
Two-Server Password-Only Authenticated
Key Exchange

Jonathan Katz1,�, Philip MacKenzie2, Gelareh Taban3, and Virgil Gligor3

1 Dept. of Computer Science, University of Maryland
jkatz@cs.umd.edu

2 DoCoMo USA Labs, USA
philmac@docomolabs-usa.com

3 Dept. of Electrical and Computer Engineering, University of Maryland
{gelareh,gligor}@eng.umd.edu

Abstract. Typical protocols for password-based authentication assume
a single server which stores all the information (e.g., the password) neces-
sary to authenticate a user. Unfortunately, an inherent limitation of this
approach (assuming low-entropy passwords are used) is that the user’s
password is exposed if this server is ever compromised. To address this
issue, a number of schemes have been proposed in which a user’s pass-
word information is shared among multiple servers, and these servers
cooperate in a threshold manner when the user wants to authenticate.

We show here a two-server protocol for this task assuming public pa-
rameters available to everyone in the system (as well as the adversary).
Ours is the first provably-secure two-server protocol for the important
password-only setting (in which the user need remember only a password,
and not the servers’ public keys), and is the first two-server protocol (in
any setting) with a proof of security in the standard model.

1 Introduction

A well-known fact in the context of designing authentication systems is that
human users/clients typically choose “weak”, low-entropy passwords from a rel-
atively small space of possibilities. Unfortunately, protocols designed and proven
secure for the case when clients use cryptographic (i.e., high-entropy) secrets are
generally insecure when passwords (i.e., low-entropy secrets) are used instead;
this is so because these protocols are typically not resistant to off-line dictionary
attacks in which an eavesdropping adversary derives information about the pass-
word from observed transcripts of login sessions. In recent years, much attention
has focused on designing password-based authenticated key-exchange protocols
resistant to such attacks. (We remark that on-line dictionary attacks – in which
an adversary simply attempts to log-in repeatedly, trying each possible password
– cannot be prevented by cryptographic means but can be dealt with using other
methods outside the scope of this work.)

� Supported by NSF CAREER award 0447075 and Trusted Computing grant 0310751.

J. Ioannidis, A. Keromytis, and M.Yung (Eds.): ACNS 2005, LNCS 3531, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Jonathan Katz et al.

Means of protecting against off-line dictionary attacks in a single-server set-
ting were first suggested by Gong, et al. [23] in a “hybrid”, PKI-based model in
which users are assumed to know the server’s public key in addition to a pass-
word. Bellovin and Merritt [5] were the first to suggest protocols for what we term
password-only authenticated key exchange (PAKE), where the clients are required
to “store” (i.e., remember) only a short password and no additional information.
These initial works (and others [6, 25, 30, 38]) were relatively informal and did
not provide definitions or proofs of security. More recently, formal definitions
and provably-secure protocols for the “hybrid” model have been given [7, 24],
followed soon thereafter by formal models for the password-only setting [1, 8, 22]
and associated protocols with proofs of security in the random oracle/ideal ci-
pher models1 [1, 8, 31] and in the standard model [20, 22, 27, 28]. (The protocols
of [20, 27, 28] assume some public information which is available to all parties.
Note, however, that since this information can be hard-coded into implementa-
tions of the protocol, clients do not need to memorize or store any high-entropy,
cryptographic information as they are required to do in the PKI-based setting.)

Although the above protocols protect against off-line dictionary attacks, they
do nothing to mitigate the concern that an adversary might obtain users’ pass-
words via server compromise. Such attacks represent a serious threat since they
are potentially cost-effective (in that an adversary might be able to obtain thou-
sands of users’ passwords by corrupting a single, poorly-protected server) and
users frequently utilize the same password at multiple sites. Unfortunately, it is
easy to show the impossibility of protecting against server compromise when a
single server holds the necessary information to authenticate a user (assuming
the only secret information held by the user is a low-entropy password). To pro-
tect against server compromise, Ford and Kaliski [19] thus proposed a threshold
protocol in the PKI-based model, in which the authentication functionality is
distributed across n servers who must all cooperate to authenticate a user. Their
protocol remains secure (and, in particular, an adversary learns nothing about
users’ passwords other than what it learns from its on-line password guesses) as
long as n − 1 or fewer servers are compromised. Jablon [26] subsequently sug-
gested a protocol with similar functionality in the password-only setting. Neither
of these works, however, include rigorous definitions or proofs of security.

A number of provably-secure protocols for threshold password-based authen-
tication have recently appeared. We summarize what is known:

◦ MacKenzie, et al. [35] showed a protocol in the “hybrid”, PKI-based setting
which requires only t (out of n) servers to cooperate in order to authenticate
a user, for any values of t, n (of course, security is only obtained as long as
t−1 or fewer servers are compromised). They prove security for their protocol
in the random oracle model.

1 In the random oracle model [2], parties are assumed to have “black-box” access to
a random function. (The ideal cipher model assumes that parties have “black-box”
access to a random keyed permutation, an even stronger assumption.) In practice,
the random oracle is instantiated with a cryptographic hash function. It is known
[10], however, that protocols secure in the random oracle model may not be secure
for any choice of hash function.

Two-Server Password-Only Authenticated Key Exchange 3

◦ Di Raimondo and Gennaro [16] proposed a protocol in the password-only set-
ting with a proof of security in the standard model. (A second protocol given
in their paper, which we will not discuss further, achieves the weaker func-
tionality in which the same session key is computed by all servers.) However,
their protocol requires less than 1/3 of the servers to be compromised (i.e.,
they require n > 3t) and thus does not give a solution for the two-server case2.
We remark that, in general, threshold cryptosystems for the two-party case
do not follow immediately from threshold solutions for the case of general n;
see, e.g., the work of [17, 21, 32–34] in this regard.

