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Two sequential cleavage reactions on cruciform
DNA structures cause palindrome-mediated
chromosomal translocations
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Beverly S. Emanuel2,3 & Hiroki Kurahashi1

Gross chromosomal rearrangements (GCRs), such as translocations, deletions or inversions,

are often generated by illegitimate repair between two DNA breakages at regions with

nucleotide sequences that might potentially adopt a non-B DNA conformation. We previously

established a plasmid-based model system that recapitulates palindrome-mediated recurrent

chromosomal translocations in humans, and demonstrated that cruciform DNA conformation

is required for the translocation-like rearrangements. Here we show that two sequential

reactions that cleave the cruciform structures give rise to the translocation: GEN1-mediated

resolution that cleaves diagonally at the four-way junction of the cruciform and Artemis-

mediated opening of the subsequently formed hairpin ends. Indeed, translocation products in

human sperm reveal the remnants of this two-step mechanism. These two intrinsic pathways

that normally fulfil vital functions independently, Holliday-junction resolution in homologous

recombination and coding joint formation in rearrangement of antigen-receptor genes,

act upon the unusual DNA conformation in concert and lead to a subset of recurrent GCRs in

humans.
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G
ross chromosomal rearrangement (GCR) is generally
acknowledged to be generated by DNA breaks at two
different chromosomal loci followed by illegitimate repair

of these broken ends. Although DNA breakage by ionizing
radiation or reactive oxygen species takes place accidentally and
the breakpoints are distributed in a random fashion, certain
chromosomal regions are susceptible to DNA breakage manifest-
ing as hotspots for GCR breakpoints. The most frequent recurrent
GCR in humans is the Robertsonian translocation with a high de
novo mutation rate of B3.9� 10� 4, and it takes place between
highly repetitive tandem sequences at the centromeric regions1.
Inverted repeats or palindromic sequences are also hotspots for
breakpoints of GCRs, because intra-strand annealing of the
palindromic DNA potentially forms single-stranded hairpin or
double-stranded cruciform structures. There are two main
hypotheses for the genomic instability of the palindrome. The
palindromic DNA may adopt a hairpin structure in the long
single-stranded DNA of the lagging-strand template that may
serve as a replication barrier2. Replication stalling may induce
replication slippage or template switching, leading to deletions or
duplications of the nearby genomic region3,4. In addition,
inverted repeats often trigger dicentric or acentric chromosome
formation, possibly caused by template switching upon
replication resumption after a pausing at the inverted repeats5.
In sharp contrast, another hypothesis is that a structure-specific
endonuclease might cleave the secondary structure formed by the
palindrome, leading to frequent DNA breakage6,7.

A subset of recurrent constitutional chromosomal transloca-
tions in humans develops between two palindromic AT-rich
repeats (PATRRs) at different chromosomal loci that share no
sequence homology8. One of the best-characterized constitutional
translocations is the recurrent t(11;22)(q23;q11.2), carriers of
which are often identified after a birth of offspring manifesting
supernumerary-der(22)t(11;22) syndrome (Emanuel syndrome:
accession code OMIM no. 609029). All of the constitutional
t(11;22)s develop between two PATRRs on chromosomes 11 and
22 that consist of only several hundreds base pairs9,10. In
addition, de novo t(11;22)s (1.0–0.1� 10� 4) are found in sperm
from healthy males11. The PATRRs manifest size polymorphisms,
and the symmetry and length of the PATRRs greatly influence the
de novo translocation frequency12,13. Thus, we proposed that the
palindromic sequences form a cruciform conformation in vivo,
and this conformation could induce DNA breakage that results in
illegitimate joining, leading to a reciprocal translocation. To date,
more than five other translocation-associated PATRRs have been
identified, suggesting that palindrome-mediated chromosomal
translocations are one of the important pathways generating
GCRs in humans14–18.

We have previously reported a model system for PATRR-
mediated translocations using two plasmids containing either
PATRR11 or 22 (ref. 19). When the plasmids were introduced
into a human cell, they produced rearranged molecules that have
junction sequence with features similar to those of human
t(11;22)s20,21. The translocation-like rearrangements in this
model system were observed only when both PATRRs extruded
cruciform structures. Because the introduced plasmids carry a
non-replicating plasmid backbone, the results suggest that some
intrinsic structure-specific nucleases may recognize the secondary
structures and cleave the PATRR at the centre, which is followed
by repair via the non-homologous end-joining (NHEJ) pathway.
In contrast, endogenous PATRRs on the host chromosomes never
generate translocations in somatic cell lines22. The model system
implies that human somatic cells may have the molecular
machinery that can perform the process of PATRR-mediated
chromosomal translocations, with the exception of the initial step,
cruciform formation at the PATRRs.

