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Abstract

When observational data are used to compare treatment-specific survivals, regular two-sample 

tests, such as the log-rank test, need to be adjusted for the imbalance between treatments with 

respect to baseline covariate distributions. Besides, the standard assumption that survival time and 

censoring time are conditionally independent given the treatment, required for the regular two-

sample tests, may not be realistic in observational studies. Moreover, treatment-specific hazards 

are often non-proportional, resulting in small power for the log-rank test. In this paper, we propose 

a set of adjusted weighted log-rank tests and their supremum versions by inverse probability of 

treatment and censoring weighting to compare treatment-specific survivals based on data from 

observational studies. These tests are proven to be asymptotically correct. Simulation studies show 

that with realistic sample sizes and censoring rates, the proposed tests have the desired Type I error 

probabilities and are more powerful than the adjusted log-rank test when the treatment-specific 

hazards differ in non-proportional ways. A real data example illustrates the practical utility of the 

new methods.
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1 Introduction

Weighted log-rank tests (Fleming and Harrington 1991, Chapter 7) are the most popular 

statistical methods to compare survival/hazard function of a time-to-event outcome subject 

to right censoring between two treatment groups. However, when survival data are from 

observation studies, one cannot directly use the weighted log-rank tests to compare 

treatment-specific survivals because of the imbalance with respect to the distribution of 

baseline covariates between treatment groups. For example, as discussed in Zhang and 

Schaubel (2012), simultaneous pancreas-kidney (SPK) transplantation and kidney-alone 

(KA) transplantation are two treatment options for Type I diabetics with end-stage renal 

disease (ERSD). Receiving a pancreas in addition to a kidney is thought to have the potential 

to “cure” both ERSD and the diabetes, but the surgery is more complicated and could result 

in more post-operative complications, meaning that a patient may actually have shorter 

survival time if going through the simultaneous transplantation than the kidney-alone. So it 

is of interest to compare the post-operation survival between SPK and KA transplants. 

Because the decision to receive SPK or KA is related to patients’ health conditions at 
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transplant, which also affect the post-transplant survival, one cannot attribute the survival 

difference detected by applying weighted log-rank tests to survival data of SPK and KA 

recipients completely to the different transplant types.

Another common issue that invalidates weighted log-rank tests is that the censoring time is 

not conditionally independent of the survival time given the treatment. This often occurs in 

studies with long follow-ups, where there may be a considerable percentage of censoring 

due to loss to follow-up rather than administrative reasons. The subjects who drop out could 

differ from those who do not with respect to some baseline covariates such as age, 

socioeconomic status, marital status, and health condition even if they have the same 

treatment.

To cope with the non-randomness of treatment assignment and censoring that fails the 

weighted log-rank tests for observational studies, we propose adjusting the weighted log-

rank tests by inverse probability of treatment and censoring weighting. The idea is to weight 

the at-risk and incremental counting processes in weighted log-rank statistics by inverse 

probabilities of treatment and censoring. This double inverse weighting idea was used by 

Schaubel and Wei (2011) to estimate cumulative treatment effect on time-to-event outcomes 

in the presence of confounders and dependent censoring. Here we focus on testing for the 

difference in treatment-specific hazards across arbitrary time windows. So the proposed 

methods are preferred over Schaubel and Wei (2011)’s when one is interested in comparing 

the possibly time-varying effects of two treatments across a specific time period rather than 

the cumulative effects from the time origin to certain time point. Admittedly, unlike 

Schaubel and Wei (2011), the proposed methods assume that the adjustment covariates for 

dependent censoring are time-independent, though this assumption can be easily relaxed to 

incorporate time-varying covariates with (almost) known trajectories (e.g., under frequent 

monitoring), as discussed in Section 5.

Xie and Liu (2005) developed an adjusted log-rank test with inverse probability of treatment 

weighting (IPTW) for group comparisons. We note that their variance formula for the IPTW 

log-rank statistic does not take the variability of the treatment probability estimates into 

account. It seems that this would underestimate the variance of the test statistic and lead to a 

liberal test. However, ignoring the variability of the treatment probability estimates amounts 

to calculating the variance of the IPTW log-rank statistic as if the treatment probabilities 

were known; the IPTW cumulative hazard estimators, which are the building blocks of the 

IPTW log-rank test, actually have larger variances from using known weights than estimated 

weights, because the influence function of the latter is the residual of projecting the 

influence function of the former onto the tangent space for the treatment assignment model 

(see Tsiatis 2006, Page 206). Thus, Xie and Liu (2005)’s variance formula in fact 

overestimates the variance of their IPTW log-rank statistic and leads to a conservative test. 

The conservativeness was substantiated by a numerical experiment in Section 3.2. In 

contrast, our adjusted weighted log-rank tests account for the variability in both the 

estimated probability of treatment and the estimated probability of censoring. Additionally, 

our tests allow a time weight and are applicable when censoring depends on time-

independent covariates.
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It is known that the log-rank test is the most powerful nonparametric test when the hazard 

functions to be compared are proportional to each other but has little power when the hazard 

functions cross. In the presence of nonrandom treatment assignment and conditional 

dependence of censoring on survival endpoint given treatment, one can follow the proof of 

that property to show that it is also true for our adjusted log-rank test (with weight function 

being a constant). In general, one has to know the type of the survival difference that may 

exist between groups to determine the weight function for the weighted log-rank test to be 

powerful, which is however impossible in many applied situations. To overcome this 

shortcoming, Gill (1980) proposed a supremum version of weighted log-rank test statistics, 

which he calls “Renyi-type” statistics, so that they can have robust power to detect various 

types of difference in hazard function between treatment groups. In this article, we propose 

an analogue of the Renyi-type test for survival data from observational studies.

The rest of the article is organized as follows. Section 2 formally develops the adjusted 

weighted log-rank tests and the adjusted Renyi-type tests, and proves that they are 

asymptotically correct. The section also presents an estimator of treatment-specific survival 

function and its asymptotic distribution based on the double inverse weighted estimator of 

treatment-specific cumulative hazard function in Schaubel and Wei (2011). Section 3 

evaluates the finite sample performance of the proposed methods through simulations. The 

new methods are then applied to a data set from the Scientific Registry of Transplant 

Recipients (SRTR) in Section 4 to compare the post-operative survival between SPK and 

KA transplants. We conclude the article with some remarks in Section 5.

2 Methods

2.1 Data and Assumptions

We consider a sample of n independent subjects from an observation study. For each subject, 

let T and C denote the underlying failure and censoring times respectively. The time on 

study (observation time) is defined to be U ≡ min{T, C} with Δ ≡ I(T ≤ C) being the failure 

event indicator. Let Z denote the treatment (Z = 0 or 1) the subject receives. In addition, we 

observe a set of baseline covariates X for every subject. Therefore, the observed data are n 

i.i.d. replicates of (U, Δ, Z, X) and denoted by (Ui, Δi, Zi, Xi) (i = 1, …, n), of which (Ui, Δi) 

can be alternatively represented by counting processes Ni(t) = I(Ui ≤ t, Δi = 1) and at-risk 

processes Yi(t) = I(Ui ≥ t) (i = 1, …, n). We also define Zij = I(Zi = j) (j = 0, 1) for later use.

