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ABSTRACT

New iterative separable programming techniques based on two-
segment, piecewise-linear approximations are described for the
minimization of convex separable functions over convex sets. These
techniques have two advantages over traditional separable programming
methods. The first is that they do not require the cumbersome “"fine
grid" approximations employed to achieve high accuracy in the usual
separable programming approach. In addition, the new methods yield
feasible solutions with objective values guaranteed to be within any
specified tolerance of optimality. In computational tests with
real-world problems of up to 500 "nonlinear" variables the approach
has exhibited rapid convergence and yielded very close bounds on the

optimal value.



1. Introduction

In [4,5] techniques are described for the solution of problems

of the class

min f(x)
X
(1.1)
s.t. xeCy & < X < u,
T n
under the assumptions that x = (x1,...,xn) , that f(x) = ) fi(xi)’

j=
that f; s convex on [Ri,ui] for i=1,...,n, and that

C = {x|Ax=b, xeZ"}, where A is totally unimodular’ and Z" is the
set of integer n-vectors (methods that do not require bounds on the

x; are also described there, but in this paper we shall consider

only the bounded case). This paper describes appropriate modifications
and generalizations of those techniques for the case in which C is a
general closed convex set. At each iteration the techniques to be
described employ a two-segment, convex, piecewise-Tinear approximation
for each objective function term and perform an optimization over a
"corresponding” portion of the feasible set. This approach thus has
the advantage of not requiring the traditional [7] but cumbersome
"fine grid" separable programming approximation over the full range

of each variable. It also provides tight upper and lower bounds on
the optimal value by extending error bound concepts of Geoffrion [3],
Meyer [4,5], and Thakur [8]. In computational experience with real-
world problems of up to 500 "nonlinear" variables the approach has

exhibited rapid convergence and yielded very close bounds on the

optimal value.

T A matrix is said to be totally unimodular if the determinant of
each of its square submatrices has value 0 or # 1. Coefficient
matrices of single commodity networks typically have this property

(see Dantzig [2]).



In the next section we consider the relationship between the
optimal values of the approximating problems and the given probiem
(1.1). The most general results obtained depend only on convexity,
and thus point the way for extensions of the techniques to the non-
separable case, where the local nature of the approximations employed
is even more critical in keeping down problem size. Section 3 con-
tains an algorithm for the case in which the C = {x|Ax=b}, where A
is totally unimodular. The results there constitute an extension of
the ideas of [4.5] to continuous, "convex" networks. Section 4 deals
with the general case in which C is merely assumed to be closed and
convex, and develops two finitely convergent algorithms: the first
for integer approximations, and the second for arbitrary finite
approximations. Computational aspects and numerical results are

presented in Section 5, and Conclusions are discussed in Section 6.



2. Approximations and Error Analysis

For notational convenience in the ensuing sections, we denote the
set {x|%<x<u} by [#,u] and the feasible set Cn[2,u] by S. To
simplify the discussion we will assume S # ¢ and & < u. (If S s
empty, then this fact will be determined in the course of attempting
to solve the first approximating problem, which is a probiem
with S as its feasible set.) We will assume that f 1is finite and
convex on [%2,u]. The algorithms do not require that f be continuous
on [%2,u], but we will assume that (1.1) has an optimal solution.

The iterative procedures to be described for (1.1) involve the
replacement of the objective function by approximations fk and the
minimization of these approximations over subsets of S of the form
Sn[zk,uk] where [Qk,uk] is an n-dimensional interval. These subsets
are generated in such a way that, if x* is the optimal solution
obtained in the final iteration (the algorithms are finite) and the

final problem solved was, say,

min ?(x)

s.t. xeSn[2*,u*],

where f was the final approximation to f, and {#*,u*}, the final set
of "additional" bounds, then the additional bounds turn out to be

non-restrictive in the sense that x* s also an optimal solution of

min %(x)
(2.1)
s.t. xeS.

(As might be expected, convexity plays an important role in this result.)
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More will be said about the nature of these approximations after

the relationship of the optimal value of (2.1) to that of (1.1) is
discussed. At this stage we assume only that f Ties above f in
the ("small") set [#*,u*] and below f outside of [&*,u*]. The
former property implies that the optimal value of (2.1) is an upper
bound on the optimal value of (1.1). Lemma 2.1 below leads to a lower
bound determined by the behavior of f-f din [2*,u*] alone.

