TWO-SIDED Γ - α-DERIVATIONS IN PRIME AND SEMIPRIME Г-NEAR-RINGS

Mustafa Kazaz and Akin Alkan

Abstract. We introduce the notion of two-sided Γ - α-derivation of a Γ -near-ring and give some generalizations of [1, 2].

1. Introduction

The notion of Γ-near-rings, as a generalization of near-rings, was introduced by Satyanarayana in [5]. The concept of Γ-derivations in Γ-near-rings was introduced by Jun, Cho, and Kim [4, 6]. In [1], Argaç defined a two-sided α-derivation d of a near-ring. In a similar way, we introduce the notion of two-sided Γ - α-derivation of a Γ-near-ring and we give some generalizations of [1, 2].

Let M be a prime (resp. a semiprime) Γ-near-ring and U be a right invariant (resp. an invariant) subset of M containing 0 , and let d be a two-sided Γ - α-derivation on M which acts as a Γ-homomorphism on U, or an anti- Γ homomorphism on U under certain conditions on α, then we showed that $d=0$. Finally, if M is a prime Γ-near-ring, U is a nonzero right invariant of M, and d is a nonzero $\Gamma-(\alpha, 1)$-derivation of M satisfying $d(x+y-x-y)=0$ for all $x, y \in U$, then we prove that $(M,+)$ is abelian.

2. Preliminaries

All near-rings considered in this paper are right distributive. A Γ-near-ring is a triple $(M,+, \Gamma)$, where
(i) $(M,+)$ is a group (not necessarily abelian),
(ii) Γ is a non-empty set of binary operations on M such that $(M,+, \gamma)$ is a near-ring for each $\gamma \in \Gamma$,
(iii) $(x \beta y) \gamma z=x \beta(y \gamma z)$ for all $x, y, z \in M$ and $\beta, \gamma \in \Gamma$.

A Γ-near-ring M is said to be zero-symmetric Γ-near-ring if $x \gamma 0=0$ for all $x \in M$ and $\gamma \in \Gamma$.

Received January 4, 2008; Revised May 7, 2008.
2000 Mathematics Subject Classification. 16Y30, 16W25, 16U80.
Key words and phrases. Γ-near-ring, prime Γ-near-ring, semiprime Γ-near-ring, two-sided Γ - α-derivation.

Let M be a Γ-near-ring. A subset U of M is said to be right (resp. left) invariant if $a \gamma x \in U$ (resp. $x \gamma a \in U$) for all $a \in U, \gamma \in \Gamma$ and $x \in M$. We say that U is invariant, if U is both right and left invariant. A Γ-near-ring M is said to be prime Γ-near-ring if $x \Gamma M \Gamma y=\{0\}$ for $x, y \in M$ implies $x=0$ or $y=0$, and semiprime Γ-near-ring if $x \Gamma M \Gamma x=\{0\}$ for $x \in M$ implies $x=0$.

A Γ-derivation on M is defined to be an additive endomorphism d of M satisfying the product rule

$$
d(x \gamma y)=d(x) \gamma y+x \gamma d(y)
$$

for all $x, y \in M$ and $\gamma \in \Gamma$, or equivalently

$$
d(x \gamma y)=x \gamma d(y)+d(x) \gamma y
$$

for all $x, y \in M$ and $\gamma \in \Gamma$ (see [6]).
If M and M^{\prime} are two Γ-near-rings, then a mapping $f: M \rightarrow M^{\prime}$ such that $f(x+y)=f(x)+f(y)$ and $f(x \gamma y)=f(x) \gamma f(y)$ (resp. $f(x \gamma y)=f(y) \gamma f(x))$, for all $x, y \in M$ and $\gamma \in \Gamma$, is called a Γ-near-ring homomorphism (resp. an anti- Γ-near-ring homomorphism) on M. Let S be a nonempty subset of M and let d be a Γ-derivation on M. If $d(x \gamma y)=d(x) \gamma d(y)($ resp. $d(x \gamma y)=d(y) \gamma d(x))$ for all $x, y \in S$ and $\gamma \in \Gamma$, then d is said to act as a Γ-homomorphism (resp. an anti- Γ-homomorphism) on S.