Two distinct hypotheses of the cleavage manner for cruciform
DNA in vivo have been proposed: centre break and diagonal
cleavage (Fig. 1a)23–25. The fact that translocation breakpoints
cluster at the centre of the palindrome leads directly to the centre-
break hypothesis: breakage at the two cruciform apices. The other
hypothesis, diagonal cleavage or resolution, was previously
proposed as an intermediate product in the rearrangement of
yeast chromosomes harbouring a palindromic sequence7. In this
report, we attempt to identify the molecular pathway that leads to
palindrome-mediated translocation in humans by screening
candidate genes using the small interfering RNA (siRNA)
technique in our translocation model system.

Results
Sequence of the rearrangement junction evokes cruciform
resolution. Our previous report demonstrated that two PATRR
sequences induced a translocation-like rearrangement reaction in
human cultured cells only when both PATRRs extruded cruci-
form structures19. To investigate how the cruciform was cleaved
and illegitimately joined, we first analysed the junction sequences
of the rearranged molecules in the model system using
translocation-specific PCR with a primer flanking the proximal
side of PATRR11 and one flanking the distal side of PATRR22.
Sequence analysis of the cloned junction products revealed that
breakpoints were heterogeneous but consistently located at the
centre of the palindrome. The two fragments were joined with
either no or limited microhomology, typically accompanied by
deletion of several nucleotides at the breakpoints19. Each of the
PATRR11 and 22s introduced into plasmids have nucleotide
differences at several sites between their proximal and distal arms.
We determined a pattern of three different nucleotides that allow
discrimination between the proximal and distal arms of
PATRR11 in 40 junction clones. Because junction PCR was
carried out with a primer flanking the proximal side of PATRR11
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Figure 1 | Two distinct way of cruciform cleavage in vivo. (a) Two

hypotheses for the mechanism of cruciform cleavage: centre-break and

cruciform resolution. (b) The resolution of the cruciform produces

heteroduplex DNA in the newly formed hairpin ends, which consist of

proximal and distal units of the palindromes. Nucleotide differences
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origins of the arms. Exchange between proximal and distal arms indicates

the signature of the heteroduplex.
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and one flanking the distal side of PATRR22, a junction should be
identified as a fusion of the proximal arm of PATRR11 and the
distal arm of PATRR22. However, when the three nucleotide
positions of PATRR11 were examined, only 15 of the 40 junctions
showed proximal sequence at all three of the positions (Table 1).
Another 17 junctions showed proximal-to-distal nucleotide
conversion at all of the positions. The remainder displayed a
mixed pattern of conversion. Similar results were obtained at two-
nucleotide positions of PATRR22 (Supplementary Table S1).
Each of these conversions of PATRR11 and 22 were found
independently in 40 junction clones. This phenomenon cannot be
explained by a simple ‘centre-break mechanism’ as has been
proposed for palindrome-mediated rearrangement. We speculate
that the PATRR is cut diagonally at the four-way junction of the
cruciform structure (Fig. 1a). In this scenario, a diagonal cut
produces hairpin-capped DNAs that create a heteroduplex
consisting of a proximal arm for one strand and a distal arm
for the other strand (Fig. 1b). The resulting hairpin-ended DNA
should carry several sequence mismatches in the duplex DNA,
which may potentially be repaired using one of the strands as
template at a later step.

We attempted to find evidence for such heteroduplex DNA in
the rearranged products obtained in this model system. When
template DNA was diluted before translocation-specific PCR to
amplify the junction molecule from a single molecule per tube, all
of the junction sequences demonstrated a single sequence pattern
either of proximal or distal sequence at each of the three
distinguishable positions. However, when a mismatch repair
(MMR) protein MSH2 was knocked down using siRNA, 2
junction products out of 19 showed a mixture of proximal and
distal PATRR11 sequences at the three positions (Supplementary
Fig. S1a,b,c). This indicated that the template DNA included
heteroduplex DNA that should have been repaired by the MMR
system into either proximal or distal sequence. Similarly, 1 out of
14 junctions showed mixture of proximal and distal PATRR22
sequences at the two distinguishable positions (Supplementary
Fig. S1b,c). The presence of the heteroduplex structure suggests
that the cruciform DNA at the PATRR is initially cleaved
diagonally at the four-way junction.