Let 5 be an approximation to f such that the problem

min g S.t. xeS has an optimal solution. (The nature of the approxi-
mation g is otherwise irrelevant.) The function e(x), assumed

to be defined on S, is a bound on the error between f and 5 in
the sense that f(x) + e(x) z_ﬁ(x). For purposes of an error estimate
we need only consider a quantity é‘i sup e(x). (Note that in the
following Lemma and its Corollary 2.2, convexity and separability of

f are not required or assumed. This approach thus provides the basis

for extending these ideas to the non-separable case.)

Lemma 2.1: If x* is an optimal solution of min g(x) s.t. xeS and
x** s an optimal solution of min f(x) s.t. xeS, then

f(x**) 3_~(x*) - 8,

Proof: By applying the definitions above, we have F(x**) + e

> %) + e(x**) > g(x**) > g(x*). B

Note that this result could be improved by replacing & by
sup e(x) s.t. xeS, but the Tatter quantity may be much more difficult

to compute. Similar observations hold for the Corcllaries below.



The next Corollary follows directly from the Lemma and establishes
the validity of obtaining an error bound by considering the difference
between g and f only in the (hopefully small) region in which

f(x) < §(x). The set S denotes any set such S =S < [%,ul.

Corollary 2.2: Let the hypotheses of Lemma 2.1 hold, and let

= {x|xeS, f(x) < g(x)}. If L# ¢ and e(x) fis such that
f(x) + &(x) > g(x) for xeL, then f(x**) > g(x*) - e*, where

e* = sup e(x) s.t. xel.

Proof: Define e(x) = e(x) for xeL and e(x) =0 for xeQ\L,

and note that because L # ¢ and e(x) 1is non-negative,

sup e(x) S.t. xeS = sup &(x) s.t. Xel. ]

Our final result of this type concerﬁs the case in which

p
f(x) = .Z]gi(x), g(x) = 2191 , and an upper bound is available
i= i

for each of the differences 51(x) - gi(x). Note that this includes
the separable case as well as the semi-separable case in which each

95 depends on only a small number of variables.

Corollary 2.3: Let the hypotheses of Lemma 2.1 hold, and assume that

there exists a subset L of S such that, for i =1,...,p,
gi(x) §'§i(x) if and only if xeL. If L # ¢ and, for i =1T,...,p,

éi(x) is such that g;(x) + &.(x) > g.(x) for xeL, then
- p
fx**) > g(x*) - } e¥, where e¥ = sup Ei(x) s.t. xel.
i=1



Proof: By summing the inequalities involving Ei(x), we have

P -
f(x) + } &,(x) >g(x) for xeL. The result then follows by

i=1 !
p ~
Tetting e(x) = } éi(x) for xelL, e(x) = 0 for xeS\L, and noting
i=1
p
that ) e* > sup e(x). [
i=1 1

In the separable case, the types of approximations with which we will

be dealing in the following sections are sums of those (two-segment or
one-segment) convex piecewise-linear approximations to the fi that

coincide with the fi on sets of the form {Ei,ﬁi,ﬁi}, where

L. < .

; 3 (See Figure 1). Note that the

<M. < U. < U,

and 2. < U..
i i i i

;
triple {ii,&i,ﬁi} uniquely determines the piecewise-linear approx-

imation. The point ﬁi is allowed to coincide with Ei or Gi,

but for most purposes it is convenient to consider only the case

%1 < ﬁi < Gi, for which the corresponding approximation %1 will generally

be a two-segment piecewise-linear function. It is easily shown that ?i Z.fi
7 - r: M s Al 7 N
on [%i,ui] and . < s outside" of [Qi’ui] because f.

is convex. The functions %i are, of course, continuous even

n
if f is not, and the approximating problems in which ) f,i is
n i=1
replaced by ) ?1 = F thus always have optimal solutions. For ease

i=1
of description, the sets {ii,ﬁi,ﬁi} will be said to be the breakpoints of

?1 and the corresponding vectors {Z,m,u} will be said to be the
breakpoints of T. Conversely, T will be said to be the piecewise-

linear approximation determined by the breakpoints {Z,m,u}.



