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We give short proofs of the following two results: of Thomas’s theorem
that every finite graph has a linked tree-decomposition of width no
greater than its tree-width, and of the ‘tree-width duality theorem’ of
Seymour and Thomas that the tree-width of a finite graph is exactly
one less than the largest order of its brambles.

1. Introduction

The main purpose of this note is to give a short proof of Thomas’s theorem
that every finite graph has a linked tree-decomposition of width no greater than
its tree-width [ 9 ]. This is a useful tool in the theory of tree-decompositions;
for example, it is a key lemma in Robertson & Seymour’s proof of the fact
that every set of graphs of bounded tree-width is well-quasi-ordered [ 7 ]. This
latter result is the starting point for the proof of their graph minor theorem,
see [ 2 ]. It is also the first step in the now available short proof of the ‘general
Kuratowski theorem’ that embeddability in any fixed surface is characterized
by finitely many forbidden minors (combine it with [ 3 ] and either [ 5 ] or [ 10 ]),
a main corollary of the graph minor theorem.

Another (more constructive) short proof of Thomas’s theorem has been
given in [ 1 ]. An analogous result for branch-width was obtained by Geelen,
Gerards & Whittle [ 4 ], also with a short and simple proof. The ‘branch-width’
of a graph is a parameter closely related to tree-width but not 1–1 translat-
able, so the result proved in [ 4 ] does not imply Thomas’s theorem as reproved
in this paper. But [ 4 ] does give a complete short proof (including the WQO
part) of the above-mentioned result from [ 7 ], where exact bounds for Thomas’s
theorem are not required.

Our proof of Thomas’s theorem differs from the original in that we use
a simpler induction parameter. This simplifies the induction step: we have
less to verify, and the presentation becomes considerably less technical. The
tree-decomposition we use, however, is the same as in [ 9 ]. Essentially, it is
constructed recursively from tree-decompositions of two subgraphs by adding
their intersection as a new part to both decompositions, to serve as the common
interface required for their amalgamation. Whether or not this can be done
without increasing the width is a key issue in the study of tree-decompositions
more generally. Thomas’s sufficient condition under which this technique can
be applied is a contribution of independent use and interest, and so we have
extracted it into a separate lemma (Lemma 2).

This lemma (with some inessential additional details) has been used again
before, in Seymour & Thomas’s proof of what Reed [ 6 ] has called their tree-
width duality theorem [ 8 ]. A streamlined proof of this result has already ap-
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peared in [ 2 ], with the lemma incorporated. Since we need the lemma by
itself in our different context here, we take the opportunity to include the short
derivation of the duality theorem from it as well (Theorem 5).

All the graphs we consider are finite. Unless otherwise specified our ter-
minology follows [ 2 ], and we assume familiarity with the basic theory of tree-
decompositions as covered there. In particular, we shall freely use the following
separation lemma:

Lemma 1. Let (Vt)t∈T be a tree-decomposition of a graph G, let t1t2 be an

edge of T , and let T1 and T2 be the components of T − t1t2. Then Vt1 ∩ Vt2

separates
⋃

t∈T1
Vt from

⋃
t∈T2

Vt in G. �

2. Amalgamating tree-decompositions

Let G be a graph and X ⊆ V (G) a separating set of vertices. A basic technique
in the study of tree-decompositions is to try to amalgamate given tree-decompo-
sitions of the subgraphs H = G [C ∪X ], where C ranges over the components
of G−X, into an overall tree-decomposition of G. This is straightforward if X

is contained in a part in each of those decompositions. If X is not contained in a
part of the given decomposition of H, we can alter that decomposition and force
X to become included in a part; to maintain the decomposition axiom (T3),
however, this will typically involve the inclusion of the vertices from X in some
of the other parts as well, which can increase the width of that decomposition.

The lemma we prove in this section offers a sufficient condition for when
X can be incorporated into a part of a given decomposition of H without in-
creasing its width. The decomposition of H will be given as induced by another
tree-decomposition D of all of G, and the sufficient condition will involve the
position of X within D.