An additive endomorphism $d: M \rightarrow M$ of a Γ-near-ring M is called a Γ (α, β)-derivation on M if there exist two functions $\alpha, \beta: M \rightarrow M$ such that the following product rule holds:

$$
d(x \gamma y)=d(x) \gamma \alpha(y)+\beta(x) \gamma d(y)
$$

for all $x, y \in M$ and $\gamma \in \Gamma$. One can easily show that if d is a Γ - (α, β)-derivation on M such that $\alpha(x+y)=\alpha(x)+\alpha(y)$ and $\beta(x+y)=\beta(x)+\beta(y)$, then

$$
d(x \gamma y)=\beta(x) \gamma d(y)+d(x) \gamma \alpha(y) .
$$

An additive mapping $d: M \rightarrow M$ is called a two-sided Γ - α-derivation if d is a Γ - $(\alpha, 1)$-derivation as well as a Γ - $(1, \alpha)$-derivation. We should note that if $\alpha=1$, then a two-sided Γ - α-derivation is just a Γ-derivation.

Example. Let M_{1} be a zero-symmetric Γ-near-ring and let M_{2} be a Γ-ring (for Γ-rings, see [3]). Let us define $d: M_{1} \oplus M_{2} \rightarrow M_{1} \oplus M_{2}$ by $d\left(\left(m_{1}, m_{2}\right)\right)=$ $\left(0, d_{2}\left(m_{2}\right)\right)$ and $\alpha: M_{1} \oplus M_{2} \rightarrow M_{1} \oplus M_{2}$ by $\alpha\left(\left(m_{1}, m_{2}\right)\right)=\left(d_{1}\left(m_{1}\right), 0\right)$, where d_{1} is any map on M_{1} and d_{2} is a Γ-right and left M_{2}-module map on M_{2} which is not a derivation. Then it can be shown that d is a two sided Γ - α-derivation, but not a Γ-derivation.

3. The results

In order to derive our main results we first give the following lemmas.
Lemma 3.1. Let M be a prime Γ-near-ring and let U be a nonzero invariant of M. If $a+b-a-b=0$ for all $a, b \in U$, then $(M,+)$ is abelian.

Proof. Since U is a nonzero invariant of M, we have $x \gamma a, y \gamma a \in U$ for all $a \in U$, $x, y \in M$ and $\gamma \in \Gamma$. Thus, by the hypothesis, we have $x \gamma a+y \gamma a-x \gamma a-y \gamma a=0$ for all $a \in U, x, y \in M$ and $\gamma \in \Gamma$. Then we obtain $(x+y-x-y) \gamma a=0$ for all $a \in U, x, y \in M$ and $\gamma \in \Gamma$. In particularly, $(x+y-x-y) \Gamma U=$ $(x+y-x-y) \Gamma M \Gamma U=0$. Since M is a prime Γ-near-ring and U is a nonzero invariant, we get $x+y-x-y=0$ for all $x, y \in M$. Hence $(M,+)$ is abelian.

Lemma 3.2. Let M be a prime Γ-near-ring, U be a nonzero invariant of M which contains 0 , and d a Γ - $(\alpha, 1)$-derivation on M. If d acts as an anti- Γ homomorphism on U and $\alpha(0)=0$, then $x \gamma 0=0$ for all $x \in U$ and $\gamma \in \Gamma$.

Proof. Since $0 \gamma x=0$ for all $x \in U$ and $\gamma \in \Gamma$, and d acts as an anti- Γ homomorphism on U, it follows that $d(x) \gamma 0=0$. If we take $x \gamma 0$ instead of x, we obtain $d(x) \gamma \alpha(0)+x \gamma 0=0$ for all $x \in U$ and $\gamma \in \Gamma$. Then we get $x \gamma 0=0$ for all $x \in U$ and $\gamma \in \Gamma$.