Figure 1: fi and fi‘



Note that in this context Corollary 2.3 applies with gi(x) = fi(xi)’

51(x) = ?i(xg, and L = [Z,u], yielding the following:

Corollary 2.4: If Xe[Z,u] 1s an optimal solution of

min f(x)
s.t. xeSn[2,ul,
- n— -
where f(x) = ) fi(xi) and, for i=1,...,n, f; {is a convex piece-
i=1

wise-linear function determined by fi and the breakpoint set
[ii,ai,ai], then the following bounds hold for the optimal value

f(x**) of (1.1):

where éiaz _sup _ (F. (x,



3. The Totally Unimodular Case

In this section we will assume that C = {x|Ax=b}, where A is

n

totally unimodular, and that £ and ueZ . The algorithm for the

case of a general convex feasible set is similar but slightly more
complex, and is described in Section 4.

At each iteration: (1) each of the functions f. is replaced
by a convex piecewise-linear approximation of at most two segments,
and (2) additional bounds on the variables are added to the original
constraints. More precisely, the piecewise-linear approximations
will be determined by breakpoint sets 2, m, u with the following
properties (% will be the additional lower bounds on x and u, the

additional upper bounds):

(3‘]) QI; ﬁ], aézn,

(3.2) g<f<m<u<u and R <u,

(3.3) Lo<mg AF f.<m, and  m,< U, ifom<ou,,
(3.4) rﬁf 2.+ 1 =u.-1 if 2.+ 2 =u.,

(3.5)  sSn[R,ul # ¢

(Hypotheses (3.1), (3.2), and (3.5) merely serve to rule out trivial
or uninteresting cases; hypotheses (3.3) and (3.4) are needed in
order to allow certain conclusions about optimal solutions.) A

triple {%Z,m,u} satisfying (3.1) - (3.5) will be said to be

admissible. The admissible breakpoint triple employed in the kth

k k Kk

iteration will be denoted by {2 ,m ,u }. It determines the
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i th K) in the sense that fk(xi)

is the piecewise-Tinear approximation determined by {zk,mk,uk}
k
fi(

approximating problem (denoted by P

X(x) =

Xi)’ and the feasible set for Pk is taken to be
..i

Hi~1 3

1
Sn[zk,uk], so that

Note that since Sk # ¢ by (3.5), Pk

will have an optimal solution
in 7" that may be determined by solving a single LP. Note also for
future reference that, given any problem of the form (1.1), there are
only a finite number of distinct problems of the form Pk, where
{,k,mk k} is admissible.

In order to establish a result relating solutions of
problems with restricted ranges to (1.1), we will introduce some
additional terminology. Given an Re[%,u], where 2 < @ <u <u, the

bounds %, u will be said to be non-restrictive (relative to [%,u])

at x if, for any xe[%,u], Ax + (1-A)X €[Z,u] for sufficiently

small positive XA. Note that if {Z,m,u} is an admissible breakpoint

triple, %, u are non-restrictive at m because of (3.2) and (3.3).

On the other hand, if, for some j, either %j < Ej = Qj or

Qj = Gj < uj, % will be said to be artifically bounded by the pair

{%,u}. If a function g, is convex on an interval [&',u'] < [Z,u],

g, will be said to be a convex extension of g, to [e,u] if g,

is convex on [%,u] and g](x) = gz(x) for xel[2',u'].
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Lemma 3.1: If x' is an optimal solution of the problem

min g](x)
X
(3.6)
s.t. xeCnl2',u'],

where 9 is convex on the convex set C, and if 2',u' are

non-restrictive at x', then x' 1is also an optimal solution of

min gz(x)
X
(3.7)
s.t. xeCnl2,u],

where 95 is any convex extension of g, to [%,u].

Proof: Suppose that x' 1is not optimal for (3.7). Let X be

any element of Cn[2,u] such that gz(i) < gz(x') = g](x'). Since

x' is not artificially bounded, Ax + (1-A)x' e Cn[2',u'] for
sufficiently small positive A. However, for such A, g](x§ + (T-2)x")

92(A§ + (1-0)x") < g,(x*') = g;(x'), a contradiction. ]

Thus, identifying g with the piecewise-linear approximation
determined by an admissible breakpoint triple {&',m',u'}, it follows
that if m' solves the corresponding approximating problem, then m'
is also optimal for any convex extension of g to [Z,u]. We will
see that the algorithm to be described terminates with such a
breakpoint triple.