Slightly more generally let C be a union of components of G − X and
H := G [C ∪X ]. Let D = (Vt)t∈T be a tree-decomposition of G, and s ∈ T .
For each x ∈ X pick a ‘home’ node tx ∈ T with x ∈ Vtx

, and for all t ∈ T put

Wt :=
(
Vt ∩V (H)

)
∪{x ∈ X | t ∈ txTs } .

Clearly X ⊆ Ws, and it is easy to check that Ds(H) := (Wt)t∈T is a tree-
decomposition of H. (In fact, it is the tree-decomposition obtained from the
decomposition which D induces on H by forcing X ⊆ Ws and repairing (T3)
with the minimum addition of vertices to existing parts.)

Lemma 2. If G−C contains a set {Px | x ∈ X } of disjoint X–Vs paths with

x ∈ Px for all x, then |Wt| � |Vt| for all t ∈ T .

Proof. For each x ∈ X with x ∈ Wt �Vt we have t ∈ txTs, so Vt separates Vtx

from Vs by Lemma 1 and hence contains some other vertex of Px. That vertex
does not lie in Wt, because Wt � X ⊆ V (C) while Px ⊆ G−C. �
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3. Linked and lean tree-decompositions

A tree-decomposition D = (Vt)t∈T is called linked if, in addition to the usual
axioms (T1)–(T3), it satisfies the following:

(T4) Given any k ∈ N and t1, t2 ∈ T , either G contains k disjoint Vt1–Vt2 paths
or there exists a t ∈ t1Tt2 such that |Vt| < k.

Let us call the decomposition D lean if, in addition to (T1)–(T3), it satisfies

(T4′) Given t1, t2 ∈ T and vertex sets Z1 ⊆ Vt1 and Z2 ⊆ Vt2 such that
|Z1| = |Z2| =: k, either G contains k disjoint Z1–Z2 paths or there exists
an edge tt′ ∈ t1Tt2 with Vt ∩Vt′ < k.

It is easy to make a lean tree-decomposition linked without increasing its
width: just subdivide every edge tt′ ∈ T by a new node s and add Vs := Vt ∩Vt′

as a new part. The greater freedom in choosing the sets Z1 and Z2 in (T4′),
however, makes (T4′) considerably stronger than (T4), especially when t1 = t2.
(For example, the trivial decomposition into one part is always linked, but not
lean unless G is complete.) More examples illustrating the difference between
linked and lean decompositions, including a justification of term ‘lean’ based
on this difference, can be found in [ 1 ].

Theorem 3. Every graph G has a lean tree-decomposition of width tw(G),
the tree-width of G.

Proof. Let n := |G|. Let the fatness of a tree-decomposition of G be the
n-tuple (a0, . . . , an−1), where ah denotes the number of parts that have exactly
n− h vertices. Let D = (Vt)t∈T be a tree-decomposition of lexicographically
minimal fatness. Clearly D has width tw(G); we shall prove that D is lean.

Suppose not. Then there exists a quadruple (t1, t2, Z1, Z2) as in (T4′) that
violates (T4′); we choose one for which t1 and t2 have minimum distance in T .
Among all the Z1–Z2 separators of minimum order in G let X be one that lies
‘closest to t1Tt2’ in the sense that

∑
x∈X dx is minimum, where

dx := min { dT (t, tx) | t ∈ t1Tt2 and x ∈ Vtx
} .