Lemma 3.3. Let M be $a \Gamma$-near-ring and U be an invariant of M. If d is a two-sided Γ - α-derivation of M such that $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$, then

$$
n \mu(d(x) \gamma \alpha(y)+x \gamma d(y))=n \mu d(x) \gamma \alpha(y)+n \mu x \gamma d(y)
$$

for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$. Furthermore, if $\alpha(U)=U$, then for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$

$$
n \mu(d(x) \gamma y+\alpha(x) \gamma d(y))=n \mu d(x) \gamma y+n \mu \alpha(x) \gamma d(y) .
$$

Proof. For all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$, we have

$$
\begin{aligned}
d(n \mu(x \gamma y)) & =d(n) \mu \alpha(x \gamma y)+n \mu d(x \gamma y) \\
& =d(n) \mu \alpha(x) \gamma \alpha(y)+n \mu(d(x) \gamma \alpha(y)+x \gamma d(y)) .
\end{aligned}
$$

On the other hand, for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$,

$$
\begin{aligned}
d((n \mu x) \gamma y) & =d(n \mu x) \gamma \alpha(y)+n \mu x \gamma d(y) \\
& =(d(n) \mu \alpha(x)+n \mu d(x)) \gamma \alpha(y)+n \mu x \gamma d(y) \\
& =d(n) \mu \alpha(x) \gamma \alpha(y)+n \mu d(x) \gamma \alpha(y)+n \mu x \gamma d(y) .
\end{aligned}
$$

From these two expressions of $d(n \mu x \gamma y)$, we obtain that, for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$,

$$
n \mu(d(x) \gamma \alpha(y)+x \gamma d(y))=n \mu d(x) \gamma \alpha(y)+n \mu x \gamma d(y) .
$$

By a similar way, we obtain that, for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$,

$$
n \mu(d(x) \gamma y+\alpha(x) \gamma d(y))=n \mu d(x) \gamma y+n \mu \alpha(x) \gamma d(y)
$$

Lemma 3.4. Let M be a prime Γ-near-ring and U be a nonzero invariant of M. Let d be a nonzero Γ-($\alpha, 1$)-derivation on M such that $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $x \in M$ and $x \gamma d(U)=\{0\}$, then $x=0$.

Proof. Suppose that $x \gamma d(U)=\{0\}$. Then $x \gamma d(u \mu y)=0$ for all $y \in M, u \in U$ and $\mu \in \Gamma$. Thus $0=x \gamma(d(u) \mu \alpha(y)+u \mu d(y))=x \gamma u \mu d(y)$ for all $y \in M, u \in U$ and $\mu \in \Gamma$. Then we have $x \Gamma U \Gamma d(y)=\{0\}$ for all $y \in M$. Since d is nonzero, U is a nonzero invariant and M is prime, it follows that $x=0$.

Lemma 3.5. Let M be a prime Γ-near-ring and U be a nonzero invariant of M. Let d be a nonzero Γ-($\alpha, 1$-derivation on M. If $d(x+y-x-y)=0$ for all $x, y \in U$, then $(x+y-x-y) \gamma d(z)=0$ for all $x, y, z \in U$ and $\gamma \in \Gamma$.
Proof. Assume that $d(x+y-x-y)=0$ for all $x, y \in U$. By taking $y \gamma z$ and $x \gamma z$ instead of y and x, respectively (where $z \in U$ and $\gamma \in \Gamma$) we obtain

$$
\begin{aligned}
0 & =d((x+y-x-y) \gamma z) \\
& =d(x+y-x-y) \gamma \alpha(z)+(x+y-x-y) \gamma d(z) \\
& =(x+y-x-y) \gamma d(z)
\end{aligned}
$$