We will now describe a basic algorithm and then prove its finite

convergence to an optimal solution of an integer approximation of
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(1.1). Specific computational techniques that satisfy the assumptions

of the basic algorithm are described in Section 5.
Algorithm 1 (A assumed totally unimodular)

0 0
Step 0: (Initialization): Set & =%, u = U and np = [35(2+u)]

(this is the vector whose ith component is the greatest integer equal

to or less than %(£1+ui). Let xO

of M. Set k = 0.

be an integer optimal solution

Step 1: If k=0 orif k>1 and & 2 KT set nk1 = %K and
choose 2k+1 and uk+] as vectors satisfying (3.1)-(3.4), and go to
Step 3.

Step 2: Set mk+] = xk and derive £k+] and uk+1 from zk and

uk by increasing at least one lower bound and/or decreasing at least

one upper bound while maintaining (3.1)-(3.4).

1 k+1 k+1

K and £ + 2e > U , Wwhere e =

Step 3: If X solves pk*
(1,1,...,1)T terminate. If xk solves pk+] and the latter inequality

is no@_satisfied, set xk+] = xk, increase k by 1, and go to Step 2.

k+1 k+1

Step 4: 1If xk does not solve P ¥
k+1

, let X be any integer

optimum of P Increase k by 1 and go to Step 1.

Theorem 3.1: Let f%(i=1,...,n) be the piecewise-linear approximation

n

to fi determined by the integers in [li,ui] and let fz =) f%.
i=1

Algorithm 1 will terminate in a finite number of iterations with an

optimal solution of the problem:
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min fz(x)
(3.8) X
s.t. Ax = b, & < X < u.

Proof: If the algorithm terminates, then the optimality conditions of the pre-
ceding Lemma are satisfied by the last iterate because of (3.1)-(3.4),

so it is optimal for the convex extension fz. Finite termination will be
established by verifying that no approximating problem is ever re-

peated by Algorithm 1. Note that, because of convexity, Xe[zk,uk]

implies <(x) > f(x), but, since, n = X1 for k > 1, K (xk-Ty =

>
f(xk). If XK # K1 and K > 1, then vk = fk(xk) < fk(xk-])=
' - — - -
fk(mK) = f(mk) f_fk ](xk ]) LT T =1, an analogous
k k-1

argument shows v~ < v ', so that an approximating problem may be
repeated only if it is repeated for two indices in a set of iteration
indices {r,r+l,...,r+s} such that x = xr+] SRR 'S, However,
Step 2 of the algorithm guarantees that the corresponding approximating

problems are all distinct. B

The error analysis of Section 2 now allows us to derive bounds on

the optimal value of the original problem (1.1).

*
Theorem 3.2: If x is an optimal solution of (3.8) obtained via

n
Algorithm 1, then f(x*) - )

e% < f(x**) < f(x*), where x** 1s an
i

1

optimal solution of (1.1), e% > sup (fg(xi) - fi(x;)), and 2%, u*
_~2$§X1§P$

are the bounds employed in the last iteration.

. . Z
(Note that, with an appropriate scaling of the variables, ey can

be made arbitrarily small, since u? - 2?_1 2.)
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4., The General Case

In this section we consider the case in which the feasible set is
only assumed to be of the form Cn[%,u], where C 1is a convex set.
The initial algorithm to be considered below, Algorithm 2, is similar
to Algorithm 1 in that it employs approximations determined by integer
breakpoints. Algorithm 3 then follows as a straightforward extension
that allows breakpoints to be selected from arbitrary finite sets.

As in the totally unimodular case, at each iteration each fi is
approximated by a piecewise-Tinear convex function of at most two
segments and the feasible set is correspondingly restricted. The
notation used to define approximating problems is the same as that of

the preceding section.

Algorithm 2 (Integer breakpoints)

Step 0 Set 0= 2, uo = u, and mY = [L(e+u)]. Let 0 be an optimal
solution of PO. Set k = 0.