Diagonal digestion of the cruciform in the first cleavage. Next,
we carried out Southern blot analysis to demonstrate the diagonal
cleavage of the four-way junction of the cruciform suggested by
sequence analysis. The PATRR22 plasmid with its extruded
cruciform was introduced into HEK 293 cells. To monitor clea-
vage, plasmids were collected at different time points and digested
with a restriction enzyme (Supplementary Fig. S2a). A 1.3-kb
band, derived from plasmid cleaved at the PATRR, appeared

30min after transfection (Fig. 2a, left), The intensity of the band
continued to increase until 3 h after transfection. This cleavage
was a cruciform-specific reaction (Fig. 2a, lanes 7 and 8).

We further carried out electrophoresis in a denaturing alkaline
gel followed by Southern blotting. A major cleaved band is seen at
2.6 kb, which is twice of the size of what is observed in a neutral
gel (Fig. 2a, right). These results suggest that the cleaved DNA
end forms a closed hairpin. Because the hairpin ends cannot be
produced by centre breakage of the cruciform, it is likely that the
PATRR22 plasmids are cut by diagonal cleavage, resolving the
cruciform structure. Indeed, the presence of hairpin-capped DNA
was confirmed by Southern blotting of a two-dimensional gel
(Fig. 2b). The hairpin-capped DNAs were also present at the
other end of the cleaved PATRR22, supporting diagonal cleavage
at the four-way junction (Supplementary Fig. S2b, left). Similar
result was obtained with PATRR11 plasmid (Supplementary Fig.
S2b, right). Because diagonal cleavage at the four-way junction of
the cruciform is predicted to generate a pair of hairpin ends with
nicks at the cleaved sites, it is possible that the closed hairpin ends
detected in the Southern blots could be generated by sealing the
nicks with an endogenous ligase activity. In addition, some minor
bands were also observed between 1.0 and 1.6 kb, possibly ori-
ginating from intermediate products that were left unsealed at the
nicks (Fig. 2a (right),b).

To confirm resolution of the cruciform at the four-way junc-
tion, the cleavage site within the PATRR was determined at the
nucleotide level. A ligation-mediated PCR was carried out to map
the 50 end of these intermediate products before the sealing of the
nicks. In an analysis of the proximal end of PATRR11, an
approximately 550 bp product appeared in the sample obtained
0.5 h after transfection, which was increased in amount in the 6-h
sample (Fig. 3a, arrowhead). The size of the product was 180 bp
longer than that of the product from a sample treated with S1
nuclease, which is expected to cut at the palindromic centres (lane
6). This indicates that the 50 end of the proximal breakpoint was
located about 180 bp proximal to the centre of the palindrome.
The distal end was also mapped about 180 bp distal to the centre.
Sequencing of the products confirmed the symmetric cuts on each
strand, which strongly suggest diagonal cleavage of the four-way
junction of the cruciform. This likely occurs by introduction of
two nicks, one near the proximal end of the PATRR in the top
strand and the other near the distal end of the bottom strand of
the cruciform (Fig. 3c). The directional preference of diagonal
cleavage is similar to that of four-way junction activity such as T4
endonuclease VII and T7 endonuclease I in resolution of cruci-
form-extruding plasmids26,27. Analysis of the PATRR22 revealed
similar symmetric nicks about 110 bp away from the centre
(Fig. 3b,c). Taken together, it appears that both PATRR11 and 22
are cut diagonally at the four-way junction of the cruciform, and
that most of the cleaved ends undergo nick repair to form closed
hairpin-capped DNA ends. We note that sequence of the cleavage
site within the PATRR by ligation-mediated PCR provided no
evidence for products with a proximal-to-distal exchange (data
not shown). This suggests that the proximal-to-distal change take
place after resolution of the cruciform.