◦ Brainard, et al. [9] have developed a two-server protocol (called “Nightingale”
and being shipped by RSA Security), a variant of which has been proven se-
cure in the random oracle model [37]. These protocols assume the PKI-based
setting: as stated in the papers, the protocols assume a “secure channel” be-
tween the client and the server(s) which would in practice be implemented
using public-key techniques such as SSL.

1.1 Our Contributions

We show here a two-server protocol for password-only authenticated key ex-
change, with proof of security in the standard model. Ours is the first provably-
secure two-server protocol in the password-only setting, and is the first two-server
protocol (in any setting) with a proof of security in the standard model.

Our protocol extends and builds upon the (non-threshold) protocol of Katz-
Ostrovsky-Yung [28] and a more efficient variant of this protocol – called, for
brevity, KOY* – described by Canetti, et al. [11] (we also introduce an addi-
tional modification that makes the protocol even more efficient). In Section 3
we describe a “basic” two-server protocol which is secure against a passive (i.e.,
“honest-but-curious”) adversary who has access to the entire state of one of the
servers throughout its execution of the protocol, but cannot cause this server to
deviate from its prescribed behavior. We believe this protocol is interesting in
its own right (when the assumption on adversarial behavior is warranted), and
anyway the basic protocol and its proof of security serve as a useful prelude to
our second result. In Section 4 we show how to modify the basic protocol so as to
achieve security against an active adversary who may arbitrarily deviate from the
protocol. The changes we make consist of having the servers (efficiently) prove
to each other that their computations were performed according to the protocol.
Here, we make use of techniques developed by MacKenzie [32] for performing
these proofs efficiently even in a concurrent setting.

The protocols we construct are relatively efficient. Each party in the basic
two-server protocol performs roughly twice the amount of work as in the KOY*
protocol. For the protocol secure against active adversaries, the work of the client
stays the same but the work of the servers increases by a factor of roughly 2–4.

2 The approach in their paper does not extend to the case t ≥ n/3. The authors
mention (without details) that “[i]t is possible to improve the fault-tolerance to
t < n/2. . . ”, but even this would not imply a two-server solution.

4 Jonathan Katz et al.

2 Definitions and Preliminaries

We assume the reader is familiar with the model of [1] (building on [3, 4])
for password-based key exchange in the single-server case. Here, we generalize
their model and present formal definitions for the case of two-server protocols.
While the model presented here is largely equivalent to the model proposed
by MacKenzie, et al. [35] (with the main difference that we do not assume a
PKI), we can simplify matters a bit since we focus on the two-server setting
exclusively. For convenience we describe the model for the case of a “passive”
adversary first and then discuss briefly the modifications needed in the case
of “active” adversaries. (As discussed below, in both the “passive” and “active”
cases the adversary is free to interfere with all communication between the client
and the servers. These cases only differ in the power of the adversary to control
the actions of the corrupted servers: specifically, a “passive” adversary is unable
to control the actions of corrupted servers, whereas a “active” adversary can.)

We first present a general overview of the system as we imagine it. For sim-
plicity only, we assume that every client C in the system shares its password pw
with exactly two servers A and B. In this case we say that servers A and B are
associated with C. (Note that a single server may be associated with multiple
clients.) In addition to holding password shares, these servers may also be pro-
visioned with arbitrary other information which is not stored by C. Any such
information is assumed to be provisioned by some incorruptible, central mech-
anism (a system administrator, say) at the outset of the protocol. Note that
this does not represent an additional assumption or restriction in practice: the
servers must minimally be provisioned with correct password shares anyway, and
there is no reason why additional information cannot be provided to the servers
at that time (in particular, the servers’ password shares are already high-entropy
values, and the servers have no restriction – as the client does – on the amount
of information they can store). An (honest) execution of a password-based key-
exchange protocol between client C and associated servers A and B should result
in the client holding independent session keys skC,A, skC,B, and servers A and B
holding skA,C and skB,C , respectively, with skC,A = skA,C and skC,B = skB,C .

2.1 Passive Adversaries

We first describe the adversarial model under consideration. We assume an ad-
versary who corrupts some servers at the outset of the protocol, such that for any
client C at most one of the servers associated with C is corrupted. In the case
of a passive adversary, a corrupted server continues to operate according to the
protocol, but the adversary may monitor its internal state. Following [16, 35],
we make the (largely conceptual) assumption that there exists a single gateway
which is the only entity that directly communicates with the clients. This gate-
way essentially acts as a “router”, splitting messages from the clients to each of
the two associated servers and aggregating messages from these servers to the
client; we also allow the gateway to perform some simple, publicly-computable
operations. Introduction of this gateway is not strictly necessary; however, it

Two-Server Password-Only Authenticated Key Exchange 5

enables a simplification of the formal model and also provides a straightforward
way to quantify the number of on-line attacks made by an adversary.

During the course of the protocol, then, there may potentially be three types
of communication: between the clients and the gateway, between the servers
and the gateway, and between the servers themselves. We assume the adversary
has the ability to eavesdrop on all of these. We further assume that the client-
gateway communication is under the full control of the adversary, and thus the
adversary can send messages of its choice to either of these entities, or may
tamper with, delay, refuse to deliver, etc. any messages sent between clients and
the gateway. On the other hand, in the case of a passive adversary we assume
that the server-gateway and server-server communication is determined entirely
by the protocol itself (i.e., a corrupted server follows the protocol exactly as
specified)3. In addition, the adversary is assumed to see the entire internal state
of any corrupted servers throughout their execution of the protocol. With the
above in mind, we proceed to the formal definitions.