Step 1: If k=0 or if k>1 and xX#x577, then set m¥*! = [x]
and choose £k+1 and uk+1 as integer vectors satisfying xk f_uk+]
and (3.1)-(3.4), and go to Step 3.

Step 2: Set mk+1 = [xk] and derive Qk+] and uk+] from Qk and uk

by increasing at least one lower bound and/or decreasing at least

one upper bound while maintaining (3.1)-(3.4) and xk 5_uk+].

Step 3: If xk solves Pk+] and Qk+] + 2e > uk+], terminate.
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k+1 k+1 k

Step 4: If xk solves P and xkeZn, set X = x and

Vk+1 k)

= f(x"), increase k by 1 and go to Step 2. Otherwise, let

k1 and let v* be the optimal

k+1 k+1

y* be any optimal solution of P

k+1

k .
value of P If v¥<v, set x = y* and v = y*, jpncrease

k by 1, and return to Step 1.

k+1 k+1

Step 5: If v* Z_vk, then modify 2 and/or u by increasing

at least one lower bound and/or decreasing at least one upper bound

uk+1

while maintaining xk < and (3.1)-(3.4) (note that k s

unchanged). Return to Step 3.

Since Algorithm 2 deals with problems determined by integer
breakpoints, only a finite number of distinct problems of that form
exist. As with Algorithm 1, we will show that Algorithm 2 cannot
consider the same problem twice. In this regard we will first
demonstrate that the algorithm cannot cycle infinitely often between
Steps 4 and 5. Note that in Step 5 only the lower and upper bounds

K+ are modified, since mk+] is maintained at [xk], Clearly,

of P
because of the contraction of the range in Step 5, after a finite
number of applications of Step 5 additional contraction of the

k¥1 4 96 > u**1 i1l hold. When

range will not be possible and 2
this is indeed the case, we will show that the complete cycle
cannot again be repeated. Thus, we will assume that none of the
conditions for the alternatives to repeating Step 5 are satisfied,
and show that this leads to a contradiction. That is, suppose

k

that no further contraction of the ranges is possible, that x

does not solve Pk+], and that v* 3‘vk. Because of the
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impossibility of contracting the ranges, it must be the case that
f§+](x§) §_f§(x§) for all 1. (See Appendix). However, this means
*
that v = fk+1(y*) < fk+](xk)_i fk(xk) = vk, a contradiction.
Theorem 4.1: Let f§(1=],...,n) be the piecewise-linear approximation

Z

n
to fi determined by the integers in [zi,ui], and let f°= ) f%.
i=1

Algorithm 2 will terminate in a finite number of iterations with an

optimal solution of

min fz(x)
(4.1) X
s.t. xeCn[2,u].

Proof: If termination occurs, then by Lemma 3.1 an optimal solution
of (4.1) has been obtained, so we need only show that termination
occurs in a finite number of iterations. Note that, in Step 4, if

v¥ < vk, then vk+] < vk, and if xk+] = xkeZn, then vk+] = f(xk)

g_fk(xk) = vk, so we need only show that vk+] = vk can only occur
for a finite number of successive iterations. However, this follows
by an argument analogous to that used in the TU case, since repetition
of the optimal value in this way forces a contraction of the ranges

in Step 2, and this contraction can occur only finitely often. |

Letting x* be the optimal solution of (4.1) determined by
Algorithm 2, an error bound analogous to that of Theorem 3.2 can now
be stated:

£L(

el < f(x**) < F(x).

He~15

x*) - .

i=1
(The lower bound can be improved in this case - see Reference [6] for a

disscussion of this point.)
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The techniques in Algorithm 2 are easily extended to the case in
which the breakpoints for x; are chosen from an arbitrary finite set
Ti that contains 21 and U (From a computational viewpoint the
most interesting case is perhaps the one in which each Ti is chosen
as the set of numbers representable on a given (finite precision)

computer.) If TeR" s the product of such sets Tys--0sT > the

n’

hypotheses (3.1)-(3.5) are replaced by

(4.2) &, m, ueT

(4.3) 2 <f<m<u<u and &<u

if 2;< m, and U, > m. if ous > m;

(4.4) =m i i i i i

(4.5) if (& ’ui)”Ti consists of exactly one point «, then ﬁi = g

(4.6)  Sn[%,u] # ¢

For notational convenience we will define for any w > %2, the function

[w]Ti Z max o
QL

s.t. o < w, ueTi,
and, for an n-vector v > &, [v]T is defined componentwise.