Cruciform cleavage is mediated by the Holliday-junction
resolvase GEN1. The evidence for diagonal digestion of cruci-
form DNA suggested that the resolution activity for Holliday-
junction structures in mammalian cells28 could participate in this
reaction. MUS81 nuclease, GEN1 and a complex of SLX4-SLX1
have been proposed as candidates for such a resolvase in
mammalian cells29–37. To identify the cruciform resolvase
working in this system, we performed siRNA screening
coupled with monitoring the level of diagonal cleavage of the

Table 1 | Three nucleotide changes of the PATRR11 in the
junction sequences

Nucleotide position
Type 105 - 87 - 67 Number

No change P - P - P 15
Complete change D - D - D 17
Incomplete change P - P - D 4

P - D - D 1
D - D - P 1
D - P - P 1

Other (deleted) D - D - – 1
Total 40

Nucleotide positions are numbered from the nucleotides adjacent to the centre of the
palindrome that are determined as 1. Types of the polymorphisms are indicated as proximal (P),
distal (D) or deleted (–).
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cruciform-extruding plasmids by Southern blot analysis (Fig. 4a,
Supplementary Fig. S3a,b). Knockdown of GEN1 showed
significant reduction of the intensity of the 1.3-kb band
corresponding to the cleaved product at the four-way junction
in cruciform plasmids. In contrast, knockdown of other
candidates, SLX1 and MUS81, did not show significant
reduction. The residual cleaved products observed even after
the knockdown of GEN1 might possibly be due to the inefficient
knockdown of the GEN1 (Supplementary Fig. S3b), or
redundancy of the resolution activity38–42. Because functional
overlap has been reported between GEN1 and other resolvases,
experiments of double knockdown of two of the three enzymes
were carried out (Fig. 4b, Supplementary Fig. S3c,d). The result of

double knockdown of SLX1 and MUS81 did not show any effect.
On the other hand, the combination of a GEN1 and SLX1 or a
GEN1 and MUS81 knockdown showed a decrease in cleavage
similar to that of single knockdown of GEN1 (Fig. 4a,b). These
results indicate that the main resolution activity for cruciform
cleavage in this system is mediated by GEN1.

To further support the notion that GEN1 cleaves the cruciform
structure of the PATRR plasmids, overexpression of recombinant
GEN1 was carried out. Cells that overproduce GEN1 increased
the amount of cleaved DNA, but the D157A mutant lacking the
nuclease activity did not (Fig. 4c, Supplementary Fig. S3e)31.
When the GEN1 expression vector was transfected into the cells
treated with GEN1-siRNA, the GEN1 protein level was restored.
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The amount of cleaved DNA returned to the level of non-treated
cells. However, this effect was not observed when the D157A
mutant was transfected (Supplementary Fig. S3f,g). In addition,
recombinant GEN1 protein purified from Escherichia coli also cut
the PATRR-forming cruciform in vitro (Fig. 4d).

Next, we examined the effect of GEN1 on translocation
between the two PATRR plasmids. In our model system,
translocation between the two plasmids can fuse a promoter
and a green fluorescent protein (GFP) reporter gene, and levels of

rearrangement can be estimated by counting GFP-positive cells19.
We could not detect a significant difference in number of GFP-
positive cells possibly because of the low sensitivity of the assay.
However, using rearrangement-specific PCR, we confirmed
decrease of the translocation-like rearrangement reaction with a
knock down of GEN1, but not by a knock down of SLX1 or
MUS81 (Fig. 4e). These results indicate that both the PATRR11
and PATRR22 plasmids are cleaved at the four-way junction of
the cruciform by GEN1, leading to translocations in this model
system.

Closed hairpin ends are processed by Artemis. Based on the
results of Southern blot analysis, GEN1 cleaved the cruciform and
the DNA ends were converted to a pair of closed hairpin ends.
Because translocation breakpoints were located at the centre of
the palindromes, a hairpin end is likely opened before fusion with
a second DNA end to generate translocation junctions. To
identify which hairpin end-specific nucleases participate in
translocation formation, we performed siRNA knockdowns in
this model system to screen three candidates, Artemis, CtIP and
MRE11 (Supplementary Fig. S4a,b)43–45. Translocation-specific
PCR yielded B650 bp PCR products that correspond to the
product from a rearrangement junction derived from a fusion at
the centre of the palindromes, similar to the de novo
translocations seen in sperm. When Artemis was knocked
down, the amount of the B650 bp major product was greatly
reduced (Fig. 5a,b). In contrast, knockdown of CtIP or MRE11
increased the amount of the B650 bp products. This result
suggests that Artemis cleaves at the centre of the hairpin-capped
DNA produced by cruciform resolution that leads to the
translocation.