Participants, passwords, and initialization. We assume a fixed set of proto-
col participants (also called principals) each of which is either a client C ∈ Client
or a server S ∈ Server, where Client and Server are disjoint. Each C ∈ Client is
assumed to have a password pwC chosen uniformly and independently from a
“dictionary” of size N 4. (In fact, we further simplify matters and assume that
passwords are chosen from the set {1, . . . , N}.) As noted earlier, we make the
simplifying assumption that each client shares his password with exactly two
other servers (and no more). If client C shares his password with the distinct
servers A, B, then A (resp., B) holds a password share pwC,A (resp., pwC,B);
the mechanism for generating these shares depends on the protocol itself. We
also allow each server to hold information in addition to these password shares.
For example, as described in footnote 3, two servers associated with a particular
client may be provisioned with a shared, symmetric key. As we have already
discussed, the initialization phase during which this information is provisioned
is assumed to be carried out by some trusted authority. Any information stored
by a corrupted server is available to the adversary.

In general, additional information can be generated during the initialization
phase. For example, in the “hybrid” password/PKI model [7, 24] public/secret
key pairs are generated for each server and the secret key is given as input to the
appropriate server, while the public key is provided to the appropriate client(s).
For the protocol presented here, we require only the weaker requirement of a
single set of public parameters which is provided to all parties.
3 For the case of a passive adversary, the assumption that the adversary cannot tamper

with the server-server communication is easy to realize via standard use of message
authentication codes or signatures (as the servers can store long-term keys for this
purpose). The assumption that the adversary cannot tamper with the server-gateway
communication is essentially for convenience/definitional purposes only, as the ad-
versary can anyway tamper with client-gateway communication (and the gateway
processes messages in a well-defined and predictable way).

4 As in other work, though, our proof of security may be adapted to handle arbitrary
dictionaries and arbitrary distributions over these dictionaries.

6 Jonathan Katz et al.

Execution of the protocol. In the real world, a protocol determines how
principals behave in response to input from their environment. In the formal
model, these inputs are provided by the adversary. Each principal is assumed
to be able to execute the protocol multiple times (possibly concurrently) with
different partners; this is modeled by allowing each principal to have an unlimited
number of instances [1, 4] with which to execute the protocol. We denote instance
i of principal U as Πi

U . A given instance may be used only once. The adversary
is given oracle access to these different instances; furthermore, each instance
maintains (local) state which is updated during the course of the experiment.
In particular, each instance Πi

U has associated with it the following variables,
initialized as null or false (as appropriate) during the initialization phase:

– sidi
U , pidi

U , and ski
U are variables containing the session id, partner id, and

session key(s) for an instance, respectively. A client’s partner id will be a set
of two servers; a server’s partner id will be a single client (viewed as a set for
notational convenience). For C a client, ski

C consists of a pair ski
C,A, ski

C,B,
where these are the keys shared with servers A and B, respectively. A server
instance Πi

S with partner C has only a single session key ski
S,C .

– termi
U and acci

U are boolean variables denoting whether a given instance has
terminated or accepted, respectively. statei

U records any state necessary for
execution of the protocol by Πi

U .

As highlighted earlier, the adversary is assumed to have complete control
over all communication between the client and the gateway. This is modeled via
access to oracles which are essentially as in [1] and are described formally in the
full version of this paper. Briefly, these include various Send oracles modeling
“active” attacks in which the adversary tampers with communication between
the client and the servers; an Execute oracle modeling passive eavesdropping
attacks; a Reveal oracle which models possible leakage of session keys; and a
Test oracle used to define security.

Sessions ids, partnering, correctness, and freshness. Session ids in our
protocol are defined in a natural way, which then allows us to define notions of
partnering, correctness, and freshness. Due to lack of space the details appear
in the full version.

Advantage of the adversary. Informally, the adversary succeeds if it can
guess the bit b used by the Test oracle on a “fresh” instance associated with a
non-corrupted participant. Formally, we say an adversary A succeeds if it makes
a single query Test(U, U ′, i) regarding a fresh key ski

U,U ′ , and outputs a single
bit b′ with b′ = b (recall that b is the bit chosen by the Test oracle). We denote
this event by Succ. Note that restricting the adversary to making its Test query
regarding a fresh key is necessary for a meaningful definition of security. The
advantage of adversary A in attacking protocol P is then given by:

AdvA,P (k) def= 2 · Pr[Succ]− 1,

where the probability is taken over the random coins used by the adversary as
well as the random coins used during the course of the experiment.

Two-Server Password-Only Authenticated Key Exchange 7

It remains to define a secure protocol, as a ppt adversary can always succeed
by trying all passwords one-by-one in an on-line impersonation attack. Infor-
mally, a protocol is secure if this is the best an adversary can do. Formally, we
define in the full version what it means for an instance to represent an on-line
attack (which, in particular, will not include instances used in Execute queries).
The number of on-line attacks bounds the number of passwords the adversary
could have tried in an on-line fashion, motivating the following definition:

Definition 1. Protocol P is a secure two-server protocol for password-only au-
thenticated key-exchange if there exists a constant c such that, for all dictionary
sizes N and for all ppt adversaries A making at most Q(k) on-line attacks and
corrupting at most one server associated with each client, there exists a negligible
function ε(·) such that AdvA,P (k) ≤ c ·Q(k)/N + ε(k).