Let C1 denote the union of those components of G−X that meet Z1, let C2

be the union of all the other components of G−X, and put Hi := G [Ci ∪X ]
for i = 1, 2. By Menger’s theorem, there exists a set {Px | x ∈ X } of disjoint
Z1–Z2 paths in G such that x ∈ Px for all x. Each Px is the union of two paths
P i

x ⊆ G−Ci meeting exactly in x; the paths P i
x will be used below to apply

Lemma 2.
For every x ∈ X choose tx at minimum distance from t1Tt2 in T so that

x ∈ Vtx . Let T 1, T 2 be disjoint copies of T . For i = 1, 2 and t ∈ T let ti denote
the copy of t in T i, and put T ′ := T 1 ∪T 2 + t12t

2
1. Let Dt3−i(Hi) =: (W i

t )t∈T be
the tree-decomposition of Hi obtained from D for s := t3−i as before Lemma 2.
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Rewriting T as T i and W i
t as Wti we may combine Dt2(H1) and Dt1(H2) to a

tree-decomposition D′ = (Wt)t∈T ′ of G. (Note that D′ satisfies (T3), because
V (H1 ∩H2) = X ⊆ Wt21

∩Wt12
.)

To complete the proof we show that D′ has smaller fatness than D. To do
so, we prove that

(
∀ t ∈ T

)(
∀ i = 1, 2

) (
|W i

t | = |Vt| ⇒ W 3−i
t ⊆ X

)
(1)

and (
∃ t ∈ t1Tt2

) (
|W 1

t |, |W 2
t | < |Vt|

)
. (2)

To see why this suffices, note that |W i
t | � |Vt| by Lemma 2, and recall that

since D violates (T4′) we have |X| < k � |Vt| for all t ∈ t1Tt2. Thus (1) implies
that for every h > |X| the number of parts of order h is no greater in D′ than
it was in D, while (2) implies that for some such h this number has gone down.

For the proof of (1) let t ∈ T be given, assume for notational simplicity
that i = 1, and suppose that |W 1

t | = |Vt|; we show that W 2
t ⊆ X. If not then

Vt meets C2, and for every vertex of Vt in C2 some x ∈ X was included in W 1
t

when it was formed from Vt. Let Y be the set of all those x:

Y := W 1
t � Vt = {x ∈ X | t ∈ txTt2 }� Vt , (∗)

and put
X ′ := (X � Y )∪ (Vt ∩C2)

(Fig. 1). As indicated above, |W 1
t | = |Vt| implies that |Y | = |Vt ∩ V (C2)|, so

|X ′| = |X| < k. Our aim is to show that X ′ should have been chosen instead
of X for our minimal counterexample.

X

Y

Z1

C1 C2

Z2

Vt

X ′

FIGURE 1. Obtain X ′ from X by replacing the vertices
of Y with vertices from Vt ∩V (C).

To this end, let us show that X ′ separates both Z1 and Vt from Z2 in G.
Any path P in G−X ′ from either Z1 or Vt to Z2 has a last vertex y in Y . Then
ẙP ⊆ C2, and yP contains a Vty–Vt2 path. Since t ∈ tyTt2 by (∗), yP meets Vt

(Lemma 1), and as y /∈ Vt it must do so in C2, ie. in X ′.

4



If t ∈ t̊1Tt2 then the above implies that for any k-set Z ⊆ Vt the quadru-
ple (t, t2, Z, Z2) violates (T4′), which contradicts the choice of t1 and t2. So
t /∈ t̊1Tt2. We complete the proof of (1) by showing that dx′ < dy for all
x′ ∈ X ′

� X and all y ∈ Y ( = X � X ′); then X ′ should have been chosen
instead of X for our counterexample (t1, t2, Z1, Z2).

Let x′ and y be given. By (∗) t separates ty from t2 in T , and hence as
t /∈ t̊1Tt2 from the whole path t1Tt2. Writing d for the distance of t from t1Tt2
in T , we thus obtain dx′ � d < dy by x′ ∈ Vt and the definition of ty.