Our analysis aim is to compare the survival functions between the two treatment groups. 

Specifically, letting T(j) (j = 0, 1) denote the two potential failure times of a subject 

randomly selected from the population under study if s/he received treatment Z = j, we want 

to test whether the two survival functions S(j)(t) ≡ P(T(j) > t) (j = 0, 1), or equivalently, the 

two hazard functions λ(j)(t) ≡ limΔt→0 P(t ≤ T(j) < t + Δt|T ≥ t)/Δt (j = 0, 1) are identical. 

Since the data are from an observational study, we need to adjust for the imbalance between 

the two treatment groups with respect to the distribution of the confounders when carrying 

out the two sample comparison. For this purpose, we assume that all the confounders are 

captured in X; i.e., (T(0), T(1)) ⊥ Z|X. As for censoring, one usually assumes that T ⊥ C|Z 

when comparing treatment-specific survivals. This assumption is unrealistic in most 
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observational studies. Hence, we consider a more realistic assumption that T ⊥ C|(Z, X) in 

developing the proposed methods.

The building blocks for comparing treatment-specific survivals are the double inverse 

weighted at-risk processes and incremental counting processes:

Y i j
∗ (t) =

Y i j(t)

pi jS i j

C
(t − )

and dNi j
∗ (t) =

dNi j(t)

pi jS i j

C
(t − )

, i = 1, …, n, j = 0, 1, (1)

where Yij(t) = ZijYi(t), Nij(t) = ZijNi(t), pi j
 is a consistent estimator of pij ≡ P(Zi = j|Xi), and 

S
i j
C(t) is a consistent estimator of S

i j
C(t) ≡ P(C

i
> t |Z

i
= j, X

i
). Throughout the paper, we define 

the convention 0/0 = 0. The idea in (1) is the same as Schaubel and Wei (2011), i.e., using 

inverse probability of treatment weighting to balance the treatment-specific confounder 

distributions and inverse probability of censoring weighting to account for the dependent 

censoring. Therefore the valid inference on S(j)(t) (j = 0, 1) depends on correctly modeling 

the effect of X on Z and that of (Z, X) on C. We assume that the treatment assignment 

follows a logistic regression model,

logit P(Zi = 1|Xi) = α
T

X
∼

i

Z
, (2)

where X
∼

i

Z
 is a vector consisting of an intercept and X

i
Z, a vector made up of (possibly 

transformed) elements of Xi with a superscript Z indicating that the vector is related to 

treatment assignment. If model (2) is correct, the maximum likelihood estimator for α, α, 

solving the estimating equation,

∑
i = 1

n

X
∼

i

Z
Zi − expit(αT

X
∼

i

Z
) = 0, (3)

consistently estimates the true parameter, and thus p
i j

 can be obtained by 

p
i j

(α) ≡ expit ( − 1) j + 1
α

T
X

i
Z .

Regarding censoring, we assume a proportional hazards model for each treatment Z = 0, 1,

λi j
C(t) ≡ λC(t |Zi = j, Xi) = λ0 j

C (t)exp(θ j
T

Xi
C), j = 0, 1, (4)

where λC(t|Zi = j, Xi) is the conditional hazard of Ci given Zi = j and Xi, λ0 j
C (t) is an 

unspecified treatment-specific baseline hazard function, and X
i
C is a vector made up of 

(possibly transformed) elements of Xi with a superscript C indicating that the vector is 
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related to censoring. If model (4) is correct, consistent estimators for θj and 

Λ0 j
C (t) ≡ ∫

0

t
λ0 j

C (s)ds can be obtained by the maximum partial likelihood estimator and the 

Breslow estimator, respectively, denoted by θ
j
 and Λ0 j

C (t). A consistent estimator for the 

cumulative hazard Λ
i j
C(t) ≡ ∫

0

t
λ

i j
C(s)ds would then be Λ

i j
C(t) ≡ Λ0 j

C (t)exp(θ
j

T
X

i
C), and S

i j
C(t) can 

be obtained by exp − Λ
i j
C(t) . For notational convenience in deriving the asymptotic theory in 

the sequel, we set ΛC ≡ Λ
i j
C: i = 1, …, n, j = 0, 1  and Λ

C ≡ Λ
i j
C: i = 1, …, n, j = 0, 1 .

2.2 Double inverse weighted estimation of treatment-specific survival function

The first step in comparing treatment-specific survivals is usually to estimate the survival 

curves for a graphical representation. To consistently estimate the treatment-specific survival 

function S(j)(t) (j = 0, 1), we present a double inverse weighted estimator, which builds on 

the double inverse weighted estimator of treatment-specific cumulative hazard 

Λ( j)(t) ≡ ∫
0

t
λ( j)(s)ds in Schaubel and Wei (2011). The latter estimator is

Λ( j)(t) ≡ ∫
0

t ∑
i = 1
n

dNi j
∗ (s)

∑
i = 1
n

Y i j
∗ (s)

, j = 0, 1 . (5)

So a natural estimator for S(j)(t) is

S ( j)(t) ≡ exp( − Λ( j)(t)), j = 0, 1 . (6)

The uniform consistency of Λ( j)(t) over an interval [0, tu], where tu is chosen to avoid the 

instability of the estimator in the tail of the observation time distribution, has been proved by 

Schaubel and Wei (2011). The key is to show that 

E[ p
i j

(α)S
i j
C(s − )

−1
dN

i j
(s)] = dF( j)(s) ≡ − dS( j)(s) and E[ p

i j
(α)S

i j
C(S − )

−1
Y

i j
(s)] = S( j)(s − )

via successive conditioning. Schaubel and Wei (2011) also established that 

n(Λ( j)(t) − Λ( j)(t)) converges asymptotically to a zero-mean Gaussian process. We 

summarize the asymptotic properties of Λ( j)(t) in Theorem 1 below. The proof can follow 

that of Theorem 1 in Schaubel and Wei (2011) and is thus omitted.

Theorem 1—Set πj(t) = P (Yij(t) > 0) and ℐ
j

= t:π
j
(t) > 0  (j = 0, 1). Under conditions (a) 

to (f) in Appendix A, for any t
u

∈ ℐ
j
, Λ( j)(t) converges almost surely and uniformly to Λ(j) 

(t) for t ∈ [0, tu], and n Λ( j)(t) − Λ( j)(t)  converges weakly to a zero-mean Gaussian process 
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in D [0, tu], the space of cadlag functions on [0, tu], with covariance function 

σ
Λ( j)

(s, t) = E Φ
i j

(s)Φ
i j

(t) , where

Φ
i j

(t) = Φ
i j1(t) + Φ

i j2(t) + Φ
i j3(t) + Φ

i j4(t)

Φ
i j1(t) = ( − 1) j ∫

0

t dξ
j
(s; α, Λ

C)

D
j
(s; α, Λ

C)
−∫

0

t G
j
(s; α, Λ

C)

D
j
2(s; α, Λ

C)
dQ

j
(s; α, Λ

C)

T

V
Z
−1(α)ψ

i
Z(α)

Φ
i j2(t) = ∫

0

t dJ
j
(s; α, Λ

C)

D
j
(s; α, Λ

C)
−∫

0

t H
j
(s; α, Λ

C)