Of course, we would optimally like to achieve c = 1; however, as in previous
definitions and protocols [1, 22, 38] we will allow c �= 1 as well. The proof
of security for our protocol shows that we achieve c = 2, indicating that the
adversary can (essentially) do no better than guess two passwords during each
on-line attack.

Explicit mutual authentication. The above definition captures the require-
ment of implicit authentication only (and the protocol we present here achieves
only implicit authentication). Using standard techniques, however, it is easy to
add explicit authentication to any protocol achieving implicit authentication.

2.2 Active Adversaries

The key difference in the active case is that the adversary may now cause any
corrupted servers to deviate in an arbitrary way from the actions prescribed by
the protocol. Thus, if a server is corrupted the adversary controls all messages
sent from this server to the gateway as well as messages sent from this server to
any other server. As in the passive case, however, we continue to assume that
communication between the gateway and any non-corrupted servers (as well
as communication between two non-corrupted servers) is not under adversarial
control. See footnote 3 for the rationale behind these conventions.

3 A Protocol Secure Against Passive Adversaries

3.1 Description of the Protocol

We assume the reader is familiar with the decisional Diffie-Hellman (DDH) as-
sumption [15], strong one-time signature schemes, and the Cramer-Shoup en-
cryption scheme [14] with labels. A high-level depiction of the protocol is given
in Figures 1–3, and a more detailed description, as well as some informal discus-
sion about the protocol, follows.

Initialization. During the initialization phase, we assume the generation of pub-
lic parameters (i.e., a common reference string) which are then made available to

8 Jonathan Katz et al.

all parties. For a given security parameter k, the public parameters will contain a
group G (written multiplicatively) having prime order q with |q| = k; we assume
the hardness of the DDH problem in G. Additionally, the parameters include
random generators g1, g2, g3, h, c, d ∈ G× and a hash function H : {0, 1}∗ → Zq

chosen at random from a collision-resistant hash family.
As part of the initialization, each server S is provisioned with an El Gamal [18]

public-/secret-key pair (pkS , skS), where pkS = gskS
1 . If A and B are associated

with the same client C, then A (resp., B) is given pkB (resp., pkA). We stress
that, in contrast to the PKI-based model, the client is not assumed or required
to know the public keys of any of the servers.

Passwords and password shares are provisioned in the following way: a pass-
word pwC is chosen randomly for each client C and we assume that this pass-
word can be mapped in a one-to-one fashion to Zq. If A and B are the servers
associated with a client C, then password shares pwA,C, pwB,C ∈ Zq are chosen
uniformly at random subject to pwA,C + pwB,C = pwC mod q, with pwA,C given
to server A and pwB,C given to server B. In addition, both A and B are given
ComA,C , Com′

A,C , ComB,C , and Com′
B,C , where:

ComA,C
def= ElGg3(g

pwA,C

1) =
(
gra
1 , gra

3 g
pwA,C

1

)

Com′
A,C

def= ElGpkA(gpwA,C

1)

ComB,C
def= ElGg3(g

pwB,C

1) =
(
grb
1 , grb

3 g
pwB,C

1

)

Com′
B,C

def= ElGpkB (gpwB,C

1).

Note that different public keys are used. Server A (resp., server B) is additionally
given the randomness ra (resp., rb) used to construct ComA,C (resp., ComB,C).

Protocol execution. At a high level one can view our protocol as two execu-
tions of the KOY* protocol, one between the client and server A (using server
B to assist with the authentication), and one between the client and server B
(using server A to assist with the authentication). Note that the assistance of
the other server is necessary since the password information is split between the
two servers. For efficiency, the signature and verification for the two executions
are combined, and shares of the El Gamal encryption of the password sent by
the servers (i.e., (F, G) in Figure 1) are fixed and stored by the servers.

When a client with password pwC wants to initiate an execution of the pro-
tocol, this client computes Cramer-Shoup “encryptions” of pwC for each of the
two servers. In more detail (cf. Figure 1), the client begins by running a key-
generation algorithm for a one-time signature scheme, yielding VK and SK. The
client next chooses random r1 ∈ Zq and computes Aa = gr1

1 , Ba = gr1
2 , and

Ca = hr1 · pwC. The client then computes αa = H(Client|VK|Aa|Ba|Ca) and
sets D = (cdαa)r1 . This exact procedure is then carried out again, using an
independent random value r2 ∈ Zq. The client sends

msg1
def= 〈Client, VK, Aa, Ba, Ca, Da, Ab, Bb, Cb, Db〉

Two-Server Password-Only Authenticated Key Exchange 9

Public: G; g1, g2, g3, h, c, d ∈ G
×; H : {0, 1}∗ → Zq

Client

(VK, SK)← Gen(1k)

r1, r2 ← Zq

Aa := gr1
1 , Ba := gr1

2 , Ca := hr1 · gpwC
1

αa := H(Client |VK|Aa|Ba|Ca), Da := (cdαa)r1

Ab := gr2
1 , Bb := gr2

2 , Cb := hr2 · gpwC
1

αb := H(Client |VK|Ab|Bb|Cb), Db := (cdαb)r2 〈
Client, VK,

Aa, Ba, Ca, Da

Ab, Bb, Cb, Db

〉

�

〈Ea, Eb, F, G〉�
x1, y1, x2, y2 ← Zq

Ka := gx1
1 gy1

3

Kb := gx2
1 gy2

3

σ ← SignSK(msg1|msg2|Ka|Kb)

〈Ka, Kb, σ〉 �
skC,A := Er1

a F x1(G/gpwC
1)y1

skC,B := Er2
b F x2(G/gpwC

1)y2

Fig. 1. An execution of the protocol from the client’s point of view.

to the gateway as the first message of the protocol. Note that this corresponds
to two independent “encryptions” of pwC using the label Client |VK.