for all $x, y, z \in U$ and $\gamma \in \Gamma$.
Lemma 3.6. Let M be a Γ-near-ring and U be an invariant of M. Let d be a Γ-($\alpha, 1$)-derivation on M such that $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in U, \gamma \in \Gamma$ and $\alpha(U)=U$.
(i) If d acts as a Γ-homomorphism on U, then

$$
d(y) \mu x \gamma d(y)=y \mu x \gamma d(y)=d(y) \mu x \gamma \alpha(y)
$$

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$.
(ii) If d acts as an anti- Γ-homomorphism on U, then

$$
d(y) \gamma x \gamma d(y)=x \gamma y \gamma d(y)=d(y) \gamma \alpha(y) \gamma x
$$

for all $x, y \in U$ and $\gamma \in \Gamma$.
Proof. (i) Assume that d acts as a Γ-homomorphism on U. Then

$$
\begin{equation*}
d(x \gamma y)=d(x) \gamma \alpha(y)+x \gamma d(y)=d(x) \gamma d(y) \tag{1}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Taking $y \mu x$ instead of x in (1), we get

$$
\begin{align*}
d(y \mu x) \gamma \alpha(y)+y \mu x \gamma d(y) & =d(y \mu x) \gamma d(y) \\
& =d(y) \mu d(x) \gamma d(y) \tag{2}\\
& =d(y) \mu d(x \gamma y)
\end{align*}
$$

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$. By Lemma 3.3, we can write

$$
\begin{aligned}
d(y) \mu d(x \gamma y) & =d(y) \mu d(x) \gamma \alpha(y)+d(y) \mu x \gamma d(y) \\
& =d(y \mu x) \gamma \alpha(y)+d(y) \mu x \gamma d(y) .
\end{aligned}
$$

Using this relation in (2), we get

$$
y \mu x \gamma d(y)=d(y) \mu x \gamma d(y) .
$$

Similarly, taking $y \mu x$ instead of y in (1) gives

$$
\begin{equation*}
d(x) \gamma \alpha(y \mu x)+x \gamma d(y \mu x)=d(x) \gamma d(y \mu x)=d(x \gamma y) \mu d(x) . \tag{3}
\end{equation*}
$$

On the other hand, for all $x, y \in U$ and $\gamma, \mu \in \Gamma$

$$
\begin{aligned}
d(x \gamma y) \mu d(x) & =(d(x) \gamma \alpha(y)+x \gamma d(y)) \mu d(x) \\
& =d(x) \gamma \alpha(y) \mu d(x)+x \gamma d(y) \mu d(x) \\
& =d(x) \gamma \alpha(y) \mu d(x)+x \gamma d(y \mu x)
\end{aligned}
$$

Using this relation in (3), we obtain

$$
d(x) \gamma \alpha(y \mu x)=d(x) \gamma \alpha(y) \mu d(x)
$$

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$. By hypothesis, we get

$$
d(x) \gamma \alpha(y) \mu \alpha(x)=d(x) \gamma \alpha(y) \mu d(x)
$$

Since $\alpha(U)=U$, it obvious that

$$
d(x) \gamma w \mu \alpha(x)=d(x) \gamma w \mu d(x)
$$

for all $x, w \in U$ and $\gamma, \mu \in \Gamma$. That is, for all $x, y \in U$ and $\gamma, \mu \in \Gamma$

$$
d(y) \mu x \gamma d(y)=d(y) \mu x \gamma \alpha(y)
$$

(ii) Since d acts as an anti- Γ-homomorphism on U, we have

$$
\begin{equation*}
d(x \gamma y)=d(x) \gamma \alpha(y)+x \gamma d(y)=d(y) \gamma d(x) \tag{4}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Taking $x \gamma y$ instead of y in (4) gives

$$
\begin{aligned}
d(x) \gamma \alpha(x \gamma y)+x \gamma d(x \gamma y) & =d(x \gamma y) \gamma d(x) \\
& =(d(x) \gamma \alpha(y)+x \gamma d(y)) \gamma d(x) \\
& =d(x) \gamma \alpha(y) \gamma d(x)+x \gamma d(y) \gamma d(x) \\
& =d(x) \gamma \alpha(y) \gamma d(x)+x \gamma d(x \gamma y) .
\end{aligned}
$$