D
j
2(s; α, Λ

C)
dQ

j
(s; α, Λ

C)

T

Ω
j
C(θ

j
)

−1
U

i j
C(θ

j
)

Φ
i j3(t) = ∫

0

t

∫
s

t dζ
j
(u; α, Λ

C)

D
j
(u; α, Λ

C)
−

γ
j
(u; α, Λ

C)

D
j
2(u; α, Λ

C)

dM
i j
C(s)

r
C j
(0)(s; θ

j
)

Φ
i j4(t) = ∫

0

t dM
i j
∗ (s)

D
j
(s; α, Λ

C)
,

where V
Z
−1(α)ψ

i
Z(α) and Ω

j
C(θ

j
)

−1
U

i j
C(θ

j
) are the influence function for α and θ

j
, 

respectively (of which explicit expressions are given in Appendix A), 

dM
i j
C(s) = dN

i j
C(s) − Y

i j
(s)dΛ

i j
C(s) with N

i j
C(s) = Z

i j
I(U

i
≤ s, Δ

i
= 0), 

dM
i j
∗ (s) = p

i j
(α)S

i j
C(s − )

−1
dN

i j
(s) − Y

i j
(s)dΛ( j) , and dξj(s; α, ΛC), Dj(s; α, ΛC), Gj(s; α, 

ΛC), dQj(s; α, ΛC), dJj(s; α, ΛC), Hj(s; α, ΛC), dζj(u; α, ΛC), γj(u; α, ΛC) and r
C j
(0)(s; θ

j
) are 

defined in Appendix A.

The uniform consistency of Ŝ(j)(t) and the weak convergence of n S( j)(t) − S( j)(t)  are 

immediate from Theorem 1, the continuous mapping theorem and the functional delta 

method.

Corollary 1—Under conditions (a) to (g) in Appendix A, for any t
u

∈ ℐ
j
, Ŝ(j)(t), converges 

almost surely and uniformly to S(j)(t) for t ∈ [0, tu] and n S( j)(t) − S( j)(t)  converges weakly 

to a zero-mean Gaussian process in D[0, tu] with covariance function 

σ
S( j)

(s, t) = S( j)(s)S( j)(t)E Φ
i j

(s)Φ
i j

(t) .
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The covariance function σ
S( j)

(s, t) can be consistently estimated by 

S( j)(s)S( j)(t)n
−1∑i = 1

n
Φ

i j
(s)Φ

i j
(t) where Φ

i j
 is obtained by replacing limiting terms in Φij 

with their empirical counterparts.

2.3 Adjusted weighted log-rank tests

The adjusted weighted log-rank tests and their supremum versions build on the following 

stochastic process of cumulative weighted difference between the estimated treatment-

specific hazards,

Wa(t; α, Λ
C

) ≡ ∫
0

t

K
∗(s; α, Λ

C
)

dN ⋅ 1
∗ (s)

Y ⋅ 1
∗ (s)

−
dN ⋅ 0

∗ (s)

Y ⋅ 0
∗ (s)

, (7)

where dN11
∗ (s) = ∑i = 1

n
dN

i j
∗ (s), and Y11

∗ (s) = ∑i = 1
n

Y
i j
∗ (s) (j = 0, 1), and

K
∗(s; α, Λ

C
) =

1
n

W(s)
Y ⋅ 1

∗ (s)Y ⋅ 0
∗ (s)

Y ⋅ 1
∗ (s) + Y ⋅ 0

∗ (s)
, (8)

where W (·) is a nonnegative, bounded, and predictable process. In the later simulation and 

real data analysis, we consider the class of weight functions proposed by Fleming and 

Harrington (1981):

W(s) = S(s − ) ρ 1 − S(s − ) γ, ρ ≥ 0, γ ≥ 0,

where Ŝ(s) is an estimator of the overall survival function defined by

S(s) = exp −∫
0

s ∑i = 1
n ∑ j = 0

1
S

i j
C(u − )

−1
dN

i j
(u)

∑i = 1
n ∑ j = 0

1
S

i j
C(u − )

−1
Y

i j
(u)

.

W
a
(t; α, Λ

C) with (ρ, γ) = (0, 0) and (ρ, γ) = (1, 0) correspond to the adjusted log-rank and 

Prentice-Wilcoxon (Prentice 1978) statistics respectively.

Theorem 2 below gives the large sample representation of the “adjusted weighted log-rank 

statistic” defined in (7), which will be used to construct the adjusted weighted log-rank tests 

and their supremum versions.

Theorem 2—Set ℐ = t:π0(t)π1(t) > 0  and tsup = supℐ. Under conditions (a)–(f), (h) and 

(i) in Appendix A,
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Wa(t; α, Λ
C

) = ∫
0

t

K
∗(s; α, Λ

C) λ(1)(s) − λ(0)(s) ds + n
−1/2 ∑

i = 1

n

ϕi(t) + op(1), (9)

where op(1) represents a term that converges in probability to zero in D[0, tsup] equipped 

with the uniform norm and

ϕi(t) = Ai1(t; α, Λ
C) − Ai0(t; α, Λ

C) + B1(t; α, Λ
C) − B0(t; α, Λ

C)
T

VZ
−1(α)ψ i

Z(α) + F0
T(t; α,

Λ
C) Ω0

C(θ0)
−1

Ui0
C(θ0) − F1

T(t; α, Λ
C) Ω1

C(θ1)
−1

Ui1
C(θ1) + ∫

0

t

L0(s, t; α, Λ
C)

dMi0
C(s)

rC0
(0)(s; θ0)

− ∫
0

t

L1(s, t; α, Λ
C)

dMi1
C(s)

rC1
(0)(s; θ1)

,

(10)

where A
i j

(t; α, Λ
C) = ∫

0

t
w(s)D1 − j

(s; α, Λ
C)D−1(s; α, Λ

C)dM
i j
∗ (s) with mean zero, and w(s), 

D(s; α, ΛC), Bj(t; α, ΛC), Fj(t; α, ΛC) and Lj(s, t; α, ΛC) (j = 0,1) are defined in Appendix 

A.

The proof of Theorem 2 is given in Appendix A. The idea of the proof is to decompose 

W
a
(t; α, Λ

C) into

Wa(t; α, Λ
C) + Wa(t; α, Λ

C
) − Wa(t; α, Λ

C
) + Wa(t; α, Λ

C
) − Wa(t; α, Λ

C) , (11)

obtain the large sample representations of n(α − α) and n Λ
i j
C( · ) − Λ

i j
C( · )

using standard maximum likelihood theory and standard partial likelihood theory (Fleming 

and Harrington 1991) respectively, and finally apply the (functional) delta methods to the 

second and third summands in (11).

The adjusted weighted log-rank test for

H0:λ(0)(t) = λ(1)(t) for all t ∈ ℐ, (12)

is based on the test statistic, Z
aw

(U†) ≡ W
a
(U†; α, Λ

C)/σ
W

(U†), where 

U
† = sup t:Y .0(t) ∧ Y .1(t) > 0  and σ

W
2 (t) = n

−1∑i = 1
n

ϕ
i
2(t) where ϕ

i
 is obtained by replacing 
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limiting terms in ϕi with their empirical counterparts. In the sequel, we just study the 

properties (significance level and power) of the two-sided test based on Zaw(U†), i.e., 

rejecting H0 if |Zaw(U†)| ≥ zα/2 where α ∈ (0, 1) and zα/2 is the α/2-th upper quantile of the 

standard normal distribution. One-sided tests’ properties can be studied analogously. 