When the gateway receives msg1 from a client, the gateway simply forwards
this message to the appropriate servers. The servers act symmetrically, so for
simplicity we simply describe the actions of server A (cf. Figure 2). Upon receiv-
ing msg1, server A sends “shares” of (1) two values of the form gx

1gy
2hz(cdα)w (for

α ∈ {αa, αb}), one for server A and one for server B, and (2) an El Gamal encryp-
tion of pwC . In more detail, server A chooses random xa, ya, za, wa ∈ Zq and com-
putes Ea,1 = gxa

1 gya

2 hza(cdαa)wa . It also chooses random x′
a, y′

a, z
′
a, w′

a ∈ Zq and
computes Eb,1 = g

x′
a

1 g
y′

a
2 hz′

a(cdαb)w′
a . Finally, it sets (Fa, Ga) equal to ComA,C

(which, recall, is an El Gamal encryption of g
pwA,C

1 using “public key” g3 and
randomness ra). The message 〈Ea,1, Eb,1, Fa, Ga〉 is sent to the gateway.

The gateway combines the values it receives from the servers by multiplying
them component-wise. This results in a message msg2 = 〈Ea, Eb, F, G〉 which
is sent to the client, and for which (1) neither server knows the representa-
tion of Ea with respect to g1, g2, h, (cdαa) (and similarly for Eb with respect to
g1, g2, h, (cdαb)), and (2) the values (F, G) form an El Gamal encryption of the
client’s password pwC (with respect to public key g3).

10 Jonathan Katz et al.

Public: G; g1, g2, g3, h, c, d ∈ G
×; H : {0, 1}∗ → Zq

Gateway

Receive msg1 =

〈
Client, VK,

Aa, Ba, Ca, Da

Ab, Bb, Cb, Db

〉

� �msg1 msg1
Server A Server B

Compute αa, αb

xa, ya, za, wa

x′
a, y′

a, z′
a, w′

a
←− Zq

Ea,1 := gxa
1 gya

2 hza(cdαa)wa

Eb,1 := g
x′

a
1 g

y′
a

2 hz′
a(cdαb)w′

a

(Fa, Ga) := ComA,C

�〈Ea,1, Eb,1, Fa, Ga〉

Compute αa, αb

xb, yb, zb, wb

x′
b, y

′
b, z

′
b, w

′
b
←− Zq

Eb,2 := gxb
1 gyb

2 hzb(cdαb)wb

Ea,2 := g
x′

b
1 g

y′
b

2 hz′
b(cdαa)w′

b

(Fb, Gb) := ComB,C

� 〈Eb,2, Ea,2, Fb, Gb〉

Ea := Ea,1 ·Ea,2

Eb := Eb,1 ·Eb,2

F := Fa · Fb

G := Ga ·Gb

Send msg2 = 〈Ea, Eb, F, G〉

Receive 〈Ka, Kb, σ〉

if (VrfyVK(msg1|msg2|Ka|Kb, σ) = 0) terminate

� 〈Ka, Kb〉 �〈Ka, Kb〉

perform Compute to obtain Xa

skA,C := Axa
a Bya

a Cza
a Dwa

a Kra
a Xa

perform Compute to obtain Xb

skB,C := Axb
b Byb

b Czb
b Dwb

b Krb
b Xb

Fig. 2. Execution of the protocol from the servers’ points of view (client-gateway
messages are boxed). The Compute protocol is depicted in Figure 3.

Upon receiving msg2, the client proceeds as follows (cf. Figure 1): it chooses
random values x1, y1, x2, y2 ∈ Zq and computes Ka = gx1

1 gy1
3 and Kb = gx2

1 gy2
3 .

It then computes a signature σ on the “message” msg1|msg2|Ka|Kb using the
secret key SK that it had previously generated. It sends the message 〈Ka, Kb, σ〉
to the gateway and computes session keys

skC,A := E r1
a F x1(G/gpwC

1)y1

skC,B := E r2
b F x2(G/gpwC

1)y2 .

Two-Server Password-Only Authenticated Key Exchange 11

Public: G; g1, g2, g3, h, c, d ∈ G
×; H : {0, 1}∗ → Zq

Server A (skA, pkB) Server B (skB, pkA)

M1 ← ElGpkA(g−za
1) M ′

1 ← ElGpkB (g−zb
1)

M1 �

M ′
1�

TA := A
x′

a
b B

y′
a

b C
z′

a
b D

w′
a

b Kra
b

M2 ← (M ′
1)

pwA,C × (
Com′

B,C

)−z′
a

×ElGpkB (g
−z′

apwA,C

1 · TA)

TB := A
x′

b
a B

y′
b

a C
z′

b
a D

w′
b

a K
rb
a

M ′
2 ← (M1)

pwB,C × (
Com′

A,C

)−z′
b

×ElGpkA(g
−z′

bpwB,C

1 · TB)

M2 �

M ′
2�

Xa := g
−za·pwA,C

1 · M ′
2[2]

(M ′
2[1])

skA
Xb := g

−zb·pwB,C

1 · M2[2]

(M2[1])skB

Fig. 3. The Compute protocol. See text for a description of the notation used.

Upon receiving 〈Ka, Kb, σ〉 from the client, the gateway first verifies that σ
is a valid signature on the “message” msg1|msg2|Ka|Kb with respect to the key
VK 5. If verification fails, the gateway terminates this instance of this protocol
and send a special message to the servers indicating this fact. Otherwise, it sends
Ka, Kb to each of the servers. The servers then execute the Compute protocol
(cf. Figure 3 and described next) in order to compute their session keys.