Algorithm 3 (General breakpoints):

Step 0: Set QD =L, Uy = Us and np = [%(%+u)]T. Let xO be an

optimal solution of W, set k=0 and W= fo(x ).
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Step 1: If k=0 orif k>1 and X 1, set A [xk]T,
and then choose 2k+] and uk+] so as to satisfy (4.2)-(4.5) and go
to Step 3.

Step 2: Set mk+] = [xk]T and derive lk+] and uk+] from %k and

uk by increasing at least one lower bound and/or decreasing at least

one upper bound while maintaining (4.2)-(4.5) and xk 5_uk+].

Step 3: If xk solves Pk+1 and the range contraction procedure

cannot be performed, terminate.

Step 4: If xk solves Pk+"l and xkeT, set xk+] = xk and

vk+] = f(xk), increase k by 1 and go to Step 2. Otherwise, let y*

k+1

be any optimal solution of P and let v* be the optimal value of

Pk+]. If v*< vk, set xk+] = y* and vk+1 = y*, increase k by 1,
and return to Step 1.
Step 5: If v* z.vk, then modify £k+] and/or uk+] by increasing

at least one lower bound and/or decreasing at least one upper bound
while maintaining (4.2)-(4.5) and x < u¥*1 (note that k fis

unchanged). Return to Step 3.

Note that if each Ti is chosen as the set of machine-
representable numbers, [w]Ti = w if w 1is machine-representable.
In practice, then, Algorithm 3 may be simplified by taking this into
account, noting that Step 5 is not needed when mk = xk, since
V¥ f'fk+1(mk) = f(mk) = f(xk) j_fk(xk). (Alternatively, in [6] a
two-segment algorithm is discussed in which mk+1 = xk, and 2k+1

and ukﬂ are determined by using the error bound obtained from
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k

P™. For this algorithm, convergence to the optimal value of the

original problem (1.1) may be proved.)
Theorem 4.2: Let f§ be the piecewise-linear approximation of fi
: T_ % T
determined by the breakpoints T1(1=1,...,n), and let f = ) fi'
i=1

Algorithm 3 will terminate in a finite number of iterations with an

optimal solution X of the problem

min fT(x)
(4.7) X
s.t. xeCn[2,u],
T, a n 1
and the optimal value f(x**) of (1.1) has the bounds f (x) - } e,

i=1

(fT(x-) - fi(xi)) and where

< f(x**) < f(X), where ez = sup (Falxy

2, U are the final sets of bounds used in the Algorithm.

In the case that the f1 are continuous and Algorithm 3 is
applied to a sequence of approximating problems in which the distance
between the points in the sets Ti tends to 0, convergence of the
corresponding sequence of optimal values for the approximating problems
to the optimal value of the given problem is guaranteed by Theorem 4.2.
This is easily seen since the terms eg tend to 0, while each
T(A

f'(x) will be an upper bound on f(x**).
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5. Computational Aspects

The algorithms described in the preceding two sections have the
property that they are finitely convergenf for arbitrary choices of
admissible breakpoint sets, hoWever, the actual rate of convergence
is significantly affected by the specific rules used for breakpoint
selection. A specific strategy that has been found to be computationally
effective is described below. Moreover, for large problems it is compu-
tationally more realistic to terminate when the upper and Tower bounds
differ by less than a specified tolerance rather to iterate until an
optimal solution is obtained for the approximating problem. It turns
out to be the case that Tower bounds can be obtained even in the case in
which the optimal solution of Pk is artificially bounded by Qk, uk.