From this relation, we get

$$
d(x) \gamma \alpha(x \gamma y)=d(x) \gamma \alpha(y) \gamma d(x)
$$

Since $\alpha(U)=U$, we have

$$
d(x) \gamma \alpha(x) \gamma y=d(x) \gamma y \gamma d(x)
$$

Similarly, taking $x \gamma y$ instead of x in (4) gives the relation

$$
d(y) \gamma x \gamma d(y)=x \gamma y \gamma d(y)
$$

Theorem 3.7. Let M be a semiprime Γ-near-ring and U be an invariant subset of M containing 0 . Let d be a two-sided Γ - α-derivation on M such that $\alpha(U)=U$ and $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$.
(i) If d acts as a Γ-homomorphism on U, then $d(U)=\{0\}$.
(ii) If d acts as an anti-Г-homomorphism on U, then $d(U)=\{0\}$.

Proof. (i) Suppose that d acts as a Γ-homomorphism on U. Then Lemma 3.6 gives

$$
\begin{equation*}
d(y) \mu x \gamma d(y)=d(y) \mu x \gamma \alpha(y) \tag{5}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$. Right multiplying (5) by $d(z)$, and using the hypothesis that d acts as a Γ-homomorphism on U together with Lemma 3.3, we get $d(y) \mu x \gamma d(y) \mu \alpha(z)=0$ for all $x, y, z \in U$ and $\gamma, \mu \in \Gamma$. Since $\alpha(U)=U$, $d(y) \mu x \gamma d(y) \mu z=0$ for all $x, y, z \in U$ and $\gamma, \mu \in \Gamma$. Taking $z \eta m$ instead of x, where $m \in M, z \in U$, and $\eta \in \Gamma$, we obtain $d(y) \mu z \eta m \gamma d(y) \mu z=0$ for all $x, y, z \in U, m \in M$ and $\mu, \eta, \gamma \in \Gamma$. In particular, $d(y) \mu z \Gamma M \Gamma d(y) \mu z=0$. By the semiprimness of M we obtain that $d(y) \mu z=0$. Since $\alpha(U)=U$, it is clear that

$$
\begin{equation*}
d(y) \mu \alpha(z)=0 \tag{6}
\end{equation*}
$$

for all $y, z \in U$ and $\mu \in \Gamma$. Substituting $y \eta n$ for y in (6) and left multiplying (6) by $d(z)$, we get $d(z) \beta d(y) \eta n \mu \alpha(z)+d(z) \beta y \eta d(n) \mu \alpha(z)=0$, where $z \in U, \beta \in \Gamma$. Since the second summand is zero by (6), we get

$$
\begin{aligned}
0 & =d(z) \beta d(y) \eta n \mu \alpha(z)=d(z \beta y) \eta n \mu \alpha(z) \\
& =d(z) \beta \alpha(y) \eta n \mu \alpha(z)+z \beta d(y) \eta n \mu \alpha(z) \\
& =z \beta d(y) \eta n \mu \alpha(z)
\end{aligned}
$$

for all $n \in M, x, y, z \in U$ and $\gamma, \mu, \beta \in \Gamma$. Since $\alpha(U)=U, z \beta d(y) \eta n \mu w=0$, where $w \in U$. Taking $z \beta d(y)$ instead of w, we obtain $z \beta d(y) \eta n \mu z \beta d(y)=0$. Since M is semiprime, we have