Before describing the Compute protocol, we introduce some notation for ma-
nipulation of El Gamal ciphertexts. Given a message m ∈ G and a public key
(i.e., group element) pk, we let M ← ElGpk(m) denote the act of choosing a
random r ∈ Zq and setting M = (gr

1 , pkrm). We let M [1] refer to the first com-
ponent of this ciphertext, and let M [2] refer to the second. Note that if sk is the
corresponding secret key (i.e., pk = gsk

1), then we have m = M [2]
M [1]sk .

If M, M ′ are two El Gamal ciphertexts (encrypted with respect to the same
public key pk), then we let M×M ′ denote (M [1]·M ′[1], M [2]·M ′[2]). Note that
if M is an encryption of m and M ′ is an encryption of m′, then M ×M ′ is an
encryption of m·m′. For x ∈ Zq, we let Mx denote the ciphertext (M [1]x, M [2]x).
Here, the resulting ciphertext is an encryption of mx.

With this in mind, we now describe the Compute protocol. Since the protocol
is symmetric, we simply describe it from the point of view of server A. This server
sets M1 to be an El Gamal encryption (with respect to pkA) of g−za

1 . It then
sends M1 to server B, who computes

M ′
2 ←M

pwB,C

1 × (
Com′

A,C

)−z′
b × ElGpkA(g−z′

bpwB,C

1 A
x′

b
a B

y′
b

a C
z′

b
a D

w′
b

a Krb
a)

5 We remark that this can just as easily be done by the servers; allowing the gateway
to perform this check, however, simplifies things slightly.

12 Jonathan Katz et al.

and sends this value back to server A (recall that rb is the randomness used to
construct ComB,C). Finally, server A decrypts M ′

2 and multiplies the result by
g
−za·pwA,C

1 to obtain Xa. Note that

Xa = g
−(za+z′

b)·pwC

1 ·
(
A

x′
b

a B
y′

b
a C

z′
b

a D
w′

b
a Krb

a

)
, (1)

using the fact that pwC = pwA,C + pwB,C mod q.
Although omitted in the above description, we assume that the client and the

gateway always verify that incoming messages are well-formed, and in particular
that all appropriate components of the various messages indeed lie in G (we
assume that membership in G can be efficiently verified).

Correctness. One can easily verify correctness of the above protocol. Due to
space limitations, we omit the detailed computations.

Security against passive adversaries. A proof of the following theorem ap-
pears in the full version of this paper.

Theorem 1. Assuming (1) the DDH problem is hard for G; (2) (Gen, Sign, Vrfy)
is a secure one-time signature scheme; and (3) H is collision-resistant, the proto-
col of Figures 1–3 is a secure two-server protocol for password-only authenticated
key exchange in the presence of a passive adversary (in particular, it satisfies
Definition 1 with c = 2).

4 Handling Active Adversaries

Here, we describe the necessary changes to the protocol in order to handle active
adversaries. At a high level, these changes can be summarized as follows:

Proofs of correctness. We require servers to give proofs of correctness for
their actions during the Compute protocol. We stress that we use only the fact
that these are proofs (and not proofs of knowledge) and therefore we do not
require any rewinding in our proof of security. This is crucial, as it enables us
to handle concurrent executions of the protocol. Nevertheless, as part of the
proofs of correctness we will have the servers encrypt certain values with respect
to (additional) per-server public keys provisioned during protocol initialization.
This will, in fact, enable extraction of certain values from the adversary during
the security proof.

Commitments to password shares. The protocol as described in the pre-
vious section already assumes that each server is provisioned with appropriate
El Gamal encryptions of the password share of the other server. We will use
these shares (along with the proofs of correctness discussed earlier) to “force” a
corrupted server to use the appropriate password share in its computations.

Simulating proofs for non-corrupted servers. During the course of the
proof of security it will be necessary for non-corrupted servers to deviate from
the prescribed actions of the protocol, yet these servers must give “valid” proofs

Two-Server Password-Only Authenticated Key Exchange 13

of correctness to possibly corrupted servers. We cannot rely on “standard” use
of zero-knowledge proofs in our setting, since (1) this would require rewinding
which we explicitly want to avoid, and (2) potential malleability issues arise due
to the fact that a corrupted server may be giving its proof of correctness at the
same time a non-corrupted server is giving such a proof (this is so even if we force
sequential executions of the proofs of correctness within any particular instance,
since multiple instances may be simultaneously active). To enable simulatability
we rely on techniques of MacKenzie [32] described in greater detail below.

4.1 Detailed Description of Changes to the Protocol

We first discuss the necessary modifications to the initialization phase (this is all
in addition to the provisioned values already discussed in Section 3.1): (1) each
server S is given a random triple tripleS = (US,1, US,2, US,3) of elements chosen
uniformly at random from G. Furthermore, (2) each server S is given tripleS′ for
any server S′ for which there is a client with associated servers S, S′.