In that case, the dual variable values corresponding to the active
artificial bounds may be used to construct two-segment approximations

for which xk will be optimal over S. These dual variable values

are also used to determine the breakpoint sets for the next iteration.
Details of this method will be given in [6]. Here we will only summarize
results obtained for the two problems at the extreme ranges of the test
problems solved. The fundamental elements of the strategy for breakpoint
determination that proved most efficient in the computational tests

with a variety of problems are as follows: (1) if the optimal value of

th Pk+'l

i~ variable in coincides with its value 1in Pk , then the length

k+2

of the range of X; for P is set approximately 0.2 times its Tength
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in Pk+] (an exact factor of 0.2 may not be allowable due to admiss-
ibility considerations), (2) if the optimal value of the ith variable
in Pk+1 is near the limit of its range (i.e., near 2k+] or u¥+])

i i >
then the length of the range of X; is increased by approximately a

factor of 1.2 for Pk+2, (3) the scale factor used for range modification

varies linearly between 0.2 and 1.2 for optimal values of X; in

§+1 F+]), and (4) if xk+] = gk+1 or u$+] (and these values do

(2 i i

not coincide with li or ui), then the value of the dual variable

corresponding to the active bound is taken into account in determining

k+2

the range of x, for P as well as in the error analysis cited above

i
(for details, see [6]).

Test Problem A:

An unscaled version of this problem was described in [5], where
results were given for procedures requiring more than three breakpoints

per variable. The algebraic statement of the problem is:

15 X1/1000
min ) wi(1-q;)
AR £
10 15
s.t. ] x; = 75,000 ) x; = 67,000
i=1 i=6
0 < X, < u, (i=1,...,15),

1 1

where the constants Wis Gy and u; are given in the following table.
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i i 9 uj

] 9.2 0.31 16,000
2 1.0 0.45 16,000
3 7.6 0.23 19,000
4 0.6 0.09 10,000
5 8.8 0.15 10,000
6 4.2 0.21 11,000
7 3.2 0.15 17,000
8 3.4 0.01 20,000
9 8.8 0.79 16,000
10 6.6 0.41 15,000
1 1.2 0.71 17,000
12 4.6 0.77 12,000
13 0.8 0.79 13,000
14 3.0 0.2] 20,000
15 1.2 0.07 20,000

Table 1.

Data for Test Problem A
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An optimal solution to integer-breakpoint approximation to this problem
was obtained via Algorithm 1 in 17 iterations (with optimality verified
on the ]8th iteration). The optimal solution is

x* = (11602, 4287, 14400, 2176, 10000, 10638, 11469, 0, 3292,
7136, 3038, 3590, 2298, 12805, 12734)7

with objective value = 7.738141. The Tower bound from Theorem 3.2 on
the optimal value for the given continuous problem is 7.738140. This
problem was also solved by the gradient projection code GPM, and yielded
a nearby solution with an objective function value of 7.738495 after 23

iterations.

Test Problem B:

This is a model of the Dallas water supply network with data pro-
vided to us by Jeff Kennington of SMU. A detailed description of the
formulation of this problem as an optimization problem is given in [1].
The version that we employed has 452 nodés, 551 arcs, and an objective
function involving 14 cubic functions and 516 terms of the form

2‘85. In 23 iterations a feasible solution with objective value

c.[x,]
-29212 x 106 was obtained along with a Tower bound on the optimal value
of -29238 x 106. This lower bound was obtained via an estimation tech-
nique that used only three available values of each fi s, and could be
improved through the use of first and second derivative information

(see [6] and [8]) on the fi‘ Thus the actual relative error in the

objective value of the approximate solution is likely to be closer to

0.01% than to the 0.1% figure available from the computed Tower bound.
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6. Conclusions

The two-segment approach to separable programming has been shown
to yield a finite method for solving approximating problems of any
specified accuracy, and, in computational tests, has exhibited rapid
convergence in test problems ranging from 15 to more than 500 variables.
Taking into account the additional features that the method does not
require initial values for either the variables or for parameters such
as penalty multipliers, and that it also provides tight bounds on the
optimal value, it offers decided advantages over more general nonlinear
programming methods, especially for "large" problems. The strictly
local nature of the approximations needed at each iteration also holds
out promise for efficient extensions of this approach to the non-
separable case. Some convergence results for generalizations of these

algorithms to the non-separable case are given in [6].

Acknowledgement: The author would like to express his appreciation
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obtained the computational results cited in Section 5.
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Appendix. The Monotonicity Condition of Algorithm 2

We will consider only the case x§ ¢ Z, since the inequality holds

k+1

trivially otherwise. In this case, since m; = [x?], it follows that

the distance from x? to the closest breakpoint of f? that is less
k+1|
i

than x? is at least ]x§ -m and that the distance from x? to

the closest breakpoint of f? that is greater than x? is at least

| K

. u§+]|. Because of the convexity of fi’ this quarantees that

the required inequality by the following Lemma:

Lemma: Let g and h be piecewise-linear convex functions derived
from a convex function w by interpolation at breakpoints g 5.g+
and h~ §_h+, respectively, where g~ < h” f_h+ §_g+. If ye[h',h+],
then h(y) < g(y).