$$
\begin{equation*}
z \beta d(y)=0 \tag{7}
\end{equation*}
$$

for all $y, z \in U$ and $\beta \in \Gamma$. Combining (6) and (7) gives that $d(y) \beta \alpha(z)+$ $y \beta d(z)=d(y \beta z)=0$ for all $y, z \in U$ and $\beta \in \Gamma$. In particular, $d(z \gamma m \beta z)=0$ for all $m \in M, z \in U$ and $\gamma, \beta \in \Gamma$. Since d acts as a Γ-homomorphism on U, we have

$$
0=d(z \gamma m) \beta d(z)=d(z) \gamma \alpha(m) \beta d(z)+z \gamma d(m) \beta d(z) .
$$

The second summand is zero by (7). Thus, since $\alpha(U)=U$ and by the semiprimness of M we conclude that $d(z)=0$ for all $z \in U$.
(ii) Assume that d acts as an anti- Γ-homomorphism on U. First, we note that $a \gamma 0=0$ for all $a \in U$ and $\gamma \in \Gamma$ by Lemma 3.2. By Lemma 3.6 we have

$$
\begin{equation*}
x \gamma y \gamma d(y)=d(y) \gamma x \gamma d(y) \tag{8}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$,

$$
\begin{equation*}
d(y) \gamma \alpha(y) \gamma x=d(y) \gamma x \gamma d(y) \tag{9}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by $x \gamma d(y)$ in (8) and using Lemma 3.6, we get

$$
\begin{align*}
x \gamma d(y) \gamma y \gamma d(y) & =d(y) \gamma x \gamma d(y \gamma y)=d(y) \gamma x \gamma(d(y \gamma \alpha(y)+y \gamma d(y)) \\
& =d(y) \gamma x \gamma d(y) \gamma \alpha(y)+d(y) \gamma x \gamma y \gamma d(y) . \tag{10}
\end{align*}
$$

Substituting $x \gamma y$ for x in (8), we have

$$
\begin{equation*}
x \gamma y \gamma y \gamma d(y)=d(y) \gamma x \gamma y \gamma d(y) \tag{11}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Right-multiplying (8) by $\alpha(y)$, we obtain

$$
\begin{equation*}
x \gamma y \gamma d(y) \gamma \alpha(y)=d(y) \gamma x \gamma d(y) \gamma \alpha(y) \tag{12}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by y in (8) we get $y \gamma y \gamma d(y)=$ $d(y) \gamma y \gamma d(y)$. Now left-multiplying this relation by x gives

$$
\begin{equation*}
x \gamma y \gamma y \gamma d(y)=x \gamma d(y) \gamma y \gamma d(y) \tag{13}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Putting (11), (12), and (13) in (10) gives

$$
x \gamma y \gamma d(y) \gamma \alpha(y)=0 .
$$

In particular, $y \gamma n \gamma y \gamma d(y) \gamma \alpha(y)=0$, where $n \in M$. Hence

$$
y \gamma d(y) \gamma \alpha(y) \gamma M \gamma y \gamma d(y) \gamma \alpha(y)=0 .
$$

By the semiprimeness of M

$$
\begin{equation*}
y \gamma d(y) \gamma \alpha(y)=0 \tag{14}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. According to (12) we get $d(y) \gamma x \gamma d(y) \gamma \alpha(y)=0$. Using this relation in (9), we have

$$
\begin{equation*}
d(y) \gamma \alpha(y) \gamma x \gamma \alpha(y)=0 \tag{15}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by $x \gamma n \gamma d(y)$ in (15), we have

$$
d(y) \gamma \alpha(y) \gamma x \gamma \alpha(y)=d(y) \gamma \alpha(y) \gamma x \gamma n \gamma d(y) \gamma \alpha(y) \gamma x=0
$$