Theorem 2 implies that under H0, W
a
(U†; α, Λ

C) can be written asymptotically as a sum of 

independent and identically distributed zero-mean variates, ϕi(tsup) (i = 1, …, n). Thus the 

central limit theorem can be used to show that the adjusted weighted log-rank test based on 

Zaw(U†) has asymptotic significance level α. From (9) and (8), it is easy to see that the 

power of the test based on Zaw(U†) converges to one as n → ∞, i.e., the test is consistent, 

under an alternative

HA:∫
0

tsup
w(s)

D0(s; α, Λ
C)D1(s; α, Λ

C)

D0(s; α, Λ
C) + D1(s; α, Λ

C)
λ(1)(s) − λ(0)(s) ds ≠ 0 . (13)

For any subset � ⊂ ℐ, one can construct an adjusted weighted log-rank test for

H0
�:λ(0)(t) = λ(1)(t) for all t ∈ � (14)

by choosing a weight function W(t) such that W(t) = 0 for any t ∉ �. This test is also 

asymptotically correct according to Theorem 2.

2.4 Adjusted Renyi-type tests

Following the definition of the Renyi-type test (Gill 1980), the adjusted Renyi-type test 

statistic is defined to be

ZR(U†) =
sup

0 ≤ t ≤ U
†|Wa(t; α, Λ

C
)|

σW(U†)
. (15)

The asymptotic distribution of ZR(U†) under H0 is not easy to derive. However, by the 

multiplier central limit theorem (sec. 2.9, van der Vaart and Wellner 1996), when n is large 

enough, the distribution of n−1/2∑i = 1
n

ϕ
i
(t) can be approximated by the conditional 

distribution of n−1/2∑i = 1
n

ω
i
ϕ

i
(t) given (Ui, Δi, Zi, Xi) (i = 1, …, n) where ωi’s are 

independent standard normal random variables. Therefore, the asymptotic null distribution 

of of ZR(U†) can be obtained by Monte Carlo simulation. The implementation procedure of 

the adjusted Renyi-type test is as follows.

1. Compute ZR(U†) based on the data.
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2. Generate m independent sets of independent standard random variables 

ω
i
(l)

i = 1

n
(l = 1, …, m) and compute the corresponding 

Z
∼

R

(l)
(U†) ≡ sup

0 ≤ t ≤ U
† |n−1/2∑i = 1

n
ω

i
(l)

ϕ
i
(t) | /σ

W
(U†).

3. Compute the simulation-based p-value: p∼
R

≡ m
−1∑l = 1

m I Z
∼

R

(l)
(U†) ≥ Z

R
(U†)

4. If p∼
R

< α, reject H0 at level α.

Theorem 2, the multiplier central limit theorem, and the law of large number together imply 

that this adjusted Renyi-type test has asymptotic significance level α.

In a similar way to the adjusted weighted log-rank test for H0
�, one can construct an adjusted 

Renyi-type test for H0
� by choosing a weight function W(t) such that W(t) = 0 for any t ∉ �

and then following the above test procedure.

3 Simulation

3.1 Performance evaluation of the proposed tests

We investigated the Type I error rates and powers of the proposed tests in finite samples 

through Monte Carlo simulations, which were performed in SAS 9.3. The number of 

simulation runs is 1000. The simulation scenarios are similar to those in Zhang and Schaubel 

(2012) and are described in detail below.

For each simulated data set, we first generated three baseline covariates X1, X2 and X3 each 

from a standard normal distribution truncated at −0.5 and 0.5 in order to be consistent with 

the regularity conditions in Appendix A. The correlation between untruncated X1 and X3 is 

0.2, and all other pairwise correlations equal 0. The treatment indicator Z was then generated 

from Bernoulli with probability of being one equal to expit(−0.5X1 −0.5X2), which results in 

about 50% of the subjects in a simulated data set receiving treatment 1. The survival time T 

and censoring time C were generated under two sets of scenarios. The first set of scenarios 

are:

Null: λ(t|Z = j, X) = exp(−3 – X1 − 0.9X2 – X3) (j = 0,1),

λC(t|Z = 0, X) = exp(−5 + X1 + 1.2X2),

λC(t|Z =1, X) = exp(−4.5 − 0.2X1 − 0.7X2);

Nearly Proportional: λ(t|Z = 0, X) = exp(−2.8 − 0.95X1 − 0.85X2 − 0.95X3),

λ(t|Z = 1, X) = exp(−3 − X1 − 0.9X2 − X3),

λC(t|Z = 0, X) = exp(−5 + X1 + 1.2X2),

λC(t|Z = 1, X) = exp(−4.5 − 0.2X1 − 0.7X2);

Early Departure: λ(t|Z = 0, X) = exp(0.5 − 1.5X1− X2 − 0.7X3)/(1+t)+0.1,

λ(t|Z = 1, X) = exp(−X1 − 0.9X2 − X3)/(1 +t) + 0.1,

λC(t|Z = 0, X) = exp(−1.9 + X1 + 1.2X2),

λC(t|Z =1, X) = exp(−1.9 − 0.2X1 − 0.7X2);

Crossing: λ(t|Z = 0, X) = 0.21 exp(−0.1X1 −0.1X2−0.1X3)+0.001t,
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λ(t|Z = 1, X) = 0.1 exp(−0.2X1 − 0.05X2 − 0.1X3) + 0.04t,

λC(t|Z = 0, X) = exp(−3.1 + X1 + 1.2X2),

λC(t|Z =1, X) = exp(−3.1 − 0.2X1 − 0.7X2),

where λ(t|Z = j, X) denotes the conditional hazard of T given Z = j and the three baseline 

covariates X. In the Null scenario, it is obvious that λ(0)() = λ(1)(·). In the Nearly 
Proportional scenario, λ(1)(t)/λ(0)(t) ≈ 0.85 for most t’s. In the Early Departure, λ(0)(t) 

and λ(1)(t) have a substantial difference when t is small, but the difference converges to zero 

as t → ∞. The curves of λ(0)(t) and λ(1)(t) cross each other in the Crossing scenario. 

Figure 1 shows the plots of λ(1)(t) and λ(0)(t) against t in the Nearly Proportional, Early 
Departure and Crossing scenarios. The dependent censoring rate is around 19% in every 

scenario. The second set of scenarios under which T and C were generated just have 

different censoring distributions than the first set so that each dependent censoring rate is 

increased to 40%. The four scenarios are named Null HC, Nearly Proportion HC, Early 
Departure HC and Crossing HC respectively with HC meaning heavier censoring. The 

censoring distributions in these four scenarios are:

Null HC: λC(t|Z = 0, X) = exp(−3.8 + X1 + 1.2X2),

λC(t|Z = 1, X) = exp(−3.3 – 0.2X1 − 0.7X2);

Nearly Proportional HC λC(t|Z = 0, X) = exp(−3.7 + X1 + 1.2X2),

λC(t|Z = 1, X) = exp(−3.2 – 0.2X1 − 0.7X2);

Early Departure HC: λC(t|Z = 0, X) = exp(−0.7 + X1 + 1.2X2),

λC(t|Z = 1, X) = exp(−0.7 – 0.2X1 − 0.7X2);

Crossing HC: λC(t|Z = 0, X) = exp(−2.1 + X1 + 1.2X2),

λC(t|Z = 1, X) = exp(−2.1 – 0.2X1 − 0.7X2).