Artemis has been reported to cleave hairpin ends, making a
two-nucleotide overhang at the 30 end43. This may produce an
inversion at the central four nucleotides of the palindrome in
junction sequences of the translocation (Fig. 5c). This
phenomenon is evidenced by nucleotide differences between the
proximal and distal arms, one nucleotide downstream of centre.
A total of 14 junction sequences that escaped central deletion and
retained the palindromic centre could be analysed. An ‘A’ that
was originally located on the proximal arm was replaced by a ‘G’
on the distal arm in seven translocation junctions. This proximal-
to-distal exchange in the central region may also indicate
diagonal cutting of the cruciform similar to that seen in the
arm. However, proximal-to-distal substitution at the central
region appears to occur independently of that in the arm region.
This small inversion at the centre is similar to P nucleotides
introduced at the junction of V(D)J recombination, in which
Artemis participates in the hairpin opening of intermediate
products46. These data lend support to the idea that hairpin-
capped DNA produced by cleavage of the four-way cruciform
junction by GEN1 undergoes a second cleavage at the hairpin tip
by Artemis.

The junction sequence derived from the model system
indicates NHEJ, in which three quarters of junctions had
microhomologies of less than four nucleotides19. To confirm
that the final joining reaction was performed by ligase IV, we
knocked down ligase IV using siRNA (Fig. 5a,b, Supplementary
Fig. S4c). PCR products from the translocation junction are
decreased, indicating involvement of ligase IV in the final step of
translocation formation. Thus, the rejoining of opened hairpin
DNA ends were carried out by NHEJ, possibly using the same
machinery as the later reaction of V(D)J recombination47–49.

Evidence of cruciform resolution in sperm. Assuming that the
PATRRs on human chromosomes 11 and 22 are actually cut
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diagonally at the four-way junction of extruded cruciforms during
formation of the t(11;22), sequence exchange between the prox-
imal and distal arms seen in this plasmid system should also be

observed in actual t(11;22)s in humans. We examined a total of
144 de novo translocation products in sperm from a single indi-
vidual who carries nucleotide differences that allow one to
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distinguish between the proximal and distal arms of PATRR11.
We detected 11 translocations (7.6%) with evidence for proximal-
to-distal exchanges. In the PATRR22 region, 5 out of 54 (9.3%)
translocations indicated proximal-to-distal exchange. The pre-
sence of the exchanges strongly suggests that cruciform resolution
actually takes place in the process of t(11;22) development in
spermatogenesis. Although the proportion of translocations with
the exchange was less than that seen in the plasmid model system,
we speculate that this difference is explained by the preference of
the nicked strand as a target for MMR50,51. After the PATRR is
cut diagonally at the cruciform four-way junction, newly formed
hairpin-capped DNA ends should carry nicks on either strand. It
is possible that the repair system preferentially corrects the
mismatch on the nicked strand using the intact strand as a
template, resulting in template bias. In case of the plasmid system,
most of the nicks appear to be repaired immediately after cleavage,
resulting in equivalent usage of both strands as templates.

In addition, proximal-to-distal exchange was also observed at
the centre of the palindrome of de novo t(11;22) junctions in
human sperm. In five junction sequences that escaped central
deletion and retain their palindromic centre, two manifested the
exchange pattern at the centre without exchanges in the arm,
whereas the other two had no central exchange with proximal-to-
distal exchanges in the arm. These data suggest that exchanges in
the centre are independent of those in palindromic arms. These
findings are similar to what was observed in the plasmid model
system. It is likely that Artemis also cleaves hairpin ends produced

by cruciform resolution in the process of de novo trans-
location formation in sperm, introducing additional proximal-
to-distal exchanges near the translocation junction. Therefore,
based on the presence of both types of proximal-to-distal
exchange in the junction fragment sequences of de novo
t(11;22)s in sperm DNA, we conclude that the PATRR adopts
unusual cruciform structures in spermatogenic cells, and that a
diagonal cut at the four-way junction of the cruciform followed by
opening of the hairpin-capped DNA ends leads to the recurrent
chromosomal translocation in humans (Fig. 6).

Discussion
In this report we propose a ‘two-step hypothesis’ for the
generation of PATRR-mediated translocations. GEN1 and
Artemis, which normally work independently in the homologous
recombination and NHEJ pathways, appear to have a crucial role
in the development of palindrome-mediated translocations in our
model system. Indeed, depletion of Holliday-junction resolvases
induces chromosome instability, and defects in Artemis induce
increased cellular radiosensitivity42,52. However, the emergence of
unusual DNA structures at palindromic DNA in certain
conditions triggers successive misrecognition of the substrate by
GEN1 and Artemis. These two independent pathways may act in
concert on the unusual secondary structure, resulting in the
recurrent GCR or genomic instability in the human genome.
Besides the recurrent constitutional t(11;22), several recurrent
and non-recurrent chromosomal translocations in humans have
been reported to be mediated by palindromic DNA. This report
proposes a common pathway leading to these palindrome-
mediated translocations in humans.