for all $x, y \in U, n \in M$ and $\gamma \in \Gamma$. Hence

$$
\begin{equation*}
d(y) \gamma \alpha(y) \gamma x=0 \tag{16}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Using (16) in (9), we obtain $d(y) \gamma x \gamma d(y)=0$, and so we get

$$
d(y) \gamma x \gamma n \gamma d(y) \gamma x=0
$$

for all $x, y \in U, n \in M$ and $\gamma \in \Gamma$. Hence

$$
\begin{equation*}
d(y) \gamma x=0 \tag{17}
\end{equation*}
$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Therefore $x \gamma d(z) \gamma d(y \gamma n) \gamma x=0$ for all $x, y, z \in$ $U, n \in M$ and $\gamma \in \Gamma$. Thus

$$
0=x \gamma d(z) \gamma(d(y) \gamma n+\alpha(y) \gamma d(n)) \gamma x=x \gamma d(z) \gamma d(y) \gamma \alpha(y) \gamma d(n) \gamma x
$$

for all $x, y, z \in U, n \in M$ and $\gamma \in \Gamma$. Since $\alpha(U)=U$ the second summand is zero by (17). Hence $x \gamma d(z) \gamma d(y) \gamma N \gamma x=\{0\}$, and then

$$
x \gamma d(z) \gamma d(y) \gamma N \gamma x \gamma d(z) \gamma d(y)=\{0\} .
$$

Because M is semiprime, we get

$$
0=x \gamma d(z) \gamma d(y)=x \gamma d(y \gamma z) .
$$

Therefore

$$
0=x \gamma d(y) \gamma z+x \gamma \alpha(y) \gamma d(z)=x \gamma \alpha(y) \gamma d(z) .
$$

In particular

$$
0=\alpha(y) \gamma d(z) \gamma n \gamma \alpha(y) \gamma d(z)
$$

Hence $0=\alpha(y) \gamma d(z)$. By (17), we obtain $0=d(x \gamma y)$ for all $x, y \in U$. Thus $d(x \gamma x \gamma n)=0$ for all $x \in U, n \in M$ and $\gamma \in \Gamma$. Thus

$$
\begin{aligned}
0 & =d(x \gamma n) \gamma d(x) \\
& =(d(x) \gamma n+\alpha(x) \gamma d(n)) \gamma d(x) \\
& =d(x) \gamma n \gamma d(x)+\alpha(x) \gamma d(n) \gamma d(x) \\
& =d(x) \gamma n \gamma d(x)+\alpha(x) \gamma d(x \gamma n) .
\end{aligned}
$$

Since the second summand is zero, we get $d(x) \gamma n \gamma d(x)=0$. Therefore $d(x)=0$ for all $x \in U$.

Corollary 3.8. Let M be a semiprime Γ-near-ring and d be a two-sided Γ - α derivation of M such that $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$.
(i) If d acts as a Γ-homomorphism on M, then $d=0$.
(ii) If d acts as an anti- Γ-homomorphism on M and $\alpha(0)=0$, then $d=0$.

Corollary 3.9. Let M be a prime Γ-near-ring and let U be a nonzero invariant subset of M such that $0 \in U$. Let d be a two-sided Γ - α-derivation of M such that $\alpha(U)=U$ and $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$.
(i) If d acts as a Γ-homomorphism on M, then $d=0$.
(ii) If d acts as an anti- Γ-homomorphism on M and $\alpha(0)=0$, then $d=0$.

Proof. By Theorem 3.7, we have $d(x)=0$ for all $x \in U$. Taking $x \gamma a$ instead of x, where $x \in U, a \in M$ and $\gamma \in \Gamma$, then we have $0=d(x \gamma a)=d(x) \gamma \alpha(a)+$ $x \gamma d(a)=x \gamma d(a)$. Substituting $x \mu b$ for x in the last expression, where $x \in$ $U, b \in M$ and $\gamma \in \Gamma$, we get $x \mu b \gamma d(a)=0$. In particular, $x \Gamma M \Gamma d(a)=\{0\}$. By the primness of M, since U is a nonzero invariant subset of M, we have $d(a)=0$ for all $a \in M$.