Table 1 shows the simulation results for the adjusted weighted log-rank tests with (ρ, γ) = 

(0, 0) and (ρ, γ) = (1, 0) (i.e., the adjusted log-rank and Prentice-Wilcoxon tests) as well as 

the adjusted Renyi-type test with (ρ, γ) = (0, 0) and m = 2000 in the scenarios where the 

dependent censoring rate is around 19%. The significance level α was set at 0.05 for all the 

tests. From the table, one can see that all the three tests have nominal Type I error rates. 

Under the alternative hypotheses, the powers of the tests increase with the sample size. The 

adjusted log-rank test is a little more powerful than the adjusted Prentice-Wilcoxon test in 

the Nearly Proportional scenario, but less powerful under the Early Departure and the 

Crossing. The adjusted Renyi-type log-rank test has comparable power to the better one of 

the adjusted log-rank and Prentice-Wilcoxon tests in the Nearly Proportional and Early 
Departure scenarios, and it is much more powerful than the other two when the two 

treatment-specific hazard functions cross. All these results meet the theoretical properties of 

the tests.

Table 2 shows the simulation results for the above three tests in the scenarios where the 

dependent censoring rate is around 40%. One can see that the Type I error probabilities of 

the adjusted log-rank test and its supremum version are a bit higher than the nominal level. 

We are puzzled by this little inflation. Further investigation is needed. The adjusted Prentice-

Wilcoxon test still has the nominal Type I error probability. In terms of power, all the tests’ 

powers are decreased due to the increase of censoring rate. The adjusted Prentice-Wilcoxon 
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test is still the most powerful in the Early Departure HC scenario. Although it also has a 

greater power than the other two in the Nearly Proportional HC except when n = 300 and 

in the Crossing HC, these simulation results should be explained with caution, because the 

rise of censoring rate shortens the hazard comparison time window in finite samples. As the 

time window gets shorter, our scenario of crossing hazards becomes more and more like a 

scenario of early departure, so does our scenario of nearly proportional hazards. Table 2 also 

shows that the adjusted Renyi-type log-rank test has comparable power to the better one of 

the adjusted log-rank and Prentice-Wilcoxon tests under every alternative.

3.2 The adjusted log-rank test versus the IPTW log-rank test

We compared the Type I error rates and powers of our adjusted log-rank test versus the 

IPTW log-rank test (Xie and Liu 2005), which is implemented by the procedure “lifetest” of 

SAS 9.4. The comparison was performed in the scenarios of Null II and Nearly 
Proportional II defined below, in which the censoring time and the failure time are 

independent given the treatment, as well as in the NULL scenario where there is dependent 

censoring. The covariate and treatment variables were generated as in Section 3.1. The 

number of simulation runs is 1000.

Null II: λ(t|Z = j, X) = exp(−3 – X1 − 0.9X2 − X3) (j = 0,1),

λC(t|Z = 0, X) = exp(−5),

λC(t|Z = 1, X) = exp(−4.5);

Nearly Proportional II: λ(t|Z = 0, X) = exp(−2.8 − 0.95X1 − 0.85X2 − 0.95X3),

λ(t|Z =1, X) = exp(−3 − X1 − 0.9X2 − X3),

λC(t|Z = 0, X) = exp(−5),

λC(t|Z = 1, X) = exp(−4.5).

Table 3 shows the comparison results of the adjusted log-rank test versus the IPTW log-rank 

test. The Type I error rates of the latter with α = 0.05 are remarkably lower than the nominal 

level under Null II. This is no surprise given the theoretical arguments in Section 1. Under 

the Null scenario, the IPTW log-rank test has an inflated Type I error probability as a result 

of ignoring the dependent censoring. In contrast, the adjusted log-rank test has a correct 

Type I error rate in both the Null II and Null scenarios. Additionally, the adjusted log-rank 

test is more powerful than the IPTW log-rank test in the Nearly Proportional II scenario. 

This is again because the latter overestimates the variance of its test statistic, as argued in 

Section 1.

3.3 The adjusted log-rank test versus the log-rank test

We also compared the Type I error rates and powers of our adjusted log-rank test versus the 

regular log-rank test. The comparison was performed in the scenarios of Null III and 

Proportional defined below, in which the treatment assignment is random and the censoring 

time is independent of the failure time given the treatment. Under Proportional, the two 

treatment-specific hazards are exactly proportional to each other. The covariates were 

generated as in Section 3.1. The number of simulation runs is 1000.

Null III: P(Z = j|X) = 0.5 (j = 0,1),
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λ(t|Z = j,X) = exp(−3 –X1−0.9 X2− X3) (j = 0, 1),

λC(t|Z = 0,X) = exp(−5)

λC(t|Z = 0,X) = exp(−4.5);

Proportional: P(Z = j|X) = 0.5 (j = 0,1),

λ(t|Z = 0,X) = exp(−2.8)

λ(t|Z = 1,X) = exp(−3),

λC(t|Z = 0,X) = exp(−5),

λC(t|Z = 1,X) = exp(−4.5).

Table 4 shows the comparison results of the adjusted log-rank test versus the log-rank test. 

One can see that the adjusted log-rank test has a correct Type I error rate when the 

adjustment is actually not necessary, and it almost does not lose efficiency because of the 

unnecessary adjustment compared to the log-rank test.

3.4 Performance evaluation of the proposed survival function estimator

As the last numerical experiment, we evaluated the finite sample performances of the double 

inverse weighted estimator (6) for the treatment-specific survival function and its pointwise 

confidence interval based on the log-log transformation. Table 5 shows the simulation results 

for the survival function estimation at three time points under the Nearly Proportional 
scenario. To save space, we just present the results for estimating S(0)(t). From the table, one 

can see that the double inverse weighted estimator Ŝ(0)(t) is almost unbiased with moderate 

sample sizes, the theoretical variances based on Corollary 1 agree well with the empirical 

ones, and the 95% asymptotic confidence intervals for S(0)(t) based on the log-log 

transformation achieve the nominal coverage rate.

4 Application

We applied the proposed method to a real data set to compare the hazard of graft failure, 

defined as death or observed graft failure, between SPK and KA transplant recipients. The 

data set was obtained from the Scientific Registry of Transplant Recipients (SRTR). The 

SRTR data system includes data on all donor, wait-listed candidates, and transplant 

recipients in the US, submitted by the members of the Organ Procurement and 

Transplantation Network (OPTN). The Health Resources and Services Administration 

(HRSA), U.S. Department of Health and Human Services provides oversight to the activities 

of the OPTN and SRTR contractors.

