11 =
n2∑
l=1

8�2

n2
2(n2 − 1)

× tr

{
�

(1)′
2

(
�2,12 −

n1∑
i=1

Y
(1)
i Y

(2)′
i

n1

)
�

(2)
2 ◦ �

(1)′
2 O2,n1+l−1�

(2)
2

}
,

P12 = 4�2

n2
tr

{
�

(1)′
2

(
�2,12 −

n1∑
i=1

Y
(1)
i Y

(2)′
i

n1

)
�

(2)
2

◦ �
(1)′
2

(
�2,12 −

n1∑
i=1

Y
(1)
i Y

(2)′
i

n1

)
�

(2)
2

}
.
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For P1, there exists a constant J1 such that

Var(P1) ≤
2∑

h=1

J1

n4
h

{tr2(�h,12�
′
h,12) tr(�h,11�h,12�h,22�

′
h,12)

+ tr(�2
h,11) tr(�2

h,22) tr(�h,11�h,12�h,22�
′
h,12)

+ tr2(�h,11�h,12�h,22�
′
h,12)}.

Using Var2(Hn1,n2) ≥ 8
n4

h

tr(�2
h,11) tr(�2

h,22) tr2(�h,12�
′
h,12) from (3.8),

(J1/(n
4
h)) tr2(�h,12�

′
h,12) tr(�h,11�h,12�h,22�

′
h,12)

Var2(Hn1,n2)

≤ J1 tr(�h,11�h,12�h,22�
′
h,12)

8 tr(�2
h,11) tr(�2

h,22)
,

which goes to zero under Condition A4 for h = 1 or 2.
Similarly, using Var2(Hn1,n2) ≥ 4

n4
h

tr2(�2
h,11) tr2(�2

h,22) from (3.8),

J1

n4
h

tr2(�h,11�h,12�h,22�
′
h,12)/Var2(Hn1,n2) → 0, and

J1

n4
h

tr(�2
h,11) tr(�2

h,22) tr(�h,11�h,12�h,22�
′
h,12)/Var2(Hn1,n2) → 0.

Hence, Var(P1) = o{Var2(Hn1,n2)}. Similarly, we have Var(Pi) = o{Var2(Hn1,n2)}
for i = 1, . . . ,12. Therefore, we complete the proof of Lemma 4. �

LEMMA 5. Under Conditions A2 and A4, as min{n1, n2} → ∞∑n1+n2
k=1 E(C4

n,k)

Var2(Hn1,n2)
→ 0.

PROOF. For the case of 1 ≤ k ≤ n1, there exists a constant c such that
n1∑

k=1

E(C4
n,k) ≤ c[n−3

1 tr2{�1,11(�1,12 − �2,12)�1,22(�
′
1,12 − �′

2,12)}

+ n−5
1 tr2(�2

1,11) tr2(�2
1,22)].

Applying Var2(Hn1,n2) ≥ 16n−2
1 tr2{�1,11(�1,12 −�2,12)�1,22(�

′
1,12 −�′

2,12)}
and Var2(Hn1,n2) ≥ 4n−4

1 tr2(�2
1,11) tr2(�2

1,22) from (3.8) and as n1 → ∞,∑n1
k=1 E(C4

n,k)

Var2(Hn1,n2)
≤ c

n1
→ 0.
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For the case of n1 < k ≤ n1 + n2, we can find a constant d such that

n1+n2∑
k=n1

E(C4
n,k)

≤ d

n3
1n

3
2

tr(�1,11�2,11) tr(�1,22�2,22) tr(�2
2,11) tr(�2

2,22)

+ d

n3
2

tr2{(�2,11�2,12 − �2,11�1,12)(�2,22�
′
2,12 − �2,22�

′
1,12)}

(6.7)

+ d

n1n
3
2

tr(�1,11�2,11) tr(�1,22�2,22)

× tr{�2,11(�2,12 − �1,12)�2,22(�
′
2,12 − �′

1,12)}

+ d

n2
1n

3
2

tr2(�1,11�2,11) tr2(�1,22�2,22) + d

n5
2

tr2(�2
2,11) tr2(�2

2,22).

To evaluate the ratio of individual term in (6.7) to Var2(Hn1,n2), respectively,
we simply replace Var2(Hn1,n2) by corresponding terms in (3.8). Then we can
show that

∑n1+n2
k=n1+1 E(C4

n,k)/Var2(Hn1,n2) → 0. Therefore, we complete the proof
of Lemma 5. �

With two sufficient conditions given in Lemma 4 and 5, we know that

Hn1,n2 − E(Hn1,n2)

Var(Hn1,n2)

d→ N(0,1).

