# TWO SHORTER PROOFS IN SPECTRAL GRAPH THEORY ${ }^{1}$ 

Slobodan Simić, Dragan Stevanović

We give shorter proofs of two inequalities already known in spectral graph theory.

## 1. INTRODUCTION

Let $G$ be a simple graph with $V(E)$ as its vertex (respectively, edge) set. The spectrum of $G$ is the spectrum of its adjacency matrix. For all other definitions (or notation not given here), especially those related to graph spectra, see [1].

The purpose of this note is to provide shorter proofs of two inequalities already known in spectral graph theory. The first bounds vertex eccentricities of a connected graph in terms of some spectral quantities, while the second bounds the spectral radius of a graph in terms of vertex degrees. The first inequality is a slight generalization of a bound due to C.D. Godsil, while the second, also known as the Runge-Hofmeister conjecture, was first proved by A.J. Hoffman et al. (The proofs given here were obtained by the first and second author, respectively.)

## 2. A NEW PROOF OF THE BOUNDS ON ECCENTRICITIES

Let $G$ be a simple graph, with adjacency matrix $A$. Assume that $\mu_{1}, \mu_{2}, \ldots$, $\mu_{m}$ are the distinct eigenvalues of $A$ (and therefore of $G$ ), and let $P_{1}, P_{2}, \ldots, P_{m}$ be the matrices of the orthogonal projections of the whole space onto the eigenspaces corresponding to these eigenvalues. Then, by the spectral decomposition theorem,

[^0]we can write $A=\sum_{i=1}^{m} \mu_{i} P_{i}$ (see, for example, [ $\mathbf{2}$ p.3]). It follows that
$$
A^{k}=\sum_{i=1}^{m} \mu_{i}^{k} P_{i} \quad(k=0,1,2, \ldots)
$$

Let $N_{k}(s, t)$ be the number of walks of length $k$ between vertices $s$ and $t$ of $G$. Then we have

$$
N_{k}(s, t)=\sum_{i=1}^{m} \mu_{i}^{k}\left(P_{i}\right)_{s t} .
$$

Denote by $d(s, t)$ the distance between vertices $s$ and $t$ in $G$. From here onwards, we will assume that the graph $G$ in question is connected.

Let $m_{s t}$ be the number of non-zero members in the list

$$
\left(P_{1}\right)_{s t}, \ldots,\left(P_{m}\right)_{s t}
$$

Then the following lemma holds:
Lemma 1. If $s$ and $t$ are two vertices of a connected graph $G$ then $d(s, t) \leq m_{s t}-1$.
Proof. For brevity, put $d=d(s, t)$, and assume, to the contrary, that $d \geq m_{s t}$. Then

$$
\begin{equation*}
\sum_{i=1}^{m} \mu_{i}^{k}\left(P_{i}\right)_{s t}=0 \quad(k=0,1, \ldots, d-1), \tag{1}
\end{equation*}
$$

while

$$
\begin{equation*}
\sum_{i=1}^{m} \mu_{i}^{d}\left(P_{i}\right)_{s t} \neq 0 \tag{2}
\end{equation*}
$$

If we consider (1) as a system of linear equations in $m_{s t}$ unknowns (the nonzero members from the list $\left.\left(P_{1}\right)_{s t}, \ldots,\left(P_{m}\right)_{s t}\right)$, then, since $d \geq m_{s t}$, we get that $\left(P_{i}\right)_{s t}=0$ for all $i=1, \ldots, m$. But this contradicts (2).

We will next find some bounds on $m_{s t}$. Observe first that $\left(P_{i}\right)_{s t}$ is equal to 0 if (i) $\left\|P_{i} e_{s}\right\|=0$, or (ii) $\left\|P_{i} e_{t}\right\|=0$, or (iii) the vectors $P_{i} e_{s}, P_{i} e_{t}$ are orthogonal. Consider now conditions (i) and (ii). Recall also that $\left\|P_{i} e_{j}\right\|=\alpha_{i j}$ (here $\alpha_{i j}$ is the $(i, j)$-th entry of the angle matrix $\mathcal{A}=\left(\alpha_{i j}\right)$, where index $i$ corresponds to the $i$-th eigenspace, and index $j$ to the vertex $j$ of the graph in question; note also that the angle matrix is usually ordered so that it represents a graph invariant, cf. [2, p.75]). Now, if $\alpha_{i s}=0$ or $\alpha_{i t}=0$, then $\left(P_{i}\right)_{s t}=0$. Guided by this fact, we define $\hat{m}_{s t}=\left|\left\{i \mid \alpha_{i s} \neq 0 \wedge \alpha_{i t} \neq 0\right\}\right|$, and arrive at the following result:

Lemma 2. If $s$ and $t$ are two vertices of a graph $G$ then $m_{s t} \leq \hat{m}_{s t}$.
REmARK. In general, $m_{s t} \neq \hat{m}_{s t}$, in view of (iii).

We now switch to the bounds on vertex eccentricities. Recall, ecc(s)= $\max \{d(s, t) \mid t \in V\}$. By Lemma 1, we first get that ecc $(s) \leq \max \left\{m_{s t} \mid t \neq\right.$ $s\}-1$; we next get, by Lemma 2, that $\operatorname{ecc}(s) \leq \max \left\{\hat{m}_{s t} \mid t \neq s\right\}-1$. Let $m_{s}=\max \left\{\hat{m}_{s t} \mid t \neq s\right\}$. We therefore obtain:
Theorem 3. If $s$ is any vertex of a (connected) graph $G$ then $\operatorname{ecc}(s) \leq m_{s}-1$.
Let $m_{s}^{\prime}$ be the number of non-zero entries in the $s$-th column of the angle matrix of $G$. Clearly, $m_{s} \leq m_{s}^{\prime}$ (since only condition (i) from above has been used to define $m_{s}^{\prime}$ ); note also that $m_{s}^{\prime}=m_{s s}$. Accordingly we get the following result of C. D. Godsil (see [3]) as a corollary:

Corollary 4. If $s$ is any vertex of $G$, then $\operatorname{ecc}(s) \leq m_{s}^{\prime}-1$.
Remark. It is well known that $\operatorname{diam}(G) \leq m-1$ for any connected graph $G$ (see [1, p.88]). Based on the above observations, we have $\operatorname{diam}(G) \leq \max \left\{m_{s} \mid s \in V\right\}-1$. In many situations this bound can be better than the previous one. Note also that the bound is completely extracted from the angle matrix of a graph, in contrast to (lower) bounds where the eigenvalues are involved (see, for example, [2, p.84]).

## 3. A NEW PROOF OF THE RUNGE-HOFMEISTER CONJECTURE

Let $G$ be a simple graph with $n$ vertices and $m$ edges. Recall that the vertex set and the edge set of $G$ are denoted by $V$ and $E$, respectively. The spectral radius $\rho$ of $G$ is the largest eigenvalue of $A$, the adjacency matrix of $G$. The degree of a vertex $i \in V$ is denoted by $d_{i}$.

The graph $G$ is called ( $r_{1}, r_{2}$ )-semiregular if it is bipartite with bipartition $\left(V_{1}, V_{2}\right)$ such that all vertices in $V_{i}$ have the same degree $r_{i}$ for $i=1,2$. The graph $G$ is called almost regular if there is a non-negative real number $r$ such that every component of $G$ is either $r$-regular or $\left(r_{1}, r_{2}\right)$-semiregular with $r_{1} r_{2}=r^{2}$. F . Runge [6] (see also [1, p.49]) showed that if $G$ is a regular or semiregular graph, then

$$
\begin{equation*}
m=\rho^{2} \sum_{(i, j) \in E} \frac{1}{d_{i} d_{j}}, \tag{3}
\end{equation*}
$$

and conjectured that the condition (3) is sufficient for a graph to be regular or semiregular. Since F. Runge had not explicitly required the graph to be connected, M. Hofmeister [5] weakened this to the conjecture that the condition (3) is sufficient for a graph to be almost regular. This conjecture was proved in [4], and here we give a new and shorter proof.

Theorem 5. For any graph $G$ we have

$$
\begin{equation*}
\rho^{2} \geq \frac{m}{\sum_{(i, j) \in E} \frac{1}{d_{i} d_{j}}} . \tag{4}
\end{equation*}
$$

The case of equality holds if and only if $G$ is almost regular.