Previously, a ‘centre-break mechanism’ of cruciform disruption
had been proposed for palindrome-mediated rearrangements. In
this study, rearrangement junctions carry small central deletions,
suggesting ‘centre breakage’. However, we demonstrated (1) the
presence of hairpin-capped DNA ends by Southern analyses, (2)
residual nicks that indicate diagonal cleavage, (3) proximal-to-
distal nucleotide exchanges at the palindromic arm sequence of
the translocation junction and (4) the presence of heteroduplex
DNA in the translocation junction after inhibition of MMR. All
of this evidence lend support to a mechanism involving resolution
of the four-way junction of a cruciform structure.

Data from siRNA experiments showed that GEN1, a Holliday-
junction resolvase, participates in the first step in the develop-
ment of palindrome-mediated translocations. The initial cleaved
product was closed hairpin-ended DNA, which suggests that
diagonal cleavage produces ligase-sensitive nicks. In addition, we
detected symmetrically cleaved DNA ends by means of ligation-
mediated PCR, which support the involvement of GEN1 (ref. 31).
However, another candidate MUS81-EME1 cuts the
asymmetrical sites of synthetic Holliday junctions on strands of
similar polarity, making ligase-resistant nicks29. The other
candidate SLX1-SLX4 complex would cut symmetric sites at the
four-way junction33–35. Our siRNA experiments do not support
the participation of MUS81-EME1 nor SLX1-SLX4 in the
development of the translocation. Despite of the functional
redundancy, it is still unclear why GEN1 prefers to resolve the
cruciform of the PATRR in this model system. Specificities of
structure, for example, cruciform size or nucleotide sequence near
the four-way junction, might affect such preferences.

Data from siRNA experiments show that Artemis participates
in the second cleavage to open the tip of the closed hairpin ends
produced by GEN1. Endonuclease activity of Artemis requires
binding to the DNA-activated DNA-PKcs, followed by phos-
phorylation by DNA-PKcs with broken DNA ends53. It has been
reported that the presence of hairpin-ended DNA will stimulate
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Figure 5 | Artemis cleaves newly formed hairpin ends. (a)

Rearrangement-specific PCR of the samples obtained after knockdown of

candidate genes. Several siRNAs for Artemis, CtIP, MRE11 or ligase IV, as

well as a control siRNA, were transfected into HEK 293 cells before the

transfection of substrate plasmids. At 24 h after transfection of the

plasmids, the DNAs were collected and translocation-specific PCR was

carried out (left). The top band at B650bp (an arrow) corresponds to a

product derived from fusion at the tips of the hairpins of PATRR11 and 22.

Knockdown of Artemis and ligase IV specifically reduced the top band,

indicating that these enzymes were involved in generation of the

translocation. Some minor bands below the top band (bracket) were

by-products of the model system, because these shorter products cannot

be observed when the same translocation-specific PCR was performed to

detect de novo translocations in sperm samples from human males.

(b) Quantification of the B650bp PCR products (n¼ 3). (c) Schematic

representation of the central inversion produced by Artemis cleavage at

2 bp distal from the tip of the hairpin. Data are presented as means±s.d.

Statistical significance against control siRNA was assessed using a

Student’s t-test: *Po0.01.
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activation of the Artemis:DNA-PKcs complex to produce a nick
at the hairpin tip54. A final step is NHEJ that leads to illegitimate
chromosomal rejoining by ligase IV. These reactions appear to be
similar to coding joint formation in the V(D)J recombination
reaction. It is conceivable that a certain pathway might be
involved in the reaction, bringing two hairpin-capped DNA ends
on different chromosomes into close proximity to produce
translocations between palindromes, like coding joint formation.