Our study cohort consists of Type I diabetics with ERSD who received a SPK or KA 

transplant at age ≥ 18 during January 1, 2000–May 31, 2016. Only the patients who received 

the transplant for the first time were included, with repeat transplants excluded. The 

outcome variable is the time from the date of transplant to the date of graft failure. Subjects 

were censored at loss to follow-up or at the end of the observation period (May 31, 2016). 

We considered a common set of covariates in the logistic model for transplant type and the 

Cox models for censoring time, which include age at transplant, gender, race, blood type, 

pretransplant time on dialysis, and donor age, same as in Zhang and Schaubel (2012). The 

sample for the analysis has 1636 SPK and 1930 KA transplant recipients without missing 

data in the outcome or covariates. The longest common follow-up time in the two groups is 
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13.58 years. The censoring rate of the sample is about 78%. In the fitted logistic model for 

transplant type, age at transplant, race and donor age are significant at 0.05 level. The c-

statistic for the logistic model is 0.841, suggesting that the model fits the data decently. In 

the fitted Cox models for censoring time, age at transplant is significant for KA recipients, 

and age at transplant, race and donor age are significant for SPK recipients. The Cox-Snell 

residual plots in Appendix B show that the Cox models fit the data well.

Figure 2 shows the double inverse weighted estimates for the KA- and SPK-specific survival 

functions over 10 years as well as the conditional survival functions from Year 5 to 10. One 

can see that KA recipients have lower graft failure rates during the first 5 years but higher 

rates from Year 6.3 to 10 than SPK recipients. We applied our two-sided adjusted log-rank, 

Prentice-Wilcoxon, Renyi-type log-rank, and Renyi-type Prentice-Wilcoxon tests to the data. 

The regular log-rank test and the IPTW log-rank test (Xie and Liu 2005) were also 

performed to compare with ours. Every test was applied to compare the treatment-specific 

hazards over Year 0 to 5 and Year 5 to 10 respectively. The results are tabulated in Table 6. 

At 0.05 level, all the tests showed that the KA versus SPK difference in the graft failure 

hazard over the first 5 years after transplant is statistically significant. Our tests and the 

regular log-rank test also showed that there is a (nearly) significant difference between the 

two treatment-specific hazards over the second 5 years after transplant. In contrast, the 

IPTW log-rank test did not detect any significant difference in the graft failure hazard 

between KA and SPK recipients over that period. Since our class of adjusted weighted log-

rank tests are asymptotically correct in the scenario for which the IPTW log-rank test is 

valid (in terms of the IPTW log-rank statistic value), the above contrast implies that the 

IPTW log-rank test led to a false insignificant result for the time window of Year 5 to 10, 

assuming that our tests correctly modeled the transplant type assignment and the censoring 

mechanism.

5 Discussion

In this paper, we developed a class of adjusted weighted log-rank tests as well as their 

supremum versions, which are suitable for two-sample hazard comparisons over arbitrary 

time window using time-to-event data from observational studies. The adjustment is done 

through inverse probability of treatment and censoring weighting to deal with the non-

randomness of treatment assignment and censoring often associated with observational data. 

The developed tests are shown to be asymptotically correct and have satisfactory finite 

sample performance in numerical experiments except that the Type I errors of the adjusted 

log-rank test and its supremum version are inflated a bit when the dependent censoring is 

about 40%. We have not figured out the reason for this little inflation. Further investigations 

are warranted. An application to a national kidney transplant data demonstrated our tests’ 

utility.

The new tests can be directly applied to competing risks data to compare average cause-

specific hazards between two treatment groups. They can also be directly applied to left-

truncated survival data. Moreover, they can be directly applied to survival data with a 

mixture of dependent and independent censoring, in which case one should only model the 

distribution of the dependent censoring time given the adjustment covariates.
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Three extensions of the developed tests are worthwhile to pursue in future. Firstly, our tests 

can be extended to the settings with more than two treatment groups by considering a new 

model for treatment assignment, e.g., a multinomial logistic model. Secondly, using a Cox 

model with time-dependent covariates for censoring, one can extend our tests to the situation 

where censoring times and event times are conditionally independent given some possibly 

timevaring prognostic factors. Thirdly, one can utilize the double-robust estimator of 

treatment-specific cumulative hazard proposed by Zhang and Schaubel (2012) to construct a 

class of adjusted weighted log-rank tests that are asymptotically correct provided that either 

event hazard or coarsening mechanism (treatment assignment and censoring) is modeled 

correctly.
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Appendix A

A.1. Notations and Regularity Conditions

We introduce the following notations that will be used in the regularity conditions below and 

the proof of Theorem 2:

V
Z

(α) = E
exp(αT

X
∼Z)X

∼Z ⊗ 2

1 + exp(αT
X
∼Z)

,

R
C

j

(d)(t; θ
j
) = n

−1 ∑
i = 1

n

Y
i j

(t)X
i
C ⊗ dexp(θ

j
T

X
i
C),

r
C j
(d)(t; θ

j
) = E Y

i j
(t)X

i
C ⊗ dexp(θ

j
T

X
i
C) ,

X
j
C(t; θ

j
) =

R
C j
(1)(t; θ

j
)

R
C j
(0)(t; θ

j
)
,

x
j
C(t; θ

j
) =

r
C j
(1)(t; θ

j
)

r
C j
(0)(t; θ

j
)
,
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Ω
j
C(θ

j
) = ∫

0

∞ r
C j
(2)(t; θ

j
)

r
C j
(0)(t; θ

j
)

− x
j
C(t; θ

j
) ⊗ 2

E Y
i j

(t)λ
i j
C(t) dt,

and S0 j
C (t) denotes the conditional survival function of C given Z = j and

X
C = 0

for j = 0, 1 and d = 0, 1, 2, where for a column vector b, b⊗2 = bbT, b⊗1 = b, and b⊗0 = 1. 

The rest notations appearing in Theorems 1 and 2 will be introduced as we prove Theorem 

2.

We assume the following regularity conditions for i = 1, …, n and j = 0, 1:

a. Model (2) for treatment assignment is correctly specified.

b. Model (4) for censoring is correctly specified.

c. X
i
Z is bounded almost surely.

d. VZ(α) is positive definite at the true value of α.

e. X
i
C is bounded almost surely.

f. Ω
j
C(θ

j
) is positive definite at the true value of θj.

g. S(j) (t) is absolutely continuous in t.

h. S0 j
C (t) is absolutely continuous in t.

i. As n → ∞, W(s)
p

w(s) uniformly on ℐ where w(s) is a nonnegative, left-

function with right-hand limits on ℐ such that w(s) < ∞ and its right-continuous 

adaptation w+ has bounded variation on each closed subinterval of ℐ.

Conditions (a), (c) and (d) ensure the consistency and asymptotic normality of α. Conditions 

(b), (e) and (f) ensure the uniform consistency of Λ
i j
C( ⋅ ) over [0, tsup] and the weak 

convergence of n Λ
i j
C( ⋅ ) − Λ

i j
C( ⋅ )  to·a zero-mean Gaussian process on D[0, tsup]. 

Conditions (g) and (h) ensure that exp − Λ( j)( ⋅ )  and exp − Λ
i j
C( ⋅ )  are consistent 

estimators for S(j)(·) and S
i j
C( ⋅ ) respectively given the consistency of Λ( j)( ⋅ ) and Λ

i j
C( ⋅ ). 