If we let εn1,n2 = Un1,2 + Un1,3 + Un2,2 + Un2,3 − 2Wn1n1,2 − 2Wn1n1,3 −
2Wn1n1,4, then Sn1,n2 = Hn1,n2 + εn1,n2 . From Var(εn1,n2) = o(σ 2

n1,n2
),

Var
(

εn1,n2

σn1,n2

)
= Var(εn1,n2)

σ 2
n1,n2

→ 0.

Moreover, we know E(εn1,n2) = 0. Therefore, εn1,n2/σn1,n2

p→ 0. From Slut-
sky’s Theorem, we complete the proof of Theorem 3.

6.5. Proof of Theorem 4. Applying the trace inequality, we know that
tr2(�h,12�

′
h,12) ≤ tr(�2

h,11) tr(�2
h,22). Therefore, to prove Theorem 4, we first con-

sider the case where tr2(�h,12�
′
h,12) = O{tr(�2

h,11) tr(�2
h,22)}. From Theorem 2,

we can show that A
(1)
nh / tr(�2

h,11)
p→ 1 and A

(2)
nh / tr(�2

h,22)
p→ 1. Moreover, from

(6.3), there exists a constant d1 such that

Var
{
C

(i)
n1n2

/ tr(�1,ii�2,ii)
} ≤ d1

(
1

n1
+ 1

n2

)
→ 0,
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which with E(C
(i)
n1n2

) = tr(�1,ii�2,ii) implies that C
(i)
n1n2

/ tr(�1,ii�2,ii)
p→ 1. Sim-

ilarly, using tr2(�h,12�
′
h,12) = O{tr(�2

h,11) tr(�2
h,22)}, we can find a constant d2

such that

Var{Unh
/ tr(�h,12�

′
h,12)}

≤ d2

nh

{1 + tr(�2
h,11) tr(�2

h,22)/ tr2(�h,12�
′
h,12)}

→ 0,

which together with E(Unh
) = tr(�h,12�

′
h,12) shows that Unh

/ tr(�h,12�
′
h,12)

p→ 1
for h = 1 or 2. Hence, if we define

ω2
0,n1,n2,1 = 2

(
1

n1
+ 1

n2

)2

tr2(�12�
′
12) and

ω2
0,n1,n2,2 = 2

2∑
i=1

1

n2
i

tr(�2
i,11) tr(�2

i,22) + 4

n1n2
tr(�1,11�2,11) tr(�1,22�2,22),

then under H0b :�1,12 = �2,12 = �12 and from the mapping theorem,

ω̂2
0,n1,n2

ω2
0,n1,n2

= ω2
0,n1,n2,1

ω2
0,n1,n2

2(Un1/n1 + Un2/n2)
2

ω2
0,n1,n2,1

+ ω2
0,n1,n2,2

ω2
0,n1,n2

∑2
i=1{(2/n2

i )A
(1)
ni A

(2)
ni } + (4/(n1n2))C

(1)
n1n2C

(2)
n1n2

ω2
0,n1,n2,2

(6.8)

p→ 1.

Next, we consider tr2(�h,12�
′
h,12) = o{tr(�2

h,11) tr(�2
h,22)}. If we define

ω̂2
0,n1,n2,1 = 2

(
Un1

n2
+ Un2

n1

)2

and

ω̂2
0,n1,n2,2 =

2∑
i=1

{
2

ni

A(1)
ni

A(2)
ni

}
+ 4

n1n2
C(1)

n1n2
C(2)

n1n2
,

then, for a given constant ε, we have

P
(∣∣∣∣ ω̂2

0,n1,n2

ω2
0,n1,n2

− 1
∣∣∣∣ > ε

)
≤ P

(
ω̂2

0,n1,n2,1

ω2
0,n1,n2

> ε/2
)

+ P
(∣∣∣∣ ω̂2

0,n1,n2,2

ω2
0,n1,n2

− 1
∣∣∣∣ > ε/2

)
.

Thus, we only need to show ω̂2
0,n1,n2,1

/ω2
0,n1,n2

p→ 0 and ω̂2
0,n1,n2,2

/ω2
0,n1,n2

p→
1, respectively. First of all, we know ω̂2

0,n1,n2,2
/ω2

0,n1,n2

p→ 1 from (6.8). Second,
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there exists a constant d3 such that

P
(

ω̂2
0,n1,n2,1

ω2
0,n1,n2

>
ε

2

)
≤ d3

[ ∑2
i=1 tr2(�i,12�

′
i,12)∑2

i=1 tr(�2
i,11) tr(�2

i,22)

+
2∑

i=1

{
1

ni

+ tr2(�i,12�
′
i,12)

n1 tr(�2
i,11) tr(�2

i,22)

}]
,

which converges to zero under tr2(�i,12�
′
i,12) = o{tr(�2

i,11) tr(�2
i,22)}. Therefore,

we have ω̂2
0,n1,n2

/ω2
0,n1,n2

p→ 1, as claimed by Theorem 4.
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