Proof. It is known that

$$
\begin{align*}
\rho & =\sup \left\{x^{\mathrm{T}} A x: x \in \mathbf{R}^{n},\|x\|=1\right\} \\
& =\sup \left\{2 \sum_{(i, j) \in E} x_{i} x_{j}: x \in \mathbf{R}^{n},\|x\|=1\right\}, \tag{5}
\end{align*}
$$

with the supremum attained if and only if $x$ is an eigenvector of $A$ corresponding to $\rho$. Setting $x_{i}=\sqrt{\frac{d_{i}}{2 m}}$ for $i \in V$ (giving $\|x\|=1$, since $\sum_{i \in V} d_{i}=2 m$ ), we get from (5) that

$$
\rho \geq 2 \sum_{(i, j) \in E} \sqrt{\frac{d_{i}}{2 m}} \sqrt{\frac{d_{j}}{2 m}}=\frac{1}{m} \sum_{(i, j) \in E} \sqrt{d_{i} d_{j}} .
$$

It follows from the inequality between arithmetic and geometric means that

$$
\rho \geq\left(\prod_{(i, j) \in E} \sqrt{d_{i} d_{j}}\right)^{1 / m}
$$

Squaring both sides of this inequality, we get

$$
\rho^{2} \geq\left(\prod_{(i, j) \in E} d_{i} d_{j}\right)^{1 / m}
$$

Finally, from the inequality between geometric and harmonic means, we obtain

$$
\begin{equation*}
\rho^{2} \geq \frac{m}{\sum_{(i, j) \in E} \frac{1}{d_{i} d_{j}}} . \tag{6}
\end{equation*}
$$

Equality holds in (6) if and only if $x=\left(x_{i}\right)_{i \in V}$ is an eigenvector of $A$ corresponding to $\rho$ and

$$
\begin{equation*}
d_{i} d_{j}=\rho^{2} \quad \text { for each }(i, j) \in E . \tag{7}
\end{equation*}
$$

Let $u$ be any vertex of $G$, and let $C$ be the component of $G$ containing $u$. From (7) we conclude that $d_{v}=\rho^{2} / d_{u}$ holds for all vertices $v$ of $C$ at an odd distance from $u$, while $d_{v}=d_{u}$ for all those at an even distance from $u$. Thus, if $d_{u}=\rho$ then $C$ is $\rho$-regular graph, while if $d_{u} \neq \rho$ then $C$ is a $\left(d_{u}, \rho^{2} / d_{u}\right)$-semiregular graph with bipartition $\left(\left\{v \in C \mid d_{v}=d_{u}\right\},\left\{v \in C \mid d_{v}=\rho^{2} / d_{u}\right\}\right)$.

## REFERENCES

1. D. Cvetković, M. Doob, H. Sachs: Spectra of Graphs-Theory and Application. Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
2. D. Cvetković, P. Rowlinson, S. Simić: Eigenspaces of Graphs. Cambridge University Press, Cambridge, 1997.
3. C.D. Godsil: Matching and walks in graphs. J. Graph Theory, 5 (1981), 285-297.
4. A.J. Hoffman, P. Wolfe, M. Hofmeister: A Note on Almost Regular Matrices. Linear Algebra Appl. 226-228 (1995), 105-108.
5. M. Hofmeister: A Note on Almost Regular Graphs. Math. Nachr. 166 (1994), 259-262.
6. F. Runge: Beiträge zur Theorie der Spektren von Graphen und Hypergraphen. Dissertation, TH Ilmenau, 1976.

Faculty of Electrical Engineering,

E-mail: simics@kondor.etf.bg.ac.yu
Faculty of Science and Mathematics, Višegradska 33, 18000 Niš,
Serbia and Montenegro
E-mail: dragance@pmf.ni.ac.yu


[^0]:    ${ }^{1}$ Both authors would like to gratefully acknowledge support from the Grant 1389 of the Serbian Ministry of Science, Technology and Development.

    2000 Mathematics Subject Classification: 05C50
    Keywords and Phrases: Spectral radius, vertex eccentricities, graph angles, vertex degrees.