Finally, we found evidence of the ‘two-step cleavage’ mechan-
ism in de novo translocation junctions in sperm from normal
males. Both GEN1 and Artemis have crucial functions in the
DNA-repair machinery, acting ubiquitously in a variety of cell
types including testis52. Because de novo t(11;22)s have been
detected only in sperm, we speculate that cruciform formation at
the PATRR only takes place during spermatogenesis22. One
possibility that can explain this sperm specificity is the high
number of DNA replications. Indeed, cruciform extrusion and

replication stalling at palindromic regions have been
demonstrated in yeast7,55. However, the translocation is
completely recapitulated in the model system using non-
replicating plasmids, which implies a mechanism that does not
rely on DNA replication: perhaps a post-meiosis hypothesis8. In
the late stage of spermatogenesis, a transition of DNA from
histone to protamine takes place, providing the opportunity for
dynamic changes of DNA conformation. Because removal of a
single nucleosome structure induces one negative supercoil56, the
accumulation of local negative supercoiling during the histone-
protamine transition period could induce an unusual cruciform
conformation of the palindrome. Such massive histone removal
may not occur in somatic cells, which could explain the sperm-
specific development of t(11;22)s. In mice, round spermatids were
shown to have NHEJ activity57. On the other hand, a recent
finding suggests that GEN1 acts in meiosis II, but it is still unclear
whether the GEN1 also acts in post-meiotic cells or not58. A more
thorough investigation using model animals might reinforce the
post-meiosis hypothesis.

Methods
Plasmid DNAs, siRNAs and primers. Plasmid construction of the translocation
model system (P-SD-11 and 22-SA-GFP) and preparation of cruciform-extruding
or -unextruding plasmids by using alkaline-SDS method or Triton method,
respectively19. In brief, bacteria were lysed by alkaline or 3% Triton X-100 solutions
followed by column purification at 4 �C. For siRNA experiments, the plasmids were
further purified by CsCl density gradient ultracentrifugation. The siRNAs for the
candidate genes (Supplementary Table S3) and a control (12935-110) were
purchased from Invitrogen. Primers used for PCR and cloning were shown in
Supplementary Table S4.

Transfection. For siRNA transfection, HEK 293 cells were seeded at 5� 104 cell
per ml in 30mm dishes. After 24 h, siRNAs were transfected at 40 nM using
Lipofectamine RNAiMax (Invitrogen). Additional siRNA transfection was carried
out to accomplish knockdown of GEN1, SLX1 and MUS81 genes at 80 nM 36 h
after the first transfection. After 36 h of siRNA transfection, the medium was
changed, and a total of 3.2 mg of plasmid DNA was transfected using Lipofectamine
2000 (Invitrogen). The reaction was stopped after 1–2 h by changing the medium.

Sample preparation for DNAs, RNAs and proteins. The cells were detached
from the dishes by pipetting, divided into tubes and washed twice with PBS. DNAs
were purified using DNAzol (Cosmo Bio) after additional wash with PBS to remove
untransfected DNAs. RNAs were purified using FastPure RNA Kit (Takara Bio).
For western blotting, the cells were resuspended in PBS, lysed by adding an equal
volume of 2� sample buffer (0.125M Tris-Cl, pH 6.8, 4% SDS, 10% sucrose, 10%
2-mercaptoethanol and 0.004% bromophenol blue) and boiled for 6min.

Detection of DNA rearrangement in HEK 293 cells. Semi-quantitative PCR from
100 ng of purified DNA was carried out for the detection of the rearrangement in
transfected cells. The PCR conditions were 25 cycles of 10 s at 98 �C and 5min at
60 �C19. For single-molecule PCR, DNA was diluted and 25 pg was used for each
reaction. We carried out extended cycles (40 cycles) of PCR and obtained 36
products from 192 wells. The products were isolated and subjected to direct
sequencing. The products showing heterologous sequence were cloned into
pT7Blue T-vector (Novagen), and the sequences of both molecules were
determined. We excluded the products containing more than a single rearranged
molecule, which were judged by exhibiting different breakpoints among the
molecules.

Detection of the 50 ends of transfected DNAs by ligation-mediated PCR.
DNAs from cells at 0.5 and 6 h after transfection were subjected to double-stranded
DNA synthesis from first strand primers, generating a blunt end at the breakage
site59. After ligating a double-stranded linker, 30 cycles of PCR were carried out
using PATRR-optimized conditions27, which is at 98 �C for 10 s and at 60 �C for
5min. For size controls, plasmids with extruded PATRRs were treated with T7
endonuclease I or S1 nuclease and similarly used as PCR template.