For the proof of (2) it suffices by (1) to find t ∈ t1Tt2 such that Vt crosses X,
ie. meets both C1 and C2. Suppose there is no such t. Since Vt1 meets C1 and
Vt2 meets C2, this means that t1Tt2 has an edge tt′ such that Vt ⊆ H1 and
Vt′ ⊆ H2. But then Vt ∩Vt′ ⊆ X and tt′ satisfies (T4′), a contradiction. �

4. The tree-width duality theorem

Let G be a graph. Two subsets of V (G) are said to touch if they have a vertex
in common or G contains an edge between them. Following [ 6 ], we call a set
B of mutually touching connected vertex sets a bramble. A subset of V (G) is
said to cover B if it meets every element of B. The least number of vertices
covering a bramble is its order . A typical example of an order n bramble is the
set of crosses in the n×n grid; see [ 2 ].

Lemma 4. Any set of vertices separating two covers of a bramble also covers

that bramble.

Proof. Since each set in the bramble is connected and meets both of the
covers, it also meets any set separating these covers. �

Theorem 5. Let k � 0 be an integer. A graph has tree-width � k if and only

if it contains a bramble of order > k.

Proof. For the backward implication, let B be any bramble in a graph G.
We show that every tree-decomposition (Vt)t∈T of G has a part that covers B.
For every edge e ∈ T , at least one of the two components T ′ of T − e is such
that

⋃
t∈T ′ Vt covers B, because the sets in B are connected and touch (cf.

Lemma 1); we then orient the edge e towards T ′. Having oriented every edge
of T we let s be the last vertex of a maximal directed path in T and note that
Vs covers B.

To prove the forward direction, we now assume that G contains no bramble
of order > k. We show that for every bramble B in G there is a B-admissible
tree-decomposition of G, one in which any part of order > k fails to cover B.
For B = ∅ this implies that tw(G) < k, because every set covers the empty
bramble.

Let B be given, and assume inductively that for every bramble B′ contain-
ing more sets than B there is a B′-admissible tree-decomposition of G. (The
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induction starts, since no bramble in G has more than 2|G| sets.) Let X ⊆ V (G)
be a cover of B with as few vertices as possible; then � := |X| � k is the order
of B. Our aim is to show the following:

For every component C of G − X there exists a B-admissible

tree-decomposition of G [C ∪X ] with X as a part.
(∗)

Then these tree-decompositions can be combined to a B-admissible tree-decom-
position of G by identifying their nodes corresponding to X. (If X = V (G),
then the tree-decomposition with X as its only part is B-admissible.)

So let C be a fixed component of G−X, write H := G [C ∪X ], and put
B′ := B∪{C }. If B′ is not a bramble then C fails to touch some element of B,
and hence Y := V (C)∪N(C) does not cover B. Then the tree-decomposition
of H consisting of the two parts X and Y satisfies (∗).

So we may assume that B′ is a bramble. Since X covers B, we have C /∈ B
and hence |B′| > |B|. Our induction hypothesis therefore ensures that G has
a B′-admissible tree-decomposition D = (Vt)t∈T . If this decomposition is also
B-admissible, there is nothing more to show. If not, then one of its parts of
order > k, Vs say, covers B. Since no set of fewer than � vertices covers B,
Lemma 4 implies with Menger’s theorem that Vs and X are linked in G by �

disjoint paths Px with x ∈ Px for all x ∈ X. As Vs fails to cover B′ and hence
lies in G−C, so do these paths.

For each x ∈ X pick a ‘home’ node tx ∈ T with x ∈ Vtx , and consider
Ds(H) = (Wt)t∈T as in Lemma 2. Then Ws = X. To complete the proof
of (∗), we show that Ds(H) is B-admissible. Consider any Wt of order > k.
Then Wt meets C, because Wt ⊆ V (H) and |X| � k. Since D is B′-admissible
and |Vt| � |Wt| > k by Lemma 2, we know that Vt fails to meet some B ∈ B;
let us show that Wt does not meet this B either. If it does, it must do so in
some x ∈ X with x ∈ Wt � Vt. Then B is a connected set meeting both Vs

and Vtx but not Vt, contradicting t ∈ sT tx by Lemma 1. �

Theorem 5 can be restated in terms of the bramble number of a graph, the
largest order of any bramble in it. It then says that the tree-width of a graph
is exactly one less than its bramble number.
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