Proof: Let y = Ah + (1~A)h+, where Ae[0,1], let h™ = p g + (1—p_)g+,

where 1 €[0,1], and Tlet h' = u+g' + (1—u+)g+, where u+e[0,1], Then
h(y) = AR(hT) + (1-1) h (h*) = aw(h™) + (1-2) » (h") < A(u7g(g")

F (1-07) g (g%) + (=0 GFg(e7) + (1) g (¢9) = (w™+(1-au™) g (¢7)
+ (=) + (-0 0=0")) g (6% = gly), since y = (w+(1-Au")g”

+ ((1-07) + (-0 (-17)g"

il
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Appendix A. Properties of the Piecewise-Linear Approximations

In this section we will verify properties of the piecewise-linear
approximations used in Section 2. For simplicity in notation, we assume
that w 1is a convex function on [o,B] and that h 1is the piecewise-
linear that agrees with w at the points y < yO < y+, where

- + .
a<y <y < B, 1.e.,

( - 0
Moy ) + (1-2) w (y7)
where Ay + (1—A)y0 =y, for y<y;

(1-0) @ (°) + rly™),
0

H

where (1-A)y + Ay+ =y, for y >y

(In the case of one-segment approximations, the required properties
follow as a special case of the results below.) An alternative

representation of h that is useful for our purposes is

#W)fw yif,

h =
2 hR(y) for y Z_yO,
O -
where hL(y) = w(yo) & Loly )—wa ) (Y-YO)
Yy -y
+ 0
and  hR(y) = w(y?) + L)) (0,

y =y

Note that h 1is convex because of the slope inequality

((2) ~0 ()7 6%y7) < (-0,
which follows from w(yo) !

f_( O] . + +] O)-1(w(()y z + w+y 3))’
y -y Yy =y y -y y =y
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which in turn is implied by the convexity of w. Also because of the

convexity of w, w(y) < dw(y ) + (1-}) w (yO L(

0

) = h (y), where

ye[y',yO] and Ay + (1-A)y” = y. Similarly, w(y) f_hR(y) for

ye[yo,y+]. Fora § <y , suppose that hL(y) > w(y). Then if

X s chosen such that X§ + (1-X)y0 =y , we have hL(y') = KhL(y)
~ A A ~ 0 A A ~ -
£ (1-0) 0 (9) > @) + (-0 0 (0) = @) + (-0 w %) > wly)

("), a contradiction. Thus for y <y ,h

similarly we can verify that hR(y) < w(y) for vy 3_y+.



1.

3.

-6

References

M. Collins, L. Cooper, R. Helgason, J. Kennington, and
L. LeBlanc, "Solving the Pipe Network Analysis Problem
Using Optimization Techniques", Man. Sci., 24 (1978),
pp. 747-760.

G. B. Dantzig, Linear Programming and Extensions, Princeton
University Press, Princeton, 1963.

A. M. Geoffrion, "Objective Function Approximations in Mathematical
Programming", Math. Prog., 13 (1977), pp. 23-37.

R. R. Meyer, "A Class of Nonlinear Integer Programs Solvable by a
Single Linear Program", SICOP, 15 (1977), pp. 935-946.

R. R. Meyer, "Algorithms for a Class of "Convex" Nonlinear Integer
Programs", in Computers and Mathematical Programming, (ed. by

W. W. White) National Bureay of Standards Special Publication

502, 1978.

R. R. Meyer, "Computational Aspects of Two-Segment Separable
Programming”, in preparation.

C. E. Miller, "The Simplex Method for Local Separable Programming",
in Recent Advances in Mathematical Programming, ed. by R. L. Graves
and P. Wolfe, McGraw Hi1l, New York, 1963.

L. S. Thakur, "Error Analysis for Convex Separable Programs",
SIAM J. App. Math, 34 (1978), pp. 704-714.