Condition (i) is needed for weak convergence of W
a
(t; α, Λ

C) to a zero-mean Gaussian 

process on D[0, tsup] under H0.

A.2. Proof of Theorem 2

We first decompose W
a
(t; α, Λ

C) as follows.

Li Page 16

Lifetime Data Anal. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wa(t; α, Λ
C

) = Wa(t; α, Λ
C) + Wa(t; α, Λ

C
) − Wa(t; α, Λ

C
) + Wa(t; α, Λ

C
) − Wa(t;

α, Λ
C) .

(16)

By algebra, Wa(t; α, ΛC) can be written as

Wa(t; α, Λ
C) = ∑

i = 1

n

∫
0

t K
∗(s; α, Λ

C)

∑
k = 1
n

[pk1(α)exp − Λk1
C (s − ) ]

−1
Yk1(s)

dMi1
∗ (s)

− ∑
i = 1

n

∫
0

t K
∗(s; α, Λ

C)

∑
k = 1
n

[pk0(α)exp − Λk0
C (s − ) ]

−1
Yk0(s)

dMi0
∗ (s)

+ ∫
0

t

K
∗(s; α, Λ

C) λ(1)(s) − λ(0)(s) ds

(17)

Define D
j
(s; α, Λ

C) ≡ E [p
i j

(α)exp − Λ
i j
C(s − ) ]

−1
Y

i j
(s) ( j = 0, 1) and 

D(s; α, Λ
C) ≡ ∑ j = 0

1
D

j
(s; α, Λ

C). Applying the Law of Large Number, then using 

conditions (a), (b), (h) and (i), when n → ∞, we can re-express Wa(t; α, ΛC) as

Wa(t; α, Λ
C) = n

−1/2 ∑
i = 1

n

Ai1(t; α, Λ
C) − Ai0(t; α, Λ

C)

+ ∫
0

t

K
∗(s; α, Λ

C) λ(1)(s) − λ(0)(s) ds + op(1)

(18)

with E{Aij(t; α, ΛC)} = 0 j = (0, 1).

To obtain the asymptotic expressions of the second and third summands in (16), we first 

derive the asymptotic expressions of n(α − α) and n Λ
i j
C(t) − Λ

i j
C(t) .

Under conditions (a), (c) and (d), we have from standard maximum likelihood theory α
p

α

and

n(α − α) = VZ
−1(α)n−1/2 ∑

i = 1

n

ψ i
Z(α) + op(1), (19)

where ψ
i
Z(α) = X

∼
i

Z
Z

i
− expit(αT

X
∼

i

Z
) .
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Under conditions (b), (e) and (f), standard partial likelihood theory Fleming and Harrington 

(1991) leads to θ
j

p
θ

j
,

n(θ j − θ j) = Ω j
C(θ j)

−1
n

−1/2 ∑
i = 1

n

Ui j
C(θ j) + op(1), (20)

where U
i j
C(θ

j
) = ∫

0

∞
X

i
C − x

j
C(t; θ

j
) dM

i j
C(t) and

sup
t ∈ [0, tsup]

|Λ0 j

C
(t) − Λ0

j

C (t)|
p

0 (21)

for j=0, 1. We express n Λ
i j
C(t) − Λ

i j
C(t)  as

n Λi j

C
(t) − Λi j

C(t) = n Λ0 j

C
(t)exp(θ j

T
Xi

C) − Λ0 j
C (t)exp(θ j

T
Xi

C) + n Λ0 j
C (t)exp(θ j

T
Xi

C)

− Λ0 j
C (t)exp(θ j

T
Xi

C) .

(22)

Using a Taylor expansion,

n Λ0 j
C (t)exp(θ j

T
Xi

C) − Λ0 j
C (t)exp(θ j

T
Xi

C) = exp(θ j
T

Xi
C)Λ0 j

C (t)Xi
CT

n(θ j − θ j) + op(1) . (23)

By algebra, a Taylor expansion around θj, the Law of Large Number, the consistency of θ
j
, 

and (21),
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n Λ0 j

C
(t)exp(θ j

T
Xi

C) − Λ0 j
C (t)exp(θ j

T
Xi

C) = n

∫
0

t ∑
l = 1
n

dNl j
C(s)

∑
k = 1
n

Yk j(s)exp(θ j

T
Xk

C)
− ∫

0

t ∑
l = 1
n

dNl j
C(s)

∑
k = 1
n

Yk j(s)exp(θ j
T

Xk
C)

+ ∑
l = 1

n

∫
0

t dMl j
C(s)

∑
k = 1
n

Yk j(s)exp(θ j
T

Xk
C)

exp(θ j

T
Xi

C)

= n − ∫
0

t

X j
C(s; θ j)

∑
l = 1
n

dNl j
C(s)

∑
k = 1
n

Yk j(s)exp(θ j
T

Xk
C)

T

(θ j − θ j)

+ ∑
l = 1

n

∫
0

t dMl j
C(s)

∑
k = 1
n

Yk j(s)exp(θ j
T

Xk
C)

exp(θ j

T
Xi

C) + op(1) = − exp(θ j
T

Xi
C

) ∫
0

t

x j(s; θ j)dΛ0 j
C (s)

T

n(θ j − θ j) + n
−1/2 ∑

l = 1

n

∫
0

t dMl j
C(s)

rC j
(0)(s; θ j)

exp(θ j
T

Xi
C) + op(1) . = − exp

(θ j
T

Xi
C) ∫

0

t

x j(s; θ j)dΛ0 j
C (s)

T

n(θ j − θ j) + n
−1/2 ∑

l = 1

n

∫
0

t dMl j
C(s)

rC j
(0)(s; θ j)

exp(θ j
T

Xi
C) + op(1) .

(24)

Combining (20) (22), (23) and (24), we get

n Λi j

C
(t) − Λi j

C(t) = Ki j
T (t; θ j) Ω j

C(θ j)
−1

n
−1/2 ∑

k = 1

n

Uk j
C (θ j) + exp(θ j

T
Xi

C

)n−1/2 ∑
k = 1

n

∫
0

t dMk j
C (s)

rC j
(0)(s; θ j)

+ op(1),

(25)

where K
i j

(t; θ
j
) = ∫

0

t
X

i
C − x

j
C(s; θ

j
) dΛ

i j
C(s).