We will next describe the necessary changes to the protocol itself. In what
follows, we will use witness-indistinguishable Σ-protocols (with negligible sound-
ness error6) [12] of various predicates and it will be useful to develop some nota-
tion. If Ψ represents a predicate (defined over some public values), we let Σ[Ψ]
denote a Σ-protocol for this predicate. If Ψ1, Ψ2 are two predicates, then we let
Σ[Ψ1∨Ψ2] denote a Σ-protocol for the “or” of these predicates. We remark that
given Σ-protocols for Ψ1 and Ψ2, it is easy to combine these so as to obtain a
Σ-protocol for Ψ1∨Ψ2 [13]. We define the predicate DDHS , for any server S with
tripleS = (U1, U2, U3), as follows:

DDHS(U1, U2, U3)
def= [∃x, y s.t. U1 = gx

1 ∧ U2 = gy
1 ∧ U3 = gxy

1] ;

i.e., DDHS denotes the predicate asserting that tripleS is a Diffie-Hellman triple.
Given the above, the protocol is modified in the following ways:

Initial server message. To construct the second message of the protocol (i.e.,
msg2), the servers first construct Ea,1, Eb,1, Eb,2, and Ea,2 as in Figure 2. The
servers also choose random nonceA, nonceB ∈ {0, 1}k. Server A sends to the
gateway the message 〈nonceA, Ea,1, Eb,1, ComA,C , ComB,C〉. Similarly, server B
sends to the gateway the message 〈nonceB , Eb,2, Ea,2, ComA,C , ComB,C〉. The
gateway verifies that ComA,C and ComB,C (as sent by the two servers) are iden-
tical: if so, it constructs the outgoing message as in Figure 2 but also including
nonceA, nonceB; if not, the gateway sends a special abort message to each of the
servers. (The client will sign all of msg2 – including the nonces – exactly as in
Figure 1, and this signature will be verified by the gateway as in Figure 2.)

The Compute protocol. After the gateway receives msg3 and verifies the
signature as in Figure 2, it forwards the values Ea,1, Eb,1 (resp., Eb,2, Ea,2) to

6 From now on, “Σ-protocol” means a witness-indistinguishable Σ-protocol with neg-
ligible soundness error.

14 Jonathan Katz et al.

server B (resp., server A) in addition to forwarding (Ka, Kb) as before. The
Compute protocol is then modified as follows (we describe the changes from the
point of view of server A, but they are applied symmetrically to server B): In the
first phase, in addition to computing M1 ← ElGpkA(g−za

1), server A computes

vxa,ya,za,wa := Axa
a Bya

a Cza
a Dwa

a and Vxa,ya,za,wa ← ElGpkA(vxa,ya,za,wa)

and sends these values to B. Define the predicate Ψ1 as follows:

Ψ1
def=

∃xa, ya, za, wa, r, r̃ s.t. :
Ea,1 = gxa

1 gya

2 hza(cdαa)wa

M1 =
(
gr
1 , pkr

A · g−za
1

)

Vxa,ya,za,wa =
(
gr̃
1, pkr̃

A · Axa
a Bya

a Cza
a Dwa

a

)

 .

Server A then acts as a prover in the protocol Σ[Ψ1∨DDHA]. Meanwhile, A acts
as a verifier in the symmetric Σ-protocol being given (possibly concurrently) by
server B. If B’s proof fails, then A aborts immediately.

In the second phase of the Compute protocol, in addition to computing M2

as in Figure 3, server A also computes

vz′
a

:= g
z′

a
1 vx′

a,y′
a,z′

a,w′
a

:= A
x′

a

b B
y′

a

b C
z′

a

b D
w′

a

b

Vz′
a
← ElGpkA(vz′

a
) Vx′

a,y′
a,z′

a,w′
a
← ElGpkA(vx′

a,y′
a,z′

a,w′
a
)

and sends these values to B. Define the predicate Ψ2 as follows:

Ψ2
def
=

∃x′
a, y′

a, z′
a, w′

a,
ra, pwA,C , r, r̃, r̂ s.t.

:

Eb,1 = g
x′

a
1 g

y′
a

2 hz′
a(cdαb)w′

a

Vz′
a

=
(
gr
1 , pkr

A · gz′
a

1

)

Vx′
a,y′

a,z′
a,w′

a
=

(
gr̃
1 , pkr̃

A ·Ax′
a

b B
y′

a
b C

z′
a

b D
w′

a
b

)

M2 = (M ′
1)

pwA,C × (Com′
B,C)−z′

a

×
(
gr̂
1 , pkr̂

B · g−z′
a·pwA,C

1 A
x′

a
b B

y′
a

b C
z′

a
b D

w′
a

b Kra
b

)

ComA,C =
(
gra
1 , gra

3 g
pwA,C

1

)

.

Server A then acts as a prover in the protocol Σ[Ψ2∨DDHA]. Meanwhile, A acts
as a verifier in the symmetric Σ-protocol being given (possibly concurrently) by
server B. If B’s proof fails, then A aborts without computing a session key.

Relatively efficient Σ-protocols for the above predicates can be constructed
using standard techniques, and we omit further details.

Security against active adversaries. A proof of the following theorem ap-
pears in the full version of this paper.

Theorem 2. With the modifications described above and under the same as-
sumptions as in Theorem 1, we obtain a secure two-server protocol for password-
only authenticated key exchange in the presence of an active adversary.

Two-Server Password-Only Authenticated Key Exchange 15

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. Adv. in Cryptology – Eurocrypt 2000, LNCS vol. 1807,
Springer-Verlag, pp. 139–155, 2000.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. Proc. 1st ACM Conference on Computer and Commu-
nications Security, ACM, pp. 62–73, 1993.

3. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Adv. in
Cryptology – Crypto 1993, LNCS vol. 773, Springer-Verlag, pp. 232–249, 1994.

4. M. Bellare and P. Rogaway. Provably-Secure Session Key Distribution: the Three
Party Case. 27th ACM Symposium on Theory of Computing (STOC), ACM, pp.
57–66, 1995.

5. S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Proto-
cols Secure Against Dictionary Attacks. IEEE Symposium on Research in Security
and Privacy, IEEE, pp. 72–84, 1992.