Theorem 3.10. Let M be a prime Γ-near-ring, U be a nonzero invariant of M and d be a nonzero Γ - $(\alpha, 1)$-derivation of M such that $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $d(x+y-x-y)=0$ for all $x, y \in U$, then $(M,+)$ is abelian.

Proof. Suppose that $d(x+y-x-y)=0$ for all $x, y \in U$. By Lemma 3.5, we have $(x+y-x-y) \gamma d(z)=0$ for all $x, y, z \in U$ and $\gamma \in \Gamma$. Since $d \neq 0$, it follows that $x+y-x-y=0$ for all $x, y \in U$ by Lemma 3.4. Hence $(M,+)$ is abelian by Lemma 3.1.

Corollary 3.11. Let M be a prime Γ-near-ring and U be a nonzero invariant of M and d be a nonzero Γ - $(\alpha, 1)$-derivation of M such that $\alpha(x \gamma y)=\alpha(x) \gamma \alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $d+d$ is additive on U, then $(M,+)$ is abelian.

Example. Let $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are prime Γ-near-rings. Let us define $d: M \rightarrow M$ by $d\left(\left(m_{1}, m_{2}\right)\right)=\left(0, m_{2}\right)$ and $\alpha: M \rightarrow M$ by $\alpha\left(\left(m_{1}, m_{2}\right)\right)=\left(m_{1}, 0\right)$ for all $\left(m_{1}, m_{2}\right) \in M$. Then d is a two-sided Γ - α derivation on M. On the other hand, it can be shown that d acts as a Γ homomorphism on M and

$$
\alpha\left(\left(m_{1}, m_{2}\right) \gamma\left(m_{1}^{\prime}, m_{2}^{\prime}\right)\right)=\alpha\left(\left(m_{1}, m_{2}\right)\right) \gamma \alpha\left(\left(m_{1}^{\prime}, m_{2}^{\prime}\right)\right)
$$

for all $\left(m_{1}, m_{2}\right),\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \in M$ and $\gamma \in \Gamma$. One can also show that if M_{2} is commutative, then d acts as anti-homomorphism on M. Now, if M_{2} is abelian, then $d\left(m+m^{\prime}-m-m^{\prime}\right)=0$ for all $m=\left(m_{1}, m_{2}\right), m^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \in M$. But $d \neq 0$ and $(M,+)$ is not abelian. Therefore primeness condition on M in Corollary 3.9 and Theorem 3.10 cannot be omitted.

References

[1] N. Argaç, On near rings with two-sided α-derivations, Turkish J. Math. 28 (2004), 195204.
[2] , On prime and semiprime near rings with derivations, Internat. J. Math. and Math. Sci. 20 (1997), no. 4, 737-740.
[3] W. E. Barnes, On the Г-rings of Nobusawa, Pacific J. Math. 18 (1966), no. 3, 411-422.
[4] Y. U. Cho and Y. B. Jun, Gamma-derivation in prime and semiprime gamma-near-rings, Indian J. Pure Appl. Math. 33 (2002), no. 10, 1489-1494.
[5] B. Satayanarayana, Contributions to Near-ring Theory, Doctoral Thesis, Nagarjuna University, India, 1984.
[6] Y. B. Jun, K. H. Kim, and Y. U. Cho, On gamma-derivations in gamma near-rings, Soochow J. Math. 29 (2003), no. 3, 275-282.

Mustafa Kazaz
Department of Mathematics
Faculty of Science
University of Celal Bayar
Muradiye Campus, 45047, Manisa, Turkey
E-mail address: m_kazaz@hotmail.com
Akin Alkan
Department of Mathematics
Faculty of Science
University of Celal Bayar
Muradiye Campus, 45047, Manisa, Turkey