Now consider W
a
(t; α, Λ

C) − W
a
(t; α, Λ

C) in (16). Using Taylor expansion around α, root-n 

consistency of Λ
i j
C( ⋅ ), the Law of Large Number and condition (i), then substituting (19), 

after a lot of algebra, we obtain
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Wa(t; α, Λ
C

) − Wa(t; α, Λ
C

) = B1(t; α, Λ
C) − B0(t; α, Λ

C)
T

V−1
Z (α)n−1/2 ∑

i = 1

n

ψ i
Z(α) + op(1

),

(26)

where

B
j
(t; α, Λ

C) = ∫
0

t
w(s)

( − 1)1 − j∑k = 0
1

D1 − k
(s; α, Λ

C)G
k
(s; α, Λ

C)

D
2(s; α, Λ

C)
dQ

j
(s; α, Λ

C) +∫
0

t
w(s

)
( − 1)1 − j∑k = 0

1
D1 − k

(s; α, Λ
C)G

k
(s; α, Λ

C)

D
2(s; α, Λ

C)
dQ

j
(s; α, Λ

C) +∫
0

t
w(s)

( − 1) j
D1 − j

(s; α, Λ
C)

D(s; α, Λ
C)

dξ
j
(s; α, Λ

C),

G
j
(s; α, Λ

C) = E X
∼

k
Z

Y
k j

(s)exp Λ
k j
C (s − ) p

k j
−1(α) − 1 ,

dQ
j
(s; α, Λ

C) = E
exp Λ

i j
C(s − ) dN

i j
(s)

p
i j

(α)

and

dξ
j
(s; α, Λ

C) = E X
∼

i
Zexp Λ

i j
C(s − ) p

i j
−1(α) − 1 dN

i j
(s)

for j = 0, 1.

Next consider W
a
(t; α, Λ

C) − W
a
(t; α, Λ

C) in (16). Using Taylor expansions around 

Λ
i j
C( ⋅ ) (i = 1, …, n, j = 0, 1), the Law of Large Number and condition (i), then substituting 

(25), after a lot of algebra, we obtain
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Wa(t; α, Λ
C

) − Wa(t; α, Λ
C)

= F0
T(t; α, Λ

C) Ω0
C(θ0)

−1
n

−1/2 ∑
i = 1

n

Ui0
C(θ0) − F1

T(t; α, Λ
C) Ω1

C(θ1)
−1

n
−1/2 ∑

i = 1

n

Ui1
C(θ1)

+ n
−1/2 ∑

i = 1

n

∫
0

t

L0(s, t; α, Λ
C)

dMi0
C(s)

rC0
(0)(s; θ0)

− n
−1/2 ∑

i = 1

n

∫
0

t

L1(s, t; α, Λ
C)

dMi1
C(s)

rC1
(0)(s; θ1)

+ op(1),

(27)

where

F
j
(t; α, Λ

C) = ∫
0

t
w(s)

H
j
(s; α, Λ

C)D1 − j
(s; α, Λ

C)

D
2(s; α, Λ

C)
dQ1 − j

(s; α, Λ
C) +

H
j
(s; α, Λ

C)D1 − j
(s; α, Λ

C)

D
2(s; α, Λ

C)
dQ

j
(s; α,

Λ
C) −

D1 − j
(s; α, Λ

C)

D(s; α, Λ
C)

dJ
j
(s; α, Λ

C) ,

H
j
(s; α, Λ

C) = E K
k j

(s − ; θ
j
)
exp Λ

k j
C (s − ) Y

k j
(s)

p
k j

(α)
,

dJ
j
(s; α, Λ

C) = E K
k j

(s − ; θ
j
)
exp Λ

k j
C (s − ) dN

k j
(s)

p
k j

(α)
,

L
j
(s, t; α, Λ

C) = ∫
s

t
w(u)

γ
j
(u; α, Λ

C)D1 − j
(u; α, Λ

C)

D
2(u; α, Λ

C)
dQ1 − j

(u; α, Λ
C) +

γ
j
(u; α, Λ

C)D1 − j
(u; α, Λ

C)

D
2(u; α, Λ

C)
dQ

j
(u;

α, Λ
C) −

D1 − j
(u; α, Λ

C)

D(u; α, Λ
C)

dζ
j
(u; α, Λ

C) ,

γ
j
(s; α, Λ

C) = E exp(θ
j
T

X
k
C)

exp Λ
k j
C (s − ) Y

k j
(s)

p
k j

(α)

and
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dζ
j
(s; α, Λ

C) = E exp(θ
j
T

X
k
C)

exp Λ
k j
C (s − ) dN

k j
(s)

p
k j

(α)

for j = 0, 1.

Finally, substituting (18), (26) and (27) into (16) completes the proof of Theorem 2.
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Assessment of the Cox Models for Censoring Time of the SRTR Data
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Fig. 1. 
The treatment-specific hazard plots for the Nearly Proportional, Early Departure and 

Crossing scenarios. The solid curves are λ(1)(t)’s, and the dashed curves are λ(0)(t)’s.
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Fig. 2. 
The double inverse weighted estimates (with 95% pointwise asymptotic confidence intervals 

based on the log-log transformation) of average survival function (left panel) and conditional 

survival function (right panel) of graft failure time for KA recipients (solid line) and SPK 

recipients (dashed line).
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Fig. 3. 
Cox-Snell residual plots for the Cox models for censoring time of KA recipients (solid line) 

and of SPK recipients (dashed line).
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Li Page 26

Table 1

Type I error rates and powers of the adjusted log-rank (ALR), Prentice-Wilcoxon (APW) and Renyi-type log-

rank (ARLR) tests with α = 0.05 in the scenarios where the dependent censoring rate is around 19%.

n Scenario ALR APW ARLR

300 Null 0.059 0.044 0.052

Nearly Proportional 0.276 0.251 0.300

Early Departure 0.637 0.856 0.779

Crossing 0.103 0.161 0.190

600 Null 0.059 0.043 0.052

Nearly Proportional 0.474 0.438 0.490

Early Departure 0.870 0.991 0.971

Crossing 0.178 0.253 0.376

900 Null 0.054 0.049 0.053

Nearly Proportional 0.614 0.593 0.644

Early Departure 0.972 1.000 0.994

Crossing 0.249 0.353 0.596
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TABLE 2

Type I error rates and powers of the adjusted log-rank (ALR), Prentice-Wilcoxon (APW) and Renyi-type log-

rank (ARLR) tests with α = 0.05 in the scenarios where the dependent censoring rate is around 40%.

n Scenario ALR APW ARLR

300 Null HC 0.064 0.050 0.060

Nearly Proportional HC 0.246 0.237 0.259

Early Departure HC 0.550 0.785 0.702

Crossing HC 0.083 0.157 0.150

600 Null HC 0.065 0.055 0.064

Nearly Proportional HC 0.344 0.390 0.369

Early Departure HC 0.757 0.977 0.930

Crossing HC 0.101 0.241 0.214

900 Null HC 0.067 0.047 0.069

Nearly Proportional HC 0.450 0.531 0.508

Early Departure HC 0.823 0.998 0.980

Crossing HC 0.123 0.324 0.321
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Table 3

Comparison of Type I error rate and power between the adjusted log-rank test (ALR) and the IPTW log-rank 

test (IPTW LR)

n Scenario ALR IPTW LR

600 Null 0.059 0.062

Null II 0.057 0.030

Nearly Proportional II 0.501 0.424

900 Null 0.054 0.084

Null II 0.059 0.028

Nearly Proportional II 0.650 0.588

1200 Null 0.052 0.100

Null II 0.051 0.031

Nearly Proportional II 0.777 0.726
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Table 4

Comparison of Type I error rate and power between the adjusted log-rank test (ALR) and the log-rank test 

(LR)

n Scenario ALR LR

600 Null III 0.048 0.043

Proportional 0.630 0.628

900 Null III 0.057 0.047

Proportional 0.786 0.802

1200 Null III 0.046 0.042

Proportional 0.899 0.901
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