Detection of gene expression. Expression level of each gene was quantified by
quantitative PCR with reverse transcription. An amount of 1 mg of total RNA was
reverse transcribed by using Primescript RT Master Mix (Takara Bio), and real-
time PCR was carried out by using SYBR Premix Ex Taq II (Takara Bio) and 7300
Real-time PCR system (Applied Biosystems). HPRT gene was used for internal
control. Primers were shown below. An antibody for human GEN1 was a gift from
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on chromosome

Diagonal cleavage
First cleavage: GEN1

Tip cleavage
Second cleavage : Artemis

Closed hairpin
(with nick)

Translocation

MMR (random selection)
proximal-distal exchanges

This model system

MMR (nick-directed)

In sperm
(putative)

NHEJ

Closed hairpin
(without nick)

Figure 6 | Model of palindrome-mediated translocation in humans.

Cruciform extrusion leads to the sequential cleavage by GEN1 and Artemis.

The diagonal cleavage produces a nick at the base of the cruciform, which is

sealed by intrinsic ligase activity in the model system. The resulting closed

hairpin leads to random selection of the template strand for MMR,

manifesting frequent proximal–distal exchanges at the junction of the

rearranged molecules. In contrast, a hairpin with a residual nick at the base

of the cruciform could produce a bias in template-strand selection for the

MMR reaction, resulting in a lower incidence of proximal–distal exchanges

at the junction of de novo translocations in sperm.
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Dr Stephen C. West. Other antibodies for human MUS81 (MTA30; ImmuQuest),
Artemis (PAB-10241; Orbigen), MRE11 (12D7; GeneTex), GAPDH (6C5;
Chemicon International), TP53 (PAb 240; BD Pharmingen) and GFP (598; MBL)
were purchased from the manufacturers.

Recombinant GEN1 expression. For transfection to HEK 293 cells, an over-
expression vector of wild-type GEN1 was constructed by cloning of human full-
length GEN1 into a modified pIRES2-EGFP vector (Clontech), promoter of which
was substituted with the promoter and intron part of CAGGS expression vector60

by digesting with AseI and NheI (CAG-IRES2-GEN1-EGFP). PCR with reverse
transcription was carried out from HEK 293 RNA. After cloning of the PCR
product digested with XhoI and BamHI, nucleotide sequence of the clone was
confirmed that it had no coding change compared with that in the database. A
mutant GEN1 (D157A)31 vector was produced by modifying the vector of wild-
type GEN1 using Primestar Mutagenesis Kit (Takara Bio). These two vectors as
well as an empty vector were transfected into HEK 293 cells, and the plasmids for
translocation model system were transfected after 48 h. For restoration assay of
knockdown GEN1 by transient expression vector, pACYC184 plasmid DNA was
added for adjusting the DNA amount of transfection.

For in vitro cleavage of PATRR cruciforms, an N-terminal fragment of GEN1,
GEN11–527-HIS, which had been shown to be an active form31, was constructed by
amplifying corresponding region of human GEN1 from HEK 293 RNA. The
product was cloned into pET-32b vector (Novagen) that has been removed
N-terminal tags by digesting NdeI and XhoI (pET-GEN1-HIS). The construct was
transfected into E. coli BL21(DE3) (Invitrogen) and cultured in Luria broth until
OD600 reached to 0.5. Induction of the protein expression was carried out by
0.1mM IPTG for overnight at 16 �C. The cell was collected and solubilized by
sonication in a buffer (300mM NaCl and 50mM NaH2PO4, pH 8.0) at 0 �C, and
the soluble part was loaded onto Ni-NTA spin column (Qiagen). After washing the
column three times with the buffers supplemented with 20 and 100mM imidazole,
respectively, GEN1 was eluted in the buffer with 500mM imidazole. About 5 ng of
the eluted protein was used for digestion of the cruciform structure in a
reaction buffer (10mM Tris-acetate, pH 7.4, 50mM potassium acetate, 5mM
magnesium acetate, 1.0mM dithiothreitol and 0.01% BSA) at 25 �C for 15min. For
a positive control, 5U of T7 endonuclease I (NEB) was used following the
manufacturer’s instruction.

Detection of the t(11;22) in sperm. About 2–5� 107 sperm was collected from
semen with wash twice by PBS, and the DNA was purified by Puregene DNA
isolation Kit (Gentra) with adding 50mM dithiothreitol during lysis step according
to the manufacturer’s instruction. The quality and quantity of the resulting high-
molecular weight DNA (410 kb, 50–100 mg) was determined by both ultraviolet
spectrophotometry and agarose gel electrophoresis. De novo translocations of
t(11;22) in human sperm were detected by single-molecule PCR as described above.
For this sperm sample, 10 ng of template DNA was suitable for separation of each
junction product11.
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