6. S.M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: a Password-
Based Protocol Secure Against Dictionary Attacks and Password File Compromise.
1st ACM Conf. on Computer and Comm. Security, ACM, pp. 244–250, 1993.

7. M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User
Case. 7th Ann. Conf. on Computer and Comm. Security, ACM, pp. 63–72, 1999.

8. V. Boyko, P. MacKenzie, and S. Patel. Provably-Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. Adv. in Cryptology – Eurocrypt 2000, LNCS
vol. 1807, Springer-Verlag, pp. 156–171, 2000.

9. J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. Nightingale: A New Two-Server
Approach for Authentication with Short Secrets. 12th USENIX Security Symp.,
pp. 201–213, 2003.

10. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revis-
ited. J. ACM 51(4): 557–594, 2004.

11. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally-
Composable Password Authenticated Key Exchange. Eurocrypt 2005, to appear.

12. R. Cramer. Modular Design of Secure Yet Practical Cryptographic Protocols. PhD
Thesis, CWI and University of Amsterdam, 1996.

13. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. Adv. in Cryptology – Crypto 1994,
LNCS vol. 839, Springer-Verlag, pp. 174–187, 1994.

14. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Chosen Ciphertext Attack. Adv. in Cryptology – Crypto 1998, LNCS vol.
1462, Springer-Verlag, pp. 13–25, 1998.

15. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory 22(6): 644–654, 1976.

16. M. Di Raimondo and R. Gennaro. Provably Secure Threshold Password-
Authenticated Key Exchange. Adv. in Cryptology – Eurocrypt 2003, LNCS vol.
2656, Springer-Verlag, pp. 507–523, 2003.

17. Y. Dodis, M. Krohn, D. Mazieres, and A. Nicolosi. Proactive Two-Party Signatures
for User Authentication. NDSS 2003.

18. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory 31: 469–472, 1985.

19. W. Ford and B.S. Kaliski. Server-Assisted Generation of a Strong Secret from a
Password. Proc. 5th IEEE Intl. Workshop on Enterprise Security, 2000.

16 Jonathan Katz et al.

20. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key
Exchange. Adv. in Cryptology – Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag,
pp. 524–543, 2003.

21. N. Gilboa. Two-Party RSA Key Generation. Adv. in Cryptology – Crypto 1999,
LNCS vol. 1666, Springer-Verlag, pp. 116–129, 1999.

22. O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords
Only. Adv. in Cryptology – Crypto 2001, LNCS vol. 2139, Springer-Verlag, pp.
408–432, 2001.

23. L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer. Protecting Poorly-
Chosen Secrets from Guessing Attacks. IEEE J. on Selected Areas in Communi-
cations 11(5): 648–656, 1993.

24. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols.
ACM Trans. Information and System Security 2(3): 230–268, 1999.

25. D. Jablon. Strong Password-Only Authenticated Key Exchange. ACM Computer
Communications Review 26(5): 5–20, 1996.

26. D. Jablon. Password Authentication Using Multiple Servers. RSA Cryptographers’
Track 2001, LNCS vol. 2020, Springer-Verlag, pp. 344–360, 2001.

27. S. Jiang and G. Gong. Password Based Key Exchange With Mutual Authentica-
tion. Workshop on Selected Areas of Cryptography (SAC), 2004.

28. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Ex-
change Using Human-Memorable Passwords. Adv. in Cryptology – Eurocrypt 2001,
LNCS vol. 2045, Springer-Verlag, pp. 475–494, 2001.

29. T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham. Reducing Risks from
Poorly-Chosen Keys. ACM Operating Systems Review 23(5): 14–18, 1989.

30. S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without En-
crypting Public Keys. Proc. of the Security Protocols Workshop, LNCS 1361,
Springer-Verlag, pp. 79–90, 1997.

31. P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Ex-
change Based on RSA. Adv. in Cryptology – Asiacrypt 2000, LNCS 1976, Springer-
Verlag, pp. 599–613, 2000.

32. P. MacKenzie. An Efficient Two-Party Public-Key Cryptosystem Secure against
Adaptive Chosen-Ciphertext Attack. Public Key Cryptography (PKC) 2003, LNCS
vol. 2567, Springer-Verlag, pp. 47–61, 2003.

33. P. MacKenzie and M. Reiter. Networked Cryptographic Devices Resilient to Cap-
ture. IEEE Security and Privacy, 2001.

34. P. MacKenzie and M. Reiter. Two-Party Generation of DSA Signatures. Adv. in
Cryptology – Crypto 2001, LNCS vol. 2139, Springer-Verlag, pp. 137–154, 2001.

35. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold Password-
Authenticated Key Exchange. Adv. in Cryptology – Crypto 2002, LNCS vol. 2442,
Springer-Verlag, pp. 385–400, 2002.

36. V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, version 2.1.
Draft, 2001. Available at http://eprint.iacr.org/2001/112.

37. M. Szydlo and B. Kaliski. Proofs for Two-Server Password Authentication. RSA
Cryptographers’ Track 2005, LNCS vol. 3376, Springer-Verlag, pp. 227–244, 2005.

38. T. Wu. The Secure Remote Password Protocol. Proc. Internet Society Symp. on
Network and Distributed System Security, pp. 97–111, 1998.

	Two-Server Password-Only Authenticated Key Exchange
	1 Introduction
	1.1 Our Contributions

	2 Definitions and Preliminaries
	2.1 Passive Adversaries
	2.2 Active Adversaries

	3 A Protocol Secure Against Passive Adversaries
	3.1 Description of the Protocol

	4 Handling Active Adversaries
	4.1 Detailed Description of Changes to the Protocol